mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
[13/N] Fix extra warnings brought by clang-tidy-17 (#140897)
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/140897 Approved by: https://github.com/ezyang
This commit is contained in:
@ -92,6 +92,7 @@ class MatrixRef {
|
||||
/// The declaration here is extra complicated so that "arrayRef = {}"
|
||||
/// continues to select the move assignment operator.
|
||||
template <typename U>
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-missing-std-forward)
|
||||
std::enable_if_t<std::is_same_v<U, T>, MatrixRef<T>>& operator=(
|
||||
U&& Temporary) = delete;
|
||||
|
||||
|
@ -574,12 +574,7 @@ static std::ostream& printMaybeAnnotatedDict(
|
||||
static std::ostream& printComplex(std::ostream & out, const IValue & v) {
|
||||
c10::complex<double> d = v.toComplexDouble();
|
||||
IValue real(d.real()), imag(std::abs(d.imag()));
|
||||
auto sign = "";
|
||||
if (d.imag() >= 0) {
|
||||
sign = "+";
|
||||
} else {
|
||||
sign = "-";
|
||||
}
|
||||
auto sign = d.imag() >= 0 ? '+' : '-';
|
||||
return out << real << sign << imag << "j";
|
||||
}
|
||||
|
||||
|
@ -68,9 +68,11 @@ TensorBase empty_strided_cuda(
|
||||
std::optional<Device> device_opt,
|
||||
std::optional<bool> pin_memory_opt) {
|
||||
TORCH_CHECK(!pin_memory_opt.has_value() || !*pin_memory_opt, "Only dense CPU tensors can be pinned");
|
||||
#ifndef NDEBUG
|
||||
// TODO: remove check for jagged, see https://github.com/pytorch/pytorch/issues/130073
|
||||
const auto layout = layout_or_default(layout_opt);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(layout == Layout::Strided || layout == Layout::Jagged);
|
||||
#endif
|
||||
|
||||
const auto dtype = dtype_or_default(dtype_opt);
|
||||
return at::detail::empty_strided_cuda(size, stride, dtype, device_opt);
|
||||
|
@ -12,6 +12,7 @@
|
||||
#include <string>
|
||||
|
||||
#include <ATen/cuda/tunable/TunableOp.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <c10/util/StringUtil.h>
|
||||
|
||||
@ -22,6 +23,7 @@
|
||||
#include <ATen/ops/allclose.h>
|
||||
#include <ATen/ops/from_blob.h>
|
||||
#endif
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <fmt/printf.h>
|
||||
|
||||
namespace at::cuda::tunable {
|
||||
@ -150,19 +152,19 @@ struct GemmParams : OpParams {
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa;
|
||||
char transb;
|
||||
int64_t m;
|
||||
int64_t n;
|
||||
int64_t k;
|
||||
char transa{};
|
||||
char transb{};
|
||||
int64_t m{};
|
||||
int64_t n{};
|
||||
int64_t k{};
|
||||
at::opmath_type<T> alpha;
|
||||
const T* a;
|
||||
int64_t lda;
|
||||
const T* b;
|
||||
int64_t ldb;
|
||||
const T* a{};
|
||||
int64_t lda{};
|
||||
const T* b{};
|
||||
int64_t ldb{};
|
||||
at::opmath_type<T> beta;
|
||||
T* c;
|
||||
int64_t ldc;
|
||||
T* c{};
|
||||
int64_t ldc{};
|
||||
private:
|
||||
bool duplicate_inputs_{false};
|
||||
};
|
||||
@ -223,7 +225,9 @@ struct GemmAndBiasParams : OpParams {
|
||||
void Delete() {
|
||||
