mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
[Metal] Add the Python binding for optimize_for_mobile (#46456)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46456 Add the python binding in CMake. The general workflow is - Build pytorch - `USE_PYTORCH_METAL=ON python setup.py install --cmake` - Run optimize_for_mobile ``` import torch from torch.utils.mobile_optimizer import optimize_for_mobile scripted_model = torch.jit.load('./mobilenetv2.pt') optimized_model = optimize_for_mobile(scripted_model, backend='metal') torch.jit.export_opnames(optimized_model) torch.jit.save(optimized_model, './mobilenetv2_metal.bc') ``` The exported ops are ``` ['aten::adaptive_avg_pool2d', 'aten::add.Tensor', 'aten::addmm', 'aten::reshape', 'aten::size.int', 'metal::copy_to_host', 'metal_prepack::conv2d_run'] ``` ghstack-source-id: 114559878 Test Plan: - Sandcastle CI - Circle CI Reviewed By: kimishpatel Differential Revision: D24356768 fbshipit-source-id: fb5c4c4b6316347b67edb4132da044a81470ddfd
This commit is contained in:
committed by
Facebook GitHub Bot
parent
e8ff0f6c5c
commit
495070b388
159
test/test_metal.py
Normal file
159
test/test_metal.py
Normal file
@ -0,0 +1,159 @@
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch.testing._internal.common_utils import TestCase, run_tests
|
||||
from torch.testing import FileCheck
|
||||
import io
|
||||
|
||||
class TestMetalRewritePass(TestCase):
|
||||
@staticmethod
|
||||
def validate_transformed_module(
|
||||
# To please flake
|
||||
self,
|
||||
pattern_count_map,
|
||||
data_shape,
|
||||
prepack_removal=False,
|
||||
fuse_clamping_ops=False):
|
||||
module_instance = self
|
||||
scripted_model = torch.jit.script(module_instance)
|
||||
scripted_model.eval()
|
||||
input_data = torch.normal(1, 20, size=data_shape)
|
||||
ref_result = scripted_model(input_data)
|
||||
torch._C._jit_pass_metal_insert_prepacked_ops(scripted_model._c)
|
||||
if fuse_clamping_ops or prepack_removal:
|
||||
scripted_model._c = torch._C._freeze_module(scripted_model._c)
|
||||
if fuse_clamping_ops:
|
||||
torch._C._jit_pass_metal_fuse_clamp_w_prepacked_conv(scripted_model._c)
|
||||
if prepack_removal:
|
||||
torch._C._jit_pass_metal_fold_prepacking_ops(scripted_model._c)
|
||||
|
||||
buffer = io.BytesIO()
|
||||
torch.jit.save(scripted_model, buffer)
|
||||
buffer.seek(0)
|
||||
deserialized_scripted_model = torch.jit.load(buffer)
|
||||
for pattern, v in pattern_count_map.items():
|
||||
if (v == 0):
|
||||
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
|
||||
elif (v == -1):
|
||||
FileCheck().check_not(pattern).run(deserialized_scripted_model.graph)
|
||||
else:
|
||||
FileCheck().check_count(pattern, v, exactly=True).run(deserialized_scripted_model.graph)
|
||||
|
||||
def test_conv(self):
|
||||
# Conv params
|
||||
batch_size = 2
|
||||
input_channels_per_group = 6
|
||||
height = 16
|
||||
width = 16
|
||||
output_channels_per_group = 6
|
||||
groups = 4
|
||||
kernel_h = kernel_w = 3
|
||||
stride_h = stride_w = 1
|
||||
pad_h = pad_w = 1
|
||||
dilation = 1
|
||||
input_channels = input_channels_per_group * groups
|
||||
output_channels = output_channels_per_group * groups
|
||||
kernels = (kernel_h, kernel_w)
|
||||
strides = (stride_h, stride_w)
|
||||
paddings = (pad_h, pad_w)
|
||||
dilations = (dilation, dilation)
|
||||
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
|
||||
conv_bias_shape = (output_channels)
|
||||
|
||||
class Conv2D(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(Conv2D, self).__init__()
|
||||
