mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[ATen][CPU][Sparse] Use Third-Party Eigen for sparse add and addmm (#155357)
This pull request adds the following ops for sparse matrices using Eigen library: ```python add(a_csr, b_csr) add(a_csc, b_csc) addmm(c_csr, a_csr, b_csr) addmm(c_csr, a_csr, b_csc) addmm(c_csr, a_csc, b_csc) addmm(c_csr, a_csc, b_csr) addmm(c_csc, a_csr, b_csr) addmm(c_csc, a_csr, b_csc) addmm(c_csc, a_csc, b_csc) addmm(c_csc, a_csc, b_csr) ``` Currently, the operations for sparse matrices on CPU are available through MKL only. The non-existence of MKL on `aarch64` causes the unavailability of these ops on any machines with ARM based CPUs, including Apple Silicon, AWS Graviton and NVIDIA Grace. This PR addresses this issue by using Eigen as a backend for the above ops. This is a re-factored version of my previous PR #101814. The main difference with the old one, this does not enable Eigen by default. Pull Request resolved: https://github.com/pytorch/pytorch/pull/155357 Approved by: https://github.com/pearu, https://github.com/eqy Co-authored-by: Eli Uriegas <eliuriegas@meta.com>
This commit is contained in:
committed by
PyTorch MergeBot
parent
4acdbb8311
commit
3e5b021f21
@ -2202,6 +2202,8 @@ Call this whenever a new thread is created in order to propagate values from
|
||||
set_module_attr("_has_kleidiai", at::hasKleidiAI() ? Py_True : Py_False));
|
||||
ASSERT_TRUE(
|
||||
set_module_attr("has_lapack", at::hasLAPACK() ? Py_True : Py_False));
|
||||
ASSERT_TRUE(set_module_attr(
|
||||
"_has_eigen_sparse", at::hasEigenSparse() ? Py_True : Py_False));
|
||||
|
||||
py_module.def("_valgrind_supported_platform", []() {
|
||||
#if defined(USE_VALGRIND)
|
||||
|
Reference in New Issue
Block a user