c10::cuda::CUDACachingAllocator::raw_delete(c);
|
||||
if (duplicate_inputs_) {
|
||||
// NOLINTNEXTLINE(*const-cast)
|
||||
c10::cuda::CUDACachingAllocator::raw_delete(const_cast<T*>(a));
|
||||
// NOLINTNEXTLINE(*const-cast)
|
||||
c10::cuda::CUDACachingAllocator::raw_delete(const_cast<T*>(b));
|
||||
}
|
||||
}
|
||||
@ -233,30 +237,26 @@ struct GemmAndBiasParams : OpParams {
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa;
|
||||
char transb;
|
||||
int64_t m;
|
||||
int64_t n;
|
||||
int64_t k;
|
||||
at::opmath_type<T> alpha;
|
||||
const T* a;
|
||||
int64_t lda;
|
||||
const T* b;
|
||||
int64_t ldb;
|
||||
T* c;
|
||||
int64_t ldc;
|
||||
const T* bias;
|
||||
at::cuda::blas::GEMMAndBiasActivationEpilogue activation;
|
||||
char transa{};
|
||||
char transb{};
|
||||
int64_t m{};
|
||||
int64_t n{};
|
||||
int64_t k{};
|
||||
at::opmath_type<T> alpha{};
|
||||
const T* a{};
|
||||
int64_t lda{};
|
||||
const T* b{};
|
||||
int64_t ldb{};
|
||||
T* c{};
|
||||
int64_t ldc{};
|
||||
const T* bias{};
|
||||
at::cuda::blas::GEMMAndBiasActivationEpilogue activation{};
|
||||
private:
|
||||
bool duplicate_inputs_{false};
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct GemmStridedBatchedParams : OpParams {
|
||||
GemmStridedBatchedParams() = default;
|
||||
GemmStridedBatchedParams(const GemmStridedBatchedParams&) = default;
|
||||
GemmStridedBatchedParams& operator=(const GemmStridedBatchedParams&) = default;
|
||||
|
||||
std::string Signature() const override {
|
||||
return fmt::sprintf("%c%c_%ld_%ld_%ld_B_%ld", transa, transb, m, n, k, batch);
|
||||
}
|
||||
@ -325,23 +325,23 @@ struct GemmStridedBatchedParams : OpParams {
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa;
|
||||
char transb;
|
||||
int64_t m;
|
||||
int64_t n;
|
||||
int64_t k;
|
||||
at::opmath_type<T> alpha;
|
||||
const T* a;
|
||||
int64_t lda;
|
||||
int64_t stride_a;
|
||||
const T* b;
|
||||
int64_t ldb;
|
||||
int64_t stride_b;
|
||||
char transa{};
|
||||
char transb{};
|
||||
int64_t m{};
|
||||
int64_t n{};
|
||||
int64_t k{};
|
||||
at::opmath_type<T> alpha{};
|
||||
const T* a{};
|
||||
int64_t lda{};
|
||||
int64_t stride_a{};
|
||||
const T* b{};
|
||||
int64_t ldb{};
|
||||
int64_t stride_b{};
|
||||
at::opmath_type<T> beta;
|
||||
T* c;
|
||||
int64_t ldc;
|
||||
int64_t stride_c;
|
||||
int64_t batch;
|
||||
T* c{};
|
||||
int64_t ldc{};
|
||||
int64_t stride_c{};
|
||||
int64_t batch{};
|
||||
private:
|
||||
bool duplicate_inputs_{false};
|
||||
};
|
||||
@ -415,27 +415,27 @@ struct ScaledGemmParams : OpParams {
|
||||
return detail::NumericalCheck(c_dtype, c, other->c, GetSizeC()/sizeof(T)) ? OK : FAIL;
|
||||
}
|
||||
|
||||
char transa;
|
||||
char transb;
|
||||
int64_t m;
|
||||
int64_t n;
|
||||
int64_t k;
|
||||
const void* a;
|
||||
const void* a_scale_ptr;
|
||||
int64_t lda;
|
||||
ScalarType a_dtype;
|
||||
const void* b;
|
||||
const void* b_scale_ptr;
|
||||
int64_t ldb;
|
||||
ScalarType b_dtype;
|
||||
const void* bias_ptr;
