mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
[torchgen] Generate wrapper functions under custom namespaces (#81744)
Summary: A follow up of #81581. Before these 2 PRs, if an operator with custom kernel namespace is added to `native_functions.yaml` (or any other yaml consumed by `torchgen`), although we are able to recognize the custom kernel in files such as `NativeFunctions.h` and `RegisterCPU.cpp`, we still generate backend specific wrappers under the hardcoded `at` namespace. This changes the behavior, by generating wrapper functions under custom namespaces. For example, if the entries in yaml file looks like: ``` - func: op_1(Tensor(a) self) -> Tensor(a) dispatch: CPU: at::op_1_kernel # ATen kernel - func: op_2(Tensor(a) self) -> Tensor(a) dispatch: CPU: custom::op_2_kernel # custom kernel ``` We generate the following code for `CPUFunctions_inl.h` and `RegisterCPU.cpp`: `CPUFunctions_inl.h`: ``` namespace at { namespace cpu { TORCH_API at::Tensor & op_1(const at::Tensor & self); } // namespace cpu } // namespace at namespace custom { namespace cpu { TORCH_API at::Tensor & op_2(const at::Tensor & self); } // namespace cpu } // namespace custom ``` Notice the difference between `at::cpu` and `custom::cpu`. Then the definition for these can be found in `RegisterCPU.cpp`. `RegisterCPU.cpp`: ``` #include "CPUFunctions.h" namespace at { namespace { at::Tensor & wrapper_op_1(const at::Tensor & self) { // No device check // DeviceGuard omitted return at::native::op_1_kernel(self); } } // anonymous namespace TORCH_LIBRARY_IMPL(aten, CPU, m) { m.impl("op_1", TORCH_FN(wrapper_op_1)); } namespace cpu { at::Tensor & op_1(at::Tensor & self) { return wrapper_op_1(self); } } // namespace cpu } // namespace at namespace custom { namespace { at::Tensor & wrapper_op_2(const at::Tensor & self) { // No device check // DeviceGuard omitted return at::native::op_2_kernel(self); } } // anonymous namespace TORCH_LIBRARY_IMPL(aten, CPU, m) { m.impl("op_2", TORCH_FN(wrapper_op_2)); } namespace cpu { at::Tensor & op_2(at::Tensor & self) { return wrapper_op_2(self); } } // namespace cpu } // namespace custom ``` The benefit for this change is that it unifies all the namespaces derived from custom ops. In the example above, there are: 1. `custom::native` for kernels 2. `custom::<dispatch_key>` e.g., `custom::cpu` for wrappers This customized operator will have nothing to do with `at::native`, `at::cpu` etc. Test Plan: This is very hard to test. I will refactor this logic, abstract out some layers so it's testable. Will do it in coming PRs Differential Revision: D37972772 Pull Request resolved: https://github.com/pytorch/pytorch/pull/81744 Approved by: https://github.com/bdhirsh
This commit is contained in:
committed by
PyTorch MergeBot
parent
cda8635a5e
commit
406ce692ca
Reference in New Issue
Block a user