mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Use torch:: instead of at:: in all C++ APIs (#13523)
Summary: In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions. Note that since we're just talking about typedefs, this change does not break any existing code. Once this lands I will update stuff in `pytorch/tutorials` too. zdevito ezyang gchanan Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523 Differential Revision: D12942787 Pulled By: goldsborough fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
This commit is contained in:
committed by
Facebook Github Bot
parent
be424de869
commit
393ad6582d
@ -33,7 +33,7 @@ void get_operator_from_registry_and_execute() {
|
||||
torch::jit::Stack stack;
|
||||
torch::jit::push(stack, torch::ones(5), 2.0, 3);
|
||||
op->getOperation()(stack);
|
||||
std::vector<at::Tensor> output;
|
||||
std::vector<torch::Tensor> output;
|
||||
torch::jit::pop(stack, output);
|
||||
|
||||
const auto manual = custom_op(torch::ones(5), 2.0, 3);
|
||||
@ -99,19 +99,19 @@ void test_move_to_device(const std::string& path_to_exported_script_module) {
|
||||
torch::jit::load(path_to_exported_script_module);
|
||||
AT_ASSERT(module != nullptr);
|
||||
|
||||
helpers::check_all_parameters(*module, [](const at::Tensor& tensor) {
|
||||
helpers::check_all_parameters(*module, [](const torch::Tensor& tensor) {
|
||||
return tensor.device().is_cpu();
|
||||
});
|
||||
|
||||
module->to(at::kCUDA);
|
||||
module->to(torch::kCUDA);
|
||||
|
||||
helpers::check_all_parameters(*module, [](const at::Tensor& tensor) {
|
||||
helpers::check_all_parameters(*module, [](const torch::Tensor& tensor) {
|
||||
return tensor.device().is_cuda();
|
||||
});
|
||||
|
||||
module->to(at::kCPU);
|
||||
module->to(torch::kCPU);
|
||||
|
||||
helpers::check_all_parameters(*module, [](const at::Tensor& tensor) {
|
||||
helpers::check_all_parameters(*module, [](const torch::Tensor& tensor) {
|
||||
return tensor.device().is_cpu();
|
||||
});
|
||||
}
|
||||
@ -121,16 +121,16 @@ void test_move_to_dtype(const std::string& path_to_exported_script_module) {
|
||||
torch::jit::load(path_to_exported_script_module);
|
||||
AT_ASSERT(module != nullptr);
|
||||
|
||||
module->to(at::kInt);
|
||||
module->to(torch::kInt);
|
||||
|
||||
helpers::check_all_parameters(*module, [](const at::Tensor& tensor) {
|
||||
return tensor.dtype() == at::kInt;
|
||||
helpers::check_all_parameters(*module, [](const torch::Tensor& tensor) {
|
||||
return tensor.dtype() == torch::kInt;
|
||||
});
|
||||
|
||||
module->to(at::kDouble);
|
||||
module->to(torch::kDouble);
|
||||
|
||||
helpers::check_all_parameters(*module, [](const at::Tensor& tensor) {
|
||||
return tensor.dtype() == at::kDouble;
|
||||
helpers::check_all_parameters(*module, [](const torch::Tensor& tensor) {
|
||||
return tensor.dtype() == torch::kDouble;
|
||||
});
|
||||
}
|
||||
|
||||
@ -147,7 +147,7 @@ int main(int argc, const char* argv[]) {
|
||||
test_argument_checking_for_serialized_modules(path_to_exported_script_module);
|
||||
test_move_to_dtype(path_to_exported_script_module);
|
||||
|
||||
if (at::globalContext().getNumGPUs() > 0) {
|
||||
if (torch::globalContext().getNumGPUs() > 0) {
|
||||
test_move_to_device(path_to_exported_script_module);
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user