|
||||
ScalarType bias_dtype;
|
||||
void* c;
|
||||
const void* c_scale_ptr;
|
||||
int64_t ldc;
|
||||
ScalarType c_dtype;
|
||||
void* amax_ptr;
|
||||
bool use_fast_accum;
|
||||
char transa{};
|
||||
char transb{};
|
||||
int64_t m{};
|
||||
int64_t n{};
|
||||
int64_t k{};
|
||||
const void* a{};
|
||||
const void* a_scale_ptr{};
|
||||
int64_t lda{};
|
||||
ScalarType a_dtype{};
|
||||
const void* b{};
|
||||
const void* b_scale_ptr{};
|
||||
int64_t ldb{};
|
||||
ScalarType b_dtype{};
|
||||
const void* bias_ptr{};
|
||||
ScalarType bias_dtype{};
|
||||
void* c{};
|
||||
const void* c_scale_ptr{};
|
||||
int64_t ldc{};
|
||||
ScalarType c_dtype{};
|
||||
void* amax_ptr{};
|
||||
bool use_fast_accum{};
|
||||
private:
|
||||
bool duplicate_inputs_{false};
|
||||
};
|
||||
|
@ -9,9 +9,10 @@
|
||||
//
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
#include <ATen/cuda/tunable/StreamTimer.h>
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
#include <cmath>
|
||||
|
||||
namespace at::cuda::tunable {
|
||||
|
||||
@ -20,8 +21,7 @@ StreamTimer::StreamTimer() {
|
||||
AT_CUDA_CHECK(cudaEventCreate(&end_));
|
||||
}
|
||||
|
||||
StreamTimer::~StreamTimer() {
|
||||
}
|
||||
StreamTimer::~StreamTimer() = default;
|
||||
|
||||
void StreamTimer::Start() {
|
||||
AT_CUDA_CHECK(cudaDeviceSynchronize());
|
||||
@ -34,7 +34,7 @@ void StreamTimer::End() {
|
||||
}
|
||||
|
||||
float StreamTimer::Duration() {
|
||||
float time;
|
||||
auto time = std::numeric_limits<float>::quiet_NaN();
|
||||
// time is in ms with a resolution of 1 us
|
||||
AT_CUDA_CHECK(cudaEventElapsedTime(&time, start_, end_));
|
||||
return time;
|
||||
|
@ -27,8 +27,8 @@ class StreamTimer : public ITimer {
|
||||
float Duration() override;
|
||||
|
||||
private:
|
||||
cudaEvent_t start_;
|
||||
cudaEvent_t end_;
|
||||
cudaEvent_t start_{};
|
||||
cudaEvent_t end_{};
|
||||
};
|
||||
|
||||
} // namespace at::cuda::tunable
|
||||
|
@ -26,8 +26,6 @@ namespace at::cuda::tunable {
|
||||
template <typename ParamsT>
|
||||
class Callable {
|
||||
public:
|
||||
Callable() = default;
|
||||
Callable(Callable&&) = default;
|
||||
virtual ~Callable() = default;
|
||||
virtual TuningStatus Call(const ParamsT*) {
|
||||
return FAIL;
|
||||
@ -40,8 +38,6 @@ class Callable {
|
||||
template <typename ParamsT, typename TimerT>
|
||||
class TunableOp {
|
||||
public:
|
||||
TunableOp() = default;
|
||||
TunableOp(TunableOp&&) = default;
|
||||
virtual ~TunableOp() = default;
|
||||
|
||||
TuningStatus operator()(const ParamsT* params) {
|
||||
|
@ -126,7 +126,7 @@ c10::intrusive_ptr<TensorImpl> TensorWrapper::shallow_copy_and_detach(
|
||||
c10::VariableVersion&& version_counter,
|
||||
bool allow_tensor_metadata_change) const {
|
||||
auto dest_impl = makeTensorWrapperPtr(value(), level_, is_alive_);
|
||||
dest_impl->set_version_counter(version_counter);
|
||||
dest_impl->set_version_counter(std::move(version_counter));
|
||||
|
||||
// TODO: is this even right?
