mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Apply UFMT to low traffic torch modules (#106249)
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/106249 Approved by: https://github.com/Skylion007
This commit is contained in:
committed by
PyTorch MergeBot
parent
a4ebc61f15
commit
3bf922a6ce
@ -1,9 +1,15 @@
|
||||
import torch
|
||||
from torch.distributions import constraints
|
||||
from torch.distributions.distribution import Distribution
|
||||
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
|
||||
from torch.distributions.utils import (
|
||||
broadcast_all,
|
||||
lazy_property,
|
||||
logits_to_probs,
|
||||
probs_to_logits,
|
||||
)
|
||||
|
||||
__all__ = ["Binomial"]
|
||||
|
||||
__all__ = ['Binomial']
|
||||
|
||||
def _clamp_by_zero(x):
|
||||
# works like clamp(x, min=0) but has grad at 0 is 0.5
|
||||
@ -33,19 +39,29 @@ class Binomial(Distribution):
|
||||
probs (Tensor): Event probabilities
|
||||
logits (Tensor): Event log-odds
|
||||
"""
|
||||
arg_constraints = {'total_count': constraints.nonnegative_integer,
|
||||
'probs': constraints.unit_interval,
|
||||
'logits': constraints.real}
|
||||
arg_constraints = {
|
||||
"total_count": constraints.nonnegative_integer,
|
||||
"probs": constraints.unit_interval,
|
||||
"logits": constraints.real,
|
||||
}
|
||||
has_enumerate_support = True
|
||||
|
||||
def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
|
||||
if (probs is None) == (logits is None):
|
||||
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
|
||||
raise ValueError(
|
||||
"Either `probs` or `logits` must be specified, but not both."
|
||||
)
|
||||
if probs is not None:
|
||||
self.total_count, self.probs, = broadcast_all(total_count, probs)
|
||||
(
|
||||
self.total_count,
|
||||
self.probs,
|
||||
) = broadcast_all(total_count, probs)
|
||||
self.total_count = self.total_count.type_as(self.probs)
|
||||
else:
|
||||
self.total_count, self.logits, = broadcast_all(total_count, logits)
|
||||
(
|
||||
self.total_count,
|
||||
self.logits,
|
||||
) = broadcast_all(total_count, logits)
|
||||
self.total_count = self.total_count.type_as(self.logits)
|
||||
|
||||
self._param = self.probs if probs is not None else self.logits
|
||||
@ -56,10 +72,10 @@ class Binomial(Distribution):
|
||||
new = self._get_checked_instance(Binomial, _instance)
|
||||
batch_shape = torch.Size(batch_shape)
|
||||
new.total_count = self.total_count.expand(batch_shape)
|
||||
if 'probs' in self.__dict__:
|
||||
if "probs" in self.__dict__:
|
||||
new.probs = self.probs.expand(batch_shape)
|
||||
new._param = new.probs
|
||||
if 'logits' in self.__dict__:
|
||||
if "logits" in self.__dict__:
|
||||
new.logits = self.logits.expand(batch_shape)
|
||||
new._param = new.logits
|
||||
super(Binomial, new).__init__(batch_shape, validate_args=False)
|
||||
@ -100,7 +116,9 @@ class Binomial(Distribution):
|
||||
def sample(self, sample_shape=torch.Size()):
|
||||
shape = self._extended_shape(sample_shape)
|
||||
with torch.no_grad():
|
||||
return torch.binomial(self.total_count.expand(shape), self.probs.expand(shape))
|
||||
return torch.binomial(
|
||||
self.total_count.expand(shape), self.probs.expand(shape)
|
||||
)
|
||||
|
||||
def log_prob(self, value):
|
||||
if self._validate_args:
|
||||
@ -113,15 +131,21 @@ class Binomial(Distribution):
|
||||
# (case logit > 0) = k * logit - n * (log(p) - log(1 - p)) + n * log(p)
|
||||
# = k * logit - n * logit - n * log1p(e^-logit)
|
||||
# (merge two cases) = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|)
|
||||
normalize_term = (self.total_count * _clamp_by_zero(self.logits)
|
||||
+ self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits)))
|
||||
- log_factorial_n)
|
||||
return value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term
|
||||
normalize_term = (
|
||||
self.total_count * _clamp_by_zero(self.logits)
|
||||
+ self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits)))
|
||||
- log_factorial_n
|
||||
)
|
||||
return (
|
||||
value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term
|
||||
)
|
||||
|
||||
def entropy(self):
|
||||
total_count = int(self.total_count.max())
|
||||
if not self.total_count.min() == total_count:
|
||||
raise NotImplementedError("Inhomogeneous total count not supported by `entropy`.")
|
||||
raise NotImplementedError(
|
||||
"Inhomogeneous total count not supported by `entropy`."
|
||||
)
|
||||
|
||||
log_prob = self.log_prob(self.enumerate_support(False))
|
||||
return -(torch.exp(log_prob) * log_prob).sum(0)
|
||||
@ -129,8 +153,12 @@ class Binomial(Distribution):
|
||||
def enumerate_support(self, expand=True):
|
||||
total_count = int(self.total_count.max())
|
||||
if not self.total_count.min() == total_count:
|
||||
raise NotImplementedError("Inhomogeneous total count not supported by `enumerate_support`.")
|
||||
values = torch.arange(1 + total_count, dtype=self._param.dtype, device=self._param.device)
|
||||
raise NotImplementedError(
|
||||
"Inhomogeneous total count not supported by `enumerate_support`."
|
||||
)
|
||||
values = torch.arange(
|
||||
1 + total_count, dtype=self._param.dtype, device=self._param.device
|
||||
)
|
||||
values = values.view((-1,) + (1,) * len(self._batch_shape))
|
||||
if expand:
|
||||
values = values.expand((-1,) + self._batch_shape)
|
||||
|
Reference in New Issue
Block a user