mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
restore rng generation for fbcode (#144819)
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/144819 Approved by: https://github.com/malfet, https://github.com/kit1980
This commit is contained in:
committed by
PyTorch MergeBot
parent
154185dcd0
commit
2bc18a9055
@ -40,7 +40,15 @@ struct uniform_int_from_to_distribution {
|
||||
|
||||
template <typename RNG>
|
||||
C10_HOST_DEVICE inline T operator()(RNG generator) {
|
||||
#ifdef FBCODE_CAFFE2
|
||||
if ((
|
||||
std::is_same_v<T, int64_t> ||
|
||||
std::is_same_v<T, double> ||
|
||||
std::is_same_v<T, float> ||
|
||||
std::is_same_v<T, at::BFloat16>) && range_ >= 1ULL << 32)
|
||||
#else
|
||||
if (range_ >= 1ULL << 28) // allow approx 5% skew in uniform int generation using %
|
||||
#endif
|
||||
{
|
||||
return transformation::uniform_int_from_to<T>(generator->random64(), range_, base_);
|
||||
} else {
|
||||
|
@ -279,6 +279,41 @@ namespace cuda {
|
||||
|
||||
template<typename RNG>
|
||||
void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, RNG gen) {
|
||||
#ifdef FBCODE_CAFFE2
|
||||
AT_DISPATCH_V2(iter.dtype(), "random_from_to_kernel_cuda", AT_WRAP([&] {
|
||||
if ((
|
||||
std::is_same_v<T, int64_t> ||
|
||||
std::is_same_v<T, double> ||
|
||||
std::is_same_v<T, float> ||
|
||||
std::is_same_v<T, at::BFloat16>) && range >= 1ULL << 32)
|
||||
{
|
||||
// define lambda to mod with range and add base
|
||||
auto random_func = [range, base] __device__ (uint64_t rand) {
|
||||
return transformation::uniform_int_from_to<scalar_t>(rand, range, base);
|
||||
};
|
||||
distribution_nullary_kernel<scalar_t, uint64_t, ulonglong2>(iter,
|
||||
gen,
|
||||
[] __device__ (curandStatePhilox4_32_10_t* state) -> ulonglong2 {
|
||||
ulonglong2 ret;
|
||||
uint4 rand_val = curand4(state);
|
||||
ret.x = (static_cast<uint64_t>(rand_val.x) << 32) | rand_val.y;
|
||||
ret.y = (static_cast<uint64_t>(rand_val.z) << 32) | rand_val.w;
|
||||
return ret;
|
||||
},
|
||||
random_func);
|
||||
} else {
|
||||
auto random_func = [range, base] __device__ (uint32_t rand) {
|
||||
return transformation::uniform_int_from_to<scalar_t>(rand, range, base);
|
||||
};
|
||||
distribution_nullary_kernel<scalar_t, uint32_t, uint4>(iter,
|
||||
gen,
|
||||
[] __device__ (curandStatePhilox4_32_10_t* state) -> uint4 {
|
||||
return curand4(state);
|
||||
},
|
||||
random_func);
|
||||
}
|
||||
}), AT_EXPAND(AT_ALL_TYPES), kBool, kHalf, kBFloat16, AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
|
||||
#else
|
||||
AT_DISPATCH_V2(iter.dtype(), "random_from_to_kernel_cuda", AT_WRAP([&] {
|
||||
if (range >= 1ULL << 28) // allow approx 5% skew in uniform int generation using %
|
||||
{
|
||||
@ -308,6 +343,7 @@ void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t bas
|
||||
random_func);
|
||||
}
|
||||
}), AT_EXPAND(AT_ALL_TYPES), kBool, kHalf, kBFloat16, AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
|
||||
#endif
|
||||
}
|
||||
|
||||
// This is the special kernel to handle single specific case:
|
||||
|
@ -137,9 +137,13 @@ void test_random_from_to(const at::Device& device) {
|
||||
range = static_cast<uint64_t>(max_to) - static_cast<uint64_t>(from) + 1;
|
||||
from_case_covered = true;
|
||||
}
|
||||
#ifdef FBCODE_CAFFE2
|
||||
if (range < (1ULL << 32)) {
|
||||
#else
|
||||
// this is leaking details of implementation into test
|
||||
// we are starting to use random64() at 2^28 to minimize skew due to %
|
||||
if (range < (1ULL << 28)) {
|
||||
#endif
|
||||
exp = static_cast<T>(static_cast<int64_t>((static_cast<uint32_t>(val) % range + from)));
|
||||
} else {
|
||||
exp = static_cast<T>(static_cast<int64_t>((val % range + from)));
|
||||
|
@ -3502,6 +3502,7 @@ class TestRandomTensorCreation(TestCase):
|
||||
self.assertTrue((res1 >= 0).all().item())
|
||||
|
||||
|
||||
@unittest.skipIf(IS_FBCODE or IS_SANDCASTLE, "For fb compatibility random not changed in fbcode")
|
||||
def test_randint_distribution(self, device):
|
||||
size = 1_000_000
|
||||
n_max = int(0.75 * 2 ** 32)
|
||||
|
Reference in New Issue
Block a user