[ROCm][CI] additional dynamo benchmarks for inductor-periodic (#164279)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164279
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
This commit is contained in:
Jeff Daily
2025-10-04 00:55:17 +00:00
committed by PyTorch MergeBot
parent 7d570129e0
commit 412c6d28ec
17 changed files with 118 additions and 42 deletions

View File

@ -34,19 +34,24 @@ def check_accuracy(actual_csv, expected_csv, expected_filename):
if "rocm" in expected_filename:
flaky_models.update(
{
"Background_Matting",
"alexnet",
"cait_m36_384",
"dla102",
"demucs",
"densenet121",
"detectron2_fcos_r_50_fpn",
"doctr_det_predictor",
"doctr_reco_predictor",
"dpn107",
"fbnetv3_b",
"hf_BigBird",
"hf_Longformer",
"hf_Reformer",
"hf_Roberta_base",
"hf_T5",
"hf_T5_base",
"hf_T5_generate",
"levit_128",
"llava",
"microbench_unbacked_tolist_sum",
@ -64,6 +69,7 @@ def check_accuracy(actual_csv, expected_csv, expected_filename):
"squeezenet1_1",
"stable_diffusion_text_encoder",
"stable_diffusion_unet",
"swsl_resnext101_32x16d",
"timm_efficientdet",
"timm_efficientnet",
"timm_nfnet",

View File

@ -47,6 +47,8 @@ def check_graph_breaks(actual_csv, expected_csv, expected_filename):
"levit_128",
"llava",
"microbench_unbacked_tolist_sum",
"resnet50",
"resnet152",
"sam",
"sam_fast",
"stable_diffusion_text_encoder",

View File

@ -46,7 +46,7 @@ deit_base_distilled_patch16_224,pass,7
dla102,pass,7
dla102,pass,0

1 name accuracy graph_breaks
46 resmlp_12_224 pass 6
47 resnest101e pass 6
48 rexnet_100 pass 7
49 sebotnet33ts_256 pass 6
50 selecsls42b pass 6
51 spnasnet_100 pass 7
52 swin_base_patch4_window7_224 pass 7

View File

@ -170,7 +170,7 @@ mobilenet_v2_quantized_qat,eager_fail_to_run,0
mobilenet_v3_large,pass,7
mobilenet_v3_large,pass,0
@ -210,7 +210,7 @@ pytorch_unet,pass_due_to_skip,7
resnet152,pass,7
resnet152,pass,0
@ -218,7 +218,7 @@ resnet18,pass,6
resnet50,pass,6
resnet50,pass,0
@ -270,7 +270,7 @@ timm_nfnet,pass,0
timm_regnet,pass,7
timm_regnet,pass,0

1 name accuracy graph_breaks
170
171
172
173
174
175
176
210
211
212
213
214
215
216
218
219
220
221
222
223
224
270
271
272
273
274
275
276

View File

@ -58,7 +58,7 @@ DistilBertForQuestionAnswering,pass,0
DistillGPT2,pass,2
DistillGPT2,pass,0

1 name accuracy graph_breaks
58
59
60
61
62
63
64

View File

@ -150,6 +150,10 @@ hf_GPT2_large,pass_due_to_skip,0
hf_Roberta_base,pass,0
hf_T5,pass,0
@ -194,6 +198,10 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,fail_to_run,0
mnasnet1_0,pass,0
@ -310,6 +318,10 @@ timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0

1 name accuracy graph_breaks
150
151
152
153
154
155
156
157
158
159
198
199
200
201
202
203
204
205
206
207
318
319
320
321
322
323
324
325
326
327

View File

@ -46,7 +46,7 @@ deit_base_distilled_patch16_224,pass,7
dla102,pass,7
dla102,pass,0

1 name accuracy graph_breaks
46 resmlp_12_224 pass 6
47 resnest101e pass 6
48 rexnet_100 pass 7
49 sebotnet33ts_256 pass 6
50 selecsls42b pass 6
51 spnasnet_100 pass 7
52 swin_base_patch4_window7_224 pass 7

View File

@ -170,7 +170,7 @@ mobilenet_v2_quantized_qat,eager_fail_to_run,0
mobilenet_v3_large,pass,7
mobilenet_v3_large,pass,0
@ -210,7 +210,7 @@ pytorch_unet,pass_due_to_skip,7
resnet152,pass,7
resnet152,pass,0
@ -266,7 +266,7 @@ timm_nfnet,pass,0
timm_regnet,pass,7
timm_regnet,pass,0