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
|
||||
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)), requires_grad=False)
|
||||
self.strides = strides
|
||||
self.paddings = paddings
|
||||
self.dilations = dilations
|
||||
self.groups = groups
|
||||
|
||||
def forward(self, x):
|
||||
return F.conv2d(x, self.weight, self.bias,
|
||||
self.strides, self.paddings, self.dilations, self.groups)
|
||||
|
||||
data_shape = (batch_size, input_channels, height, width)
|
||||
pattern_count_map = {"Tensor = aten::conv2d": -1,
|
||||
"metal_prepack::conv2d_prepack": 1,
|
||||
"metal_prepack::conv2d_run": 1}
|
||||
TestMetalRewritePass.validate_transformed_module(Conv2D(), pattern_count_map, data_shape)
|
||||
|
||||
class Conv2DRelu(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(Conv2DRelu, self).__init__()
|
||||
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
|
||||
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)), requires_grad=False)
|
||||
self.strides = strides
|
||||
self.paddings = paddings
|
||||
self.dilations = dilations
|
||||
self.groups = groups
|
||||
|
||||
def forward(self, x):
|
||||
o = F.conv2d(x, self.weight, self.bias,
|
||||
self.strides, self.paddings, self.dilations, self.groups)
|
||||
o = F.relu(o)
|
||||
return o
|
||||
|
||||
data_shape = (batch_size, input_channels, height, width)
|
||||
pattern_count_map = {"Tensor = aten::conv2d": -1,
|
||||
"metal_prepack::conv2d_prepack": 1,
|
||||
"metal_prepack::conv2d_run": 1}
|
||||
TestMetalRewritePass.validate_transformed_module(
|
||||
Conv2DRelu(), pattern_count_map, data_shape)
|
||||
|
||||
pattern_count_map["aten::relu"] = 1
|
||||
pattern_count_map["metal_prepack::conv2d_prepack"] = -1
|
||||
TestMetalRewritePass.validate_transformed_module(
|
||||
Conv2DRelu(),
|
||||
pattern_count_map,
|
||||
data_shape,
|
||||
prepack_removal=True)
|
||||
pattern_count_map["aten::relu"] = -1
|
||||
TestMetalRewritePass.validate_transformed_module(
|
||||
Conv2DRelu(),
|
||||
pattern_count_map,
|
||||
data_shape,
|
||||
prepack_removal=True,
|
||||
fuse_clamping_ops=True)
|
||||
|
||||
|
||||
class Conv2DHardtanh(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(Conv2DHardtanh, self).__init__()
|
||||
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
|
||||
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)), requires_grad=False)
|
||||
self.strides = strides
|
||||
self.paddings = paddings
|
||||
self.dilations = dilations
|
||||
self.groups = groups
|
||||
|
||||
def forward(self, x):
|
||||
o = F.conv2d(x, self.weight, self.bias,
|
||||
self.strides, self.paddings, self.dilations, self.groups)
|
||||
o = F.hardtanh(o)
|
||||
return o
|
||||
|
||||
data_shape = (batch_size, input_channels, height, width)
|
||||
pattern_count_map = {"Tensor = aten::conv2d": -1,
|
||||
"metal_prepack::conv2d_prepack": 1,
|
||||
"metal_prepack::conv2d_run": 1}
|
||||
TestMetalRewritePass.validate_transformed_module(Conv2DHardtanh(), pattern_count_map, data_shape)
|
||||
pattern_count_map["aten::hardtanh"] = 1
|
||||
pattern_count_map["metal_prepack::conv2d_prepack"] = -1
|
||||
TestMetalRewritePass.validate_transformed_module(
|
||||
Conv2DHardtanh(),
|
||||
pattern_count_map,
|
||||
data_shape,
|
||||
prepack_removal=True)
|
||||
pattern_count_map["aten::hardtanh"] = -1
|
||||
TestMetalRewritePass.validate_transformed_module(
|
||||
Conv2DRelu(),
|
||||
pattern_count_map,
|
||||
data_shape,
|
||||
prepack_removal=True,
|
||||
fuse_clamping_ops=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
Reference in New Issue
Block a user