[BE] Delete skipIfMPSOnMacOS13 (#163515)

As PyTorch needs MacOS-14 or newer to use MPS
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163515
Approved by: https://github.com/Skylion007
This commit is contained in:
Nikita Shulga
2025-09-22 13:31:20 -07:00
committed by PyTorch MergeBot
parent 8e62d01f7a
commit 4027e97791
2 changed files with 4 additions and 69 deletions

View File

@ -24,7 +24,7 @@ from torch.testing._internal.common_nn import (
marginrankingloss_reference, multimarginloss_reference, multilabelmarginloss_reference,
nllloss_reference, nlllossNd_reference, smoothl1loss_reference, softmarginloss_reference, get_reduction)
from torch.testing._internal.common_utils import (
freeze_rng_state, skipIfMPS, skipIfMPSOnMacOS13, GRADCHECK_NONDET_TOL, TEST_WITH_ROCM, IS_WINDOWS,
freeze_rng_state, skipIfMPS, GRADCHECK_NONDET_TOL, TEST_WITH_ROCM, IS_WINDOWS,
skipIfTorchDynamo)
from types import ModuleType
import operator
@ -3413,11 +3413,8 @@ module_db: list[ModuleInfo] = [
'TestModule',
'test_memory_format',
active_if=operator.itemgetter('training'),
device_type='cuda',
),
# error: input types 'tensor<f32>' and 'tensor<15x10xf16>' are not broadcast compatible
DecorateInfo(skipIfMPSOnMacOS13, 'TestModule', dtypes=[torch.float16], device_type='mps',),),
),
device_type='cuda',),
),),
ModuleInfo(torch.nn.AvgPool3d,
module_inputs_func=module_inputs_torch_nn_AvgPool3d,
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
@ -3496,14 +3493,6 @@ module_db: list[ModuleInfo] = [
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=False),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
@ -3519,12 +3508,6 @@ module_db: list[ModuleInfo] = [
# Fails with channels last test on MPS backend
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float32, torch.float16]),
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
@ -3552,12 +3535,7 @@ module_db: list[ModuleInfo] = [
# Not implemented for chalf on CPU
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_cpu_gpu_parity',
dtypes=(torch.chalf,), device_type='cuda'),
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
DecorateInfo(precisionOverride({torch.chalf: 5e-03}), 'TestModule', 'test_memory_format'),
@ -3581,12 +3559,6 @@ module_db: list[ModuleInfo] = [
# Not implemented for chalf on CPU
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_cpu_gpu_parity',
dtypes=(torch.chalf,), device_type='cuda'),
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
@ -3665,12 +3637,6 @@ module_db: list[ModuleInfo] = [
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
@ -3690,12 +3656,6 @@ module_db: list[ModuleInfo] = [
# Fails with channels last test on MPS backend
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float32, torch.float16]),
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
@ -3725,12 +3685,6 @@ module_db: list[ModuleInfo] = [
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
@ -3750,12 +3704,6 @@ module_db: list[ModuleInfo] = [
# Fails with channels last test on MPS backend
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float32, torch.float16]),
# See #119108: MPSNDArrayConvolutionA14.mm:3976: failed assertion `destination datatype must be fp32'
# xfail does not work due to Fatal Python error: Aborted
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_memory_format",
device_type='mps', dtypes=[torch.float16]),
DecorateInfo(skipIfMPSOnMacOS13, "TestModule", "test_non_contiguous_tensors",
device_type='mps', dtypes=[torch.float16]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
@ -3853,9 +3801,6 @@ module_db: list[ModuleInfo] = [
skips=(
# No channels_last support for loss functions.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
# See #119108: input types 'tensor<f32>' and 'tensor<15x10xf16>' are not broadcast compatible
DecorateInfo(skipIfMPSOnMacOS13, 'TestModule', 'test_non_contiguous_tensors',
device_type='mps', dtypes=[torch.float16],),
# See #119108: tolerance issue
DecorateInfo(unittest.expectedFailure, "TestModule", "test_forward",
device_type='mps', dtypes=[torch.float16]),)

View File

@ -1990,16 +1990,6 @@ def skipIfMPS(fn):
return wrapper
def skipIfMPSOnMacOS13(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_MPS and int(MACOS_VERSION) == 13:
raise unittest.SkipTest("Test crashes MPSGraph on MacOS13")
else:
fn(*args, **kwargs)
return wrapper
def skipIfHpu(fn):
@wraps(fn)
def wrapper(*args, **kwargs):