1 name accuracy graph_breaks
170
171
172
173
174
175
176
210
211
212
213
214
215
216
266
267
268
269
270
271
272

View File

@ -30,7 +30,7 @@ BertForQuestionAnswering,pass,5
BlenderbotForCausalLM,eager_fail_to_run,0
BlenderbotForCausalLM,pass_due_to_skip,0
@ -50,7 +50,7 @@ DebertaV2ForMaskedLM,pass_due_to_skip,0
DebertaV2ForQuestionAnswering,eager_1st_run_OOM,0
DebertaV2ForQuestionAnswering,pass,4

1 name accuracy graph_breaks
30 MobileBertForMaskedLM pass 3
31 MobileBertForQuestionAnswering pass 3
32 OPTForCausalLM pass 8
33 PLBartForCausalLM pass 6
34 PLBartForConditionalGeneration pass 8
35 PegasusForCausalLM pass 6
36 PegasusForConditionalGeneration pass 7
50
51
52
53
54
55
56

View File

@ -150,7 +150,7 @@ pit_b_224,pass,0
pnasnet5large,pass,0
pnasnet5large,fail_accuracy,0
@ -158,23 +158,23 @@ poolformer_m36,pass,0
regnety_002,pass,0
regnety_002,fail_accuracy,0
repvgg_a2,pass,0
repvgg_a2,fail_accuracy,0
res2net101_26w_4s,pass,0
res2net101_26w_4s,fail_accuracy,0
res2net50_14w_8s,pass,0
res2net50_14w_8s,fail_accuracy,0
res2next50,pass,0
res2next50,fail_accuracy,0
@ -206,7 +206,7 @@ swin_base_patch4_window7_224,pass,0
swsl_resnext101_32x16d,pass,0
swsl_resnext101_32x16d,fail_accuracy,0

1 name accuracy graph_breaks
150
151
152
153
154
155
156
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
206
207
208
209
210
211
212

View File

@ -34,7 +34,7 @@ convnext_base,pass,7
crossvit_9_240,pass,7
crossvit_9_240,fail_accuracy,7
@ -46,7 +46,7 @@ deit_base_distilled_patch16_224,pass,7
dla102,pass,7
dla102,pass,0
@ -62,7 +62,7 @@ eca_botnext26ts_256,pass,7
eca_halonext26ts,pass,7
eca_halonext26ts,fail_accuracy,7
@ -74,7 +74,7 @@ fbnetc_100,pass,7
fbnetv3_b,pass,6
fbnetv3_b,fail_accuracy,6
@ -130,7 +130,7 @@ mnasnet_100,pass,7
mobilenetv2_100,pass,7
mobilenetv2_100,fail_accuracy,7
@ -150,7 +150,7 @@ pit_b_224,pass,6
pnasnet5large,pass,5
pnasnet5large,fail_accuracy,5
@ -162,7 +162,7 @@ regnety_002,pass,6
repvgg_a2,pass,7
repvgg_a2,fail_accuracy,7
@ -186,7 +186,7 @@ resnest101e,pass,6
rexnet_100,pass,7
rexnet_100,fail_accuracy,7
@ -230,7 +230,7 @@ twins_pcpvt_base,pass,7
visformer_small,pass,7
visformer_small,fail_accuracy,7

1 name accuracy graph_breaks
34 mobilenetv2_100 pass fail_accuracy 7
35 mobilenetv3_large_100 pass 7
36 mobilevit_s pass 6
37 nfnet_l0 pass 7
38 pit_b_224 pass 6
39 pnasnet5large pass fail_accuracy 5
40 poolformer_m36 pass 6
46 resmlp_12_224 pass 6
47 resnest101e pass 6
48 rexnet_100 pass fail_accuracy 7
49 sebotnet33ts_256 pass 6
50 selecsls42b pass 6
51 spnasnet_100 pass 7
52 swin_base_patch4_window7_224 pass 7
62 xcit_large_24_p8_224 pass_due_to_skip 7
63
64
65
66
67
68
74
75
76
77
78
79
80
130
131
132
133
134
135
136
150
151
152
153
154
155
156
162
163
164
165
166
167
168
186
187
188
189
190
191
192
230
231
232
233
234
235
236

