mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[Caffe2] Add support to TensorRT (#6150)
* Add support to TensorRT * Removed License header * Bind input/output by position * Comments * More comments * Add benchmark * Add warning for performance degradation on large batch * Address comments * comments
This commit is contained in:
112
caffe2/python/trt/transform.py
Normal file
112
caffe2/python/trt/transform.py
Normal file
@ -0,0 +1,112 @@
|
||||
## @package onnx
|
||||
#Module caffe2.python.trt.transform
|
||||
|
||||
"""
|
||||
TensorRT related transformation
|
||||
Note that ONNX-TRT enforce an NCHW input!
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from caffe2.proto import caffe2_pb2
|
||||
from caffe2.python.onnx.helper import c2_native_run_net, c2_native_run_op
|
||||
import caffe2.python.onnx.frontend as c2_front
|
||||
import caffe2.python._import_c_extension as C
|
||||
import numpy as np
|
||||
|
||||
def _dim_values_to_list(dim_values):
|
||||
return [x.dim_value for x in dim_values]
|
||||
|
||||
|
||||
def _get_output_shapes(output_value_infos):
|
||||
names = [x.name for x in output_value_infos]
|
||||
shapes = [_dim_values_to_list(x.type.tensor_type.shape.dim) for x in output_value_infos]
|
||||
return dict(zip(names, shapes))
|
||||
|
||||
|
||||
def check_gpu_():
|
||||
try:
|
||||
C.get_cuda_version()
|
||||
except Exception as _:
|
||||
raise Exception("TensorRT related functions require CUDA support")
|
||||
|
||||
def convert_onnx_model_to_trt_op(onnx_model,
|
||||
max_batch_size=50,
|
||||
max_workspace_size=2*1024*1024,
|
||||
verbosity=1,
|
||||
debug_builder=False):
|
||||
"""
|
||||
Convert the whole ONNX model to a TensorRT C2 op
|
||||
"""
|
||||
check_gpu_()
|
||||
trt_str = C.onnx_to_trt_op(onnx_model.SerializeToString(),
|
||||
_get_output_shapes(onnx_model.graph.output),
|
||||
max_batch_size,
|
||||
max_workspace_size,
|
||||
verbosity,
|
||||
debug_builder)
|
||||
op = caffe2_pb2.OperatorDef()
|
||||
op.ParseFromString(trt_str)
|
||||
return op
|
||||
|
||||
def _infer_shapes(init_net, pred_net, inputs):
|
||||
ws, outputs = c2_native_run_net(init_net, pred_net, inputs)
|
||||
hints = {}
|
||||
for op in pred_net.op:
|
||||
for o in op.output:
|
||||
if o not in hints:
|
||||
blob = ws.FetchBlob(o)
|
||||
if hasattr(blob, 'shape'):
|
||||
hints[o] = blob.shape
|
||||
for i in op.input:
|
||||
if i not in hints:
|
||||
blob = ws.FetchBlob(i)
|
||||
if hasattr(blob, 'shape'):
|
||||
hints[i] = blob.shape
|
||||
|
||||
return hints
|
||||
|
||||
def _ssa_rewrite_input(i):
|
||||
return i + "_0";
|
||||
|
||||
def transform_caffe2_net(init_net,
|
||||
pred_net,
|
||||
input_shapes,
|
||||
populate_shapes = False,
|
||||
max_batch_size=50,
|
||||
max_workspace_size=2*1024*1024,
|
||||
verbosity=1,
|
||||
debug_builder=False):
|
||||
"""
|
||||
Transfrom the caffe2_net by collapsing TRT-runnable nodes into trt c2 ops
|
||||
"""
|
||||
check_gpu_()
|
||||
c2_front.ssa_rewrite(pred_net, init_net, value_info=[])
|
||||
input_data = {}
|
||||
for k,v in input_shapes.iteritems():
|
||||
input_data[_ssa_rewrite_input(k)] = np.random.randn(*v).astype(np.float32)
|
||||
|
||||
# Hacky way to infer shapes as not all our operators have shape inference function.
|
||||
# Normally this is not needed
|
||||
if populate_shapes:
|
||||
shape_hints = _infer_shapes(init_net, pred_net, input_data)
|
||||
|
||||
shape_hints = {}
|
||||
for k,v in input_shapes.iteritems():
|
||||
shape_hints[_ssa_rewrite_input(k)] = v
|
||||
init_net_str, pred_net_str = C.transform_trt(init_net.SerializeToString(),
|
||||
pred_net.SerializeToString(),
|
||||
shape_hints,
|
||||
max_batch_size,
|
||||
max_workspace_size,
|
||||
verbosity,
|
||||
debug_builder)
|
||||
init_net_cut = caffe2_pb2.NetDef()
|
||||
init_net_cut.ParseFromString(init_net_str)
|
||||
pred_net_cut = caffe2_pb2.NetDef()
|
||||
pred_net_cut.ParseFromString(pred_net_str)
|
||||
return init_net_cut, pred_net_cut
|
||||
|
Reference in New Issue
Block a user