|
||||
dest_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
|
||||
|
@ -264,8 +264,8 @@ class _map;
|
||||
template <class F, class A, class... Args>
|
||||
class _map<F, A, c10::guts::typelist::typelist<Args...>> {
|
||||
public:
|
||||
static A function_one(F&& fn, const Args&... nested_node) {
|
||||
return std::forward<F>(fn)(nested_node...);
|
||||
static A function_one(const F& fn, const Args&... nested_node) {
|
||||
return fn(nested_node...);
|
||||
}
|
||||
static NestedNode<A> function(
|
||||
const F& fn,
|
||||
|
@ -66,6 +66,7 @@ struct C10_API AutogradState {
|
||||
bool inference_mode_ : 1;
|
||||
bool fw_grad_mode_ : 1;
|
||||
bool multithreading_enabled_ : 1;
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-use-default-member-init)
|
||||
bool view_replay_enabled_ : 1;
|
||||
};
|
||||
|
||||
|
@ -30,7 +30,7 @@ using namespace torch;
|
||||
|
||||
PyObject* THPGeneratorClass = nullptr;
|
||||
|
||||
PyObject* THPGenerator_initDefaultGenerator(at::Generator cdata) {
|
||||
PyObject* THPGenerator_initDefaultGenerator(const at::Generator& cdata) {
|
||||
auto type = (PyTypeObject*)THPGeneratorClass;
|
||||
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
|
||||
if (!self)
|
||||
@ -391,7 +391,7 @@ PyObject* pyobj(const Generator& self) {
|
||||
return self.pyobj();
|
||||
}
|
||||
|
||||
PyObject* THPGenerator_Wrap(Generator gen) {
|
||||
PyObject* THPGenerator_Wrap(const Generator& gen) {
|
||||
if (!gen.defined()) {
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
@ -14,7 +14,7 @@ struct THPGenerator {
|
||||
// is borrowed. The caller should ensure that the at::Generator object lifetime
|
||||
// last at least as long as the Python wrapper.
|
||||
TORCH_PYTHON_API PyObject* THPGenerator_initDefaultGenerator(
|
||||
at::Generator cdata);
|
||||
const at::Generator& cdata);
|
||||
|
||||
#define THPGenerator_Check(obj) PyObject_IsInstance(obj, THPGeneratorClass)
|
||||
|
||||
@ -22,7 +22,7 @@ TORCH_PYTHON_API extern PyObject* THPGeneratorClass;
|
||||
|
||||
bool THPGenerator_init(PyObject* module);
|
||||
|
||||
TORCH_PYTHON_API PyObject* THPGenerator_Wrap(at::Generator gen);
|
||||
TORCH_PYTHON_API PyObject* THPGenerator_Wrap(const at::Generator& gen);
|
||||
|
||||
TORCH_PYTHON_API at::Generator THPGenerator_Unwrap(PyObject* state);
|
||||
|
||||
|
@ -7,6 +7,7 @@ void initExportBindings(PyObject* module) {
|
||||
auto rootModule = py::handle(module).cast<py::module>();
|
||||
auto m = rootModule.def_submodule("_export");
|
||||
|
||||
// NOLINTNEXTLINE(bugprone-unused-raii)
|
||||
py::class_<ExportedProgram>(m, "CppExportedProgram");
|
||||
|
||||
m.def("deserialize_exported_program", [](const std::string& serialized) {
|
||||
|
@ -7,7 +7,6 @@
|
||||
#include <torch/csrc/lazy/core/lazy_graph_executor.h>
|
||||
#include <torch/csrc/lazy/core/shape.h>
|
||||
#include <torch/csrc/lazy/core/tensor.h>
|
||||
#include <atomic>
|
||||
|
||||
namespace torch::lazy {
|
||||
|
||||
|
Reference in New Issue
Block a user