[BE][PYFMT] migrate PYFMT for torch/[e-n]*/ to ruff format (#144553)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144553
Approved by: https://github.com/ezyang
ghstack dependencies: #144551
This commit is contained in:
Xuehai Pan
2025-06-16 14:35:28 +08:00
committed by PyTorch MergeBot
parent 95cb42c45d
commit 2e0e08588e
48 changed files with 548 additions and 497 deletions

View File

@ -358,22 +358,24 @@ def save(
import torch
import io
class MyModule(torch.nn.Module):
def forward(self, x):
return x + 10
ep = torch.export.export(MyModule(), (torch.randn(5),))
# Save to file
torch.export.save(ep, 'exported_program.pt2')
torch.export.save(ep, "exported_program.pt2")
# Save to io.BytesIO buffer
buffer = io.BytesIO()
torch.export.save(ep, buffer)
# Save with extra files
extra_files = {'foo.txt': b'bar'.decode('utf-8')}
torch.export.save(ep, 'exported_program.pt2', extra_files=extra_files)
extra_files = {"foo.txt": b"bar".decode("utf-8")}
torch.export.save(ep, "exported_program.pt2", extra_files=extra_files)
"""
if not isinstance(ep, ExportedProgram):
@ -427,18 +429,18 @@ def load(
import io
# Load ExportedProgram from file
ep = torch.export.load('exported_program.pt2')
ep = torch.export.load("exported_program.pt2")
# Load ExportedProgram from io.BytesIO object
with open('exported_program.pt2', 'rb') as f:
with open("exported_program.pt2", "rb") as f:
buffer = io.BytesIO(f.read())
buffer.seek(0)
ep = torch.export.load(buffer)
# Load with extra files.
extra_files = {'foo.txt': ''} # values will be replaced with data
ep = torch.export.load('exported_program.pt2', extra_files=extra_files)
print(extra_files['foo.txt'])
extra_files = {"foo.txt": ""} # values will be replaced with data
ep = torch.export.load("exported_program.pt2", extra_files=extra_files)
print(extra_files["foo.txt"])
print(ep(torch.randn(5)))
"""
if isinstance(f, (str, os.PathLike)):
@ -572,24 +574,29 @@ def register_dataclass(
import torch
from dataclasses import dataclass
@dataclass
class InputDataClass:
feature: torch.Tensor
bias: int
@dataclass
class OutputDataClass:
res: torch.Tensor
torch.export.register_dataclass(InputDataClass)
torch.export.register_dataclass(OutputDataClass)
class Mod(torch.nn.Module):
def forward(self, x: InputDataClass) -> OutputDataClass:
res = x.feature + x.bias
return OutputDataClass(res=res)
ep = torch.export.export(Mod(), (InputDataClass(torch.ones(2, 2), 1), ))
ep = torch.export.export(Mod(), (InputDataClass(torch.ones(2, 2), 1),))
print(ep)
"""