mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Add Half support for addcmul, addcdiv, cumsum, and topk on CPU (#103319)
Add Half support for addcmul, addcdiv, cumsum, and topk on CPU. Note: This PR will introduce the issue https://github.com/pytorch/pytorch/issues/111454. Pull Request resolved: https://github.com/pytorch/pytorch/pull/103319 Approved by: https://github.com/jgong5, https://github.com/cpuhrsch
This commit is contained in:
@ -754,9 +754,8 @@ class TestSortAndSelect(TestCase):
|
||||
for curr_size in (small, large, verylarge):
|
||||
self._test_topk_dtype(device, dtype, True, curr_size)
|
||||
|
||||
@onlyCUDA
|
||||
@dtypes(torch.bfloat16)
|
||||
def test_topk_bfloat16(self, device, dtype):
|
||||
@dtypes(torch.bfloat16, torch.half)
|
||||
def test_topk_lower_precision(self, device, dtype):
|
||||
|
||||
small = 10
|
||||
large = 4096
|
||||
@ -765,7 +764,7 @@ class TestSortAndSelect(TestCase):
|
||||
self._test_topk_dtype(device, dtype, False, curr_size)
|
||||
|
||||
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
|
||||
@dtypes(torch.float, torch.double, torch.bfloat16)
|
||||
@dtypes(torch.float, torch.double, torch.bfloat16, torch.half)
|
||||
def test_topk_nonfinite(self, device, dtype):
|
||||
x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
|
||||
val, idx = x.topk(4)
|
||||
@ -796,7 +795,7 @@ class TestSortAndSelect(TestCase):
|
||||
|
||||
@onlyNativeDeviceTypes
|
||||
@dtypesIfCUDA(*all_types_and(torch.bfloat16))
|
||||
@dtypes(*all_types())
|
||||
@dtypes(*all_types_and(torch.bfloat16, torch.half))
|
||||
def test_topk_zero(self, device, dtype):
|
||||
# https://github.com/pytorch/pytorch/issues/49205
|
||||
t = torch.rand(2, 2, device=device).to(dtype=dtype)
|
||||
|
Reference in New Issue
Block a user