View File

@ -162,7 +162,15 @@ hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,8
hf_Longformer,pass,4
hf_Reformer,pass,5
hf_Roberta_base,pass,0
@ -174,7 +182,7 @@ hf_T5_base,eager_fail_to_run,0
hf_T5_generate,pass,11
hf_T5_generate,pass,7
@ -214,6 +222,10 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
mnasnet1_0,pass,0
@ -306,6 +318,10 @@ sam,pass,0
sam_fast,model_fail_to_load,0
shufflenet_v2_x1_0,pass,0
@ -330,10 +346,18 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,pass,2
timm_efficientnet,pass,0
timm_nfnet,pass,0
timm_regnet,pass,0

1 name accuracy graph_breaks
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
182
183
184
185
186
187
188
222
223
224
225
226
227
228
229
230
231
318
319
320
321
322
323
324
325
326
327
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

View File

@ -70,7 +70,7 @@ fastNLP_Bert,pass,10
functorch_dp_cifar10,pass,7
functorch_dp_cifar10,fail_accuracy,7
@ -110,7 +110,19 @@ hf_GPT2_large,pass_due_to_skip,0
hf_Reformer,pass,25
hf_Longformer,pass,10
hf_Reformer,pass,20
hf_Roberta_base,pass,6
hf_T5,pass,5
@ -158,7 +170,7 @@ mobilenet_v2_quantized_qat,eager_fail_to_run,0
mobilenet_v3_large,pass,7
mobilenet_v3_large,pass,0
@ -198,7 +210,7 @@ pytorch_unet,pass_due_to_skip,7
resnet152,pass,7
resnet152,pass,0
@ -242,11 +254,19 @@ stable_diffusion_unet,pass_due_to_skip,0
timm_efficientdet,pass,8
timm_efficientnet,pass,7
timm_regnet,pass,7
timm_nfnet,pass,6
timm_regnet,pass,0
@ -278,7 +298,7 @@ vgg16,pass,0
vision_maskrcnn,pass,39
vision_maskrcnn,fail_accuracy,39

1 name accuracy graph_breaks
70 vgg16 timm_vision_transformer pass 0 6
71 vision_maskrcnn timm_vision_transformer_large pass pass_due_to_skip 39 0
72 yolov3 timm_vovnet pass 8 6
73 torch_multimodal_clip pass 7
74 tts_angular pass 9
75 vgg16 pass 0
76 vision_maskrcnn fail_accuracy 39
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
170
171
172
173
174
175
176
210
211
212
213
214
215
216
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
298
299
300
301
302
303
304

View File

@ -46,7 +46,7 @@ deit_base_distilled_patch16_224,pass,7
dla102,pass,7
dla102,pass,0

1 name accuracy graph_breaks
46 resmlp_12_224 pass 6
47 resnest101e pass 6
48 rexnet_100 pass 7
49 sebotnet33ts_256 pass 6
50 selecsls42b pass 6
51 spnasnet_100 pass 7
52 swin_base_patch4_window7_224 pass 7

View File

@ -170,7 +170,7 @@ mobilenet_v2_quantized_qat,eager_fail_to_run,0
mobilenet_v3_large,pass,7
mobilenet_v3_large,pass,0
@ -210,7 +210,7 @@ pytorch_unet,pass_due_to_skip,7
resnet152,pass,7
resnet152,pass,0
@ -270,7 +270,7 @@ timm_nfnet,pass,0
timm_regnet,pass,7
timm_regnet,pass,0

1 name accuracy graph_breaks
170
171
172
173
174
175
176
210
211
212
213
214
215
216
270
271
272
273
274
275
276

View File

@ -2282,7 +2282,9 @@ class BenchmarkRunner:
del model_copy
empty_gpu_cache(current_device)
# Two eager runs should have exactly same result
# Two eager runs should have exactly same result, within tolerance.
# TODO If we want the above to be true, then deterministic should be set.
# For example, MIOpen convolutions could be implemented with non-deterministic algos.
is_same = True
try:
if (
@ -2292,7 +2294,7 @@ class BenchmarkRunner:
correct_rerun_result,
fp64_ref=None,
cos_similarity=False,
tol=0,
tol=tolerance if torch.version.hip else 0,
equal_nan=self.equal_nan,
use_larger_multiplier_for_smaller_tensor=self.use_larger_multiplier_for_smaller_tensor(
name