Revert "Reverting the PR adding Kleidiai-based int4 kernels (#145392)" (#145505)

https://github.com/pytorch/pytorch/pull/134124 was reverted by https://github.com/pytorch/pytorch/pull/145392 due to KleidiAI clone issue.

1. This reverts commit 0940eb6d44f3cf69dd840db990245cbe1f78e770 (https://github.com/pytorch/pytorch/pull/145392 )and Fixes KleidiAI mirror issue.
2. KleidiAI is now cloned from github mirror instead of arm gitlab

Change-Id: I7d6eee7214cd117d3057d615936fcc3ee6052fa2

Fixes https://github.com/pytorch/pytorch/issues/145273

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145505
Approved by: https://github.com/malfet
This commit is contained in:
Nikhil Gupta
2025-01-23 18:50:58 +00:00
committed by PyTorch MergeBot
parent 34b8d8b0c0
commit 41b38f755c
37 changed files with 1940 additions and 23 deletions

View File

@ -498,6 +498,39 @@ def _group_quantize_tensor(w, n_bit=4, q_group_size=16):
return out, scales_and_zeros
def _group_quantize_tensor_symmetric(
w, n_bit=4, groupsize=32
):
# W is of shape [K x N]
# We transpose W as Quantization is applied on [N x K]
w = w.transpose(0, 1).contiguous()
assert w.dim() == 2
assert groupsize > 1
assert w.shape[-1] % groupsize == 0
# Calculate scale and zeros
to_quant = w.reshape(-1, groupsize)
max_val = to_quant.abs().amax(dim=1, keepdim=True)
eps = torch.finfo(max_val.dtype).eps
max_int = 2 ** (n_bit - 1) - 1 # For 4-bit, this is 7
scales = max_val.clamp(min=eps) / max_int
zeros = torch.zeros_like(scales)
# Quantize the weight
scales = scales.to(torch.float32).reshape(w.shape[0], -1)
zeros = zeros.to(torch.float32).reshape(w.shape[0], -1)
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
max_int = 2**n_bit - 1
w_int8 = to_quant.div(scales).add(8.5).to(torch.int8).clamp(max=max_int)
# We pack 2 signed int4 values in unsigned uint8 container.
# This reduces the weight size by half and improves load perf
out_uint8 = (w_int8[::, 1::2] << 4 | w_int8[::, ::2]).to(torch.uint8)
scales_and_zeros = scales.squeeze().contiguous()
return out_uint8, scales_and_zeros
def _dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
# source: https://github.com/pytorch-labs/gpt-fast/blob/main/quantize.py
# default setup for affine quantization of activations
@ -530,7 +563,6 @@ def _dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
return quant, scales.to(x_dtype), zero_points
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):