add prologue fusion

This commit is contained in:
Tianren Gao
2025-10-19 16:44:10 -07:00
parent 2bd0ab5db6
commit 3c28278dff
3 changed files with 122 additions and 2 deletions

View File

@ -255,6 +255,10 @@ prologue_fusion = prologue_fusion_enabled()
# do epilogue fusions before other fusions
epilogue_fusion_first = False
# enable custom op fusion support
enable_custom_op_epilogue_fusion = os.environ.get("TORCHINDUCTOR_CUSTOM_OP_EPILOGUE_FUSION", "1") == "1"
enable_custom_op_prologue_fusion = os.environ.get("TORCHINDUCTOR_CUSTOM_OP_PROLOGUE_FUSION", "1") == "1"
# enable pattern match+replace optimizations
pattern_matcher = True

View File

@ -178,6 +178,7 @@ def autotune_custom_op(
dict[str, Callable[[torch.Tensor], torch.Tensor]]
] = None,
enable_epilogue_fusion: bool = False,
enable_prologue_fusion: bool = False,
) -> Union[TensorBox, Any]:
"""Autotune custom operations by comparing multiple decomposition implementations.
@ -276,10 +277,13 @@ def autotune_custom_op(
input_gen_fns=input_gen_fns,
)
# Mark result for custom op epilogue fusion if enabled
# Mark result for custom op fusion if enabled
if enable_epilogue_fusion and isinstance(selected_result, TensorBox):
_mark_custom_op_for_epilogue_fusion(selected_result, name)
if enable_prologue_fusion and isinstance(selected_result, TensorBox):
_mark_custom_op_for_prologue_fusion(selected_result, name)
return selected_result
@ -303,6 +307,26 @@ def _mark_custom_op_for_epilogue_fusion(result: TensorBox, name: str) -> None:
)
def _mark_custom_op_for_prologue_fusion(result: TensorBox, name: str) -> None:
"""Mark the result for custom op prologue fusion by the scheduler.
Args:
result: The autotuning result to mark
name: Operation name for identification
"""
if hasattr(result, "data") and hasattr(result.data, "get_name"):
# Mark this buffer as a custom op result eligible for prologue fusion
if not hasattr(result.data, "_custom_op_fusion_metadata"):
result.data._custom_op_fusion_metadata = {}
result.data._custom_op_fusion_metadata.update(
{
"prologue_fusion_enabled": True,
"custom_op_name": name,
}
)
def register_custom_op_autotuning(
custom_op: torch._ops.OpOverload,
decompositions: list[Callable[..., Any]],
@ -310,6 +334,7 @@ def register_custom_op_autotuning(
input_gen_fns: Optional[dict[str, Callable[[torch.Tensor], torch.Tensor]]] = None,
tuning_knob: Optional[dict[str, list[Any]]] = None,
enable_epilogue_fusion: bool = False,
enable_prologue_fusion: bool = False,
) -> None:
"""Register custom operation for autotuning with multiple implementations.
@ -392,6 +417,7 @@ def register_custom_op_autotuning(
default_impl=custom_op,
user_input_gen_fns=input_gen_fns,
enable_epilogue_fusion=enable_epilogue_fusion,
enable_prologue_fusion=enable_prologue_fusion,
)
validate_ir(result)

View File

@ -3217,9 +3217,21 @@ class Scheduler:
and isinstance(n.get_template_node(), ir.MultiTemplateBuffer)
for n in (node1, node2)
)
if not config.benchmark_fusion and not is_multi_template:
# Check for custom op fusion cases
is_custom_op_fusion = (
self._can_apply_custom_op_epilogue_fusion(node1, node2) or
self._can_apply_custom_op_prologue_fusion(node1, node2)
)
if not config.benchmark_fusion and not is_multi_template and not is_custom_op_fusion:
return True
# For custom op fusion, we want to benchmark by default unless explicitly disabled
if is_custom_op_fusion and not config.benchmark_fusion:
# Still allow benchmark for custom ops even if global benchmark_fusion is off
fusion_log.debug("Benchmarking custom op fusion: %s <-> %s",
node1.get_first_name(), node2.get_first_name())
if (
node1.is_template()
and not isinstance(node1.get_template_node(), ir.TritonTemplateBuffer)
@ -4273,6 +4285,12 @@ class Scheduler:
if not self.check_prologue_fusion_heuristics_fusable(node1, node2, why):
return False
# Check for custom op prologue fusion
if self._can_apply_custom_op_prologue_fusion(node1, node2):
fusion_log.debug("Custom op prologue fusion applicable for %s -> %s",
node1.get_first_name(), node2.get_first_name())
return True
if node1.is_template() and (
node2.has_aliasing_or_mutation()
or node2.is_reduction()
@ -4426,6 +4444,78 @@ class Scheduler:
metadata.get('custom_op_name', 'unknown'))
return True
# Enhanced check: also look for custom ops directly in the node
if (hasattr(node1, 'node') and hasattr(node1.node, 'data') and
hasattr(node1.node.data, 'name') and
hasattr(node1.node.data, 'get_inputs')):
# Check if this is a result from our custom op autotune system
if (hasattr(node1.node.data, 'get_name') and
'_autotuned' in str(node1.node.data.get_name())):
# Apply similar checks as template epilogue fusion
if (node2.is_pointwise() and
not node2.is_reduction() and
not node2.has_aliasing_or_mutation()):
fusion_log.debug("Custom op epilogue candidate: %s -> %s",
node1.get_first_name(), node2.get_first_name())
return True
return False
def _can_apply_custom_op_prologue_fusion(
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
) -> bool:
"""Check if custom op prologue fusion can be applied between two nodes.
Args:
node1: Producer node (potential prologue operation)
node2: Consumer node (potential custom op)
Returns:
bool: True if custom op prologue fusion is applicable
"""
# Check if global config enables custom op prologue fusion
from torch._inductor import config
if not config.enable_custom_op_prologue_fusion:
return False
# Check if node2 is marked as a custom op that supports prologue fusion
if (hasattr(node2, 'node') and hasattr(node2.node, 'data') and
hasattr(node2.node.data, '_custom_op_fusion_metadata')):
metadata = node2.node.data._custom_op_fusion_metadata
if metadata.get('prologue_fusion_enabled', False):
# Check if node1 is a suitable prologue operation
if (node1.is_pointwise() and
not node1.is_reduction() and
not node1.has_aliasing_or_mutation()):
fusion_log.info("Custom op prologue fusion enabled for %s -> %s (custom_op: %s)",
node1.get_first_name(), node2.get_first_name(),
metadata.get('custom_op_name', 'unknown'))
return True
# Enhanced check: also look for custom ops directly in the node
if (hasattr(node2, 'node') and hasattr(node2.node, 'data') and
hasattr(node2.node.data, 'name') and
hasattr(node2.node.data, 'get_inputs')):
# Check if this is a result from our custom op autotune system
if (hasattr(node2.node.data, 'get_name') and
'_autotuned' in str(node2.node.data.get_name())):
# Apply similar checks as template prologue fusion
if (node1.is_pointwise() and
not node1.is_reduction() and
not node1.has_aliasing_or_mutation()):
fusion_log.debug("Custom op prologue candidate: %s -> %s",
node1.get_first_name(), node2.get_first_name())
return True
return False
def fusable_weak_dep(