mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[Caffe2] Add float batch box cox SVE128 implementation (#159778)
Introduce SVE128 SIMD batch box-cox computation. We've seen about 65% throughput improvement. Privacy Context Container: L1196524 This is a no-op from OSS point of view, therefore it could be landed without tests (see precedence set by https://github.com/pytorch/pytorch/pull/143627), but we should delete those at some point Pull Request resolved: https://github.com/pytorch/pytorch/pull/159778 Approved by: https://github.com/malfet
This commit is contained in:
committed by
PyTorch MergeBot
parent
76fa381eef
commit
2459da4a64
243
caffe2/perfkernels/batch_box_cox_sve128.cc
Normal file
243
caffe2/perfkernels/batch_box_cox_sve128.cc
Normal file
@ -0,0 +1,243 @@
|
||||
#if defined(__aarch64__) && defined(CAFFE2_PERF_WITH_SVE128)
|
||||
#include <arm_neon.h>
|
||||
#include <arm_neon_sve_bridge.h>
|
||||
#include <arm_sve.h>
|
||||
|
||||
#include "c10/macros/Macros.h"
|
||||
|
||||
// Log and exp approximations inspired from ACL implementation
|
||||
|
||||
inline float32x4_t vtaylor_polyq_for_log_f32(float32x4_t x) {
|
||||
const float32x4_t log_tab_1 = vdupq_n_f32(-2.29561495781f);
|
||||
const float32x4_t log_tab_2 = vdupq_n_f32(-2.47071170807f);
|
||||
const float32x4_t log_tab_3 = vdupq_n_f32(-5.68692588806f);
|
||||
const float32x4_t log_tab_4 = vdupq_n_f32(-0.165253549814f);
|
||||
const float32x4_t log_tab_5 = vdupq_n_f32(5.17591238022f);
|
||||
const float32x4_t log_tab_6 = vdupq_n_f32(0.844007015228f);
|
||||
const float32x4_t log_tab_7 = vdupq_n_f32(4.58445882797f);
|
||||
const float32x4_t log_tab_8 = vdupq_n_f32(0.0141278216615f);
|
||||
|
||||
float32x4_t A = vmlaq_f32(log_tab_1, log_tab_5, x);
|
||||
float32x4_t B = vmlaq_f32(log_tab_3, log_tab_7, x);
|
||||
float32x4_t C = vmlaq_f32(log_tab_2, log_tab_6, x);
|
||||
float32x4_t x2 = vmulq_f32(x, x);
|
||||
float32x4_t D = svget_neonq(svmad_f32_x(
|
||||
svptrue_b8(),
|
||||
svset_neonq(svundef_f32(), x),
|
||||
svset_neonq(svundef_f32(), log_tab_8),
|
||||
svset_neonq(svundef_f32(), log_tab_4)));
|
||||
float32x4_t x4 = vmulq_f32(x2, x2);
|
||||
float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
|
||||
return res;
|
||||
}
|
||||
|
||||
inline float32x4_t vlogq_f32(float32x4_t x) {
|
||||
const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
|
||||
|
||||
// Extract exponent
|
||||
int32x4_t m = svget_neonq(svsub_n_s32_x(
|
||||
svptrue_b8(),
|
||||
svset_neonq(
|
||||
svundef_s32(),
|
||||
vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23))),
|
||||
127));
|
||||
float32x4_t val = vreinterpretq_f32_s32(
|
||||
vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
|
||||
|
||||
// Polynomial Approximation
|
||||
float32x4_t poly = vtaylor_polyq_for_log_f32(val);
|
||||
|
||||
// Reconstruct
|
||||
poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);
|
||||
|
||||
return poly;
|
||||
}
|
||||
|
||||
inline float32x4_t vexpq_f32(float32x4_t x) {
|
||||
const auto c1 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3f7ffff6)));
|
||||
const auto c2 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3efffedb)));
|
||||
const auto c3 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3e2aaf33)));
|
||||
const auto c4 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3d2b9f17)));
|
||||
const auto c5 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3c072010)));
|
||||
|
||||
const auto shift = vreinterpretq_f32_u32(
|
||||
svget_neonq(svdup_n_u32(0x4b00007f))); // 2^23 + 127 = 0x1.0000fep23f
|
||||
const auto inv_ln2 = vreinterpretq_f32_u32(
|
||||
svget_neonq(svdup_n_u32(0x3fb8aa3b))); // 1 / ln(2) = 0x1.715476p+0f
|
||||
const auto neg_ln2_hi = vreinterpretq_f32_u32(svget_neonq(
|
||||
svdup_n_u32(0xbf317200))); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
|
||||
const auto neg_ln2_lo = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(
|
||||
0xb5bfbe8e))); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
|
||||
|
||||
const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
|
||||
const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5)
|
||||
const auto zero = svdup_n_f32(0.f);
|
||||
const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125)
|
||||
|
||||
// Range reduction:
|
||||
// e^x = 2^n * e^r
|
||||
// where:
|
||||
// n = floor(x / ln(2))
|
||||
// r = x - n * ln(2)
|
||||
//
|
||||
// By adding x / ln(2) with 2^23 + 127 (shift):
|
||||
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127
|
||||
// forces decimal part
|
||||
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n)
|
||||
// + 127 will occupy the whole fraction part of z in FP32 format.
|
||||
// Subtracting 2^23 + 127 (shift) from z will result in the integer part
|
||||
// of x / ln(2) (i.e. n) because the decimal part has been pushed out and
|
||||
// lost.
|
||||
// * The addition of 127 makes the FP32 fraction part of z ready to be used
|
||||
// as the exponent
|
||||
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
|
||||
const auto z = vfmaq_f32(shift, x, inv_ln2);
|
||||
const auto n = z - shift;
|
||||
const auto scale =
|
||||
vreinterpretq_f32_u32(vreinterpretq_u32_f32(z) << 23); // 2^n
|
||||
|
||||
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy
|
||||
// beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in term
|
||||
// of accuracy and performance.
|
||||
const auto r_hi = vfmaq_f32(x, n, neg_ln2_hi);
|
||||
const auto r = vfmaq_f32(r_hi, n, neg_ln2_lo);
|
||||
|
||||
// Compute the truncated Taylor series of e^r.
|
||||
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
|
||||
const auto r2 = r * r;
|
||||
|
||||
const auto p1 = c1 * r;
|
||||
const auto p23 = vfmaq_f32(c2, c3, r);
|
||||
const auto p45 = vfmaq_f32(c4, c5, r);
|
||||
const auto p2345 = vfmaq_f32(p23, p45, r2);
|
||||
const auto p12345 = vfmaq_f32(p1, p2345, r2);
|
||||
|
||||
auto poly = svset_neonq(svundef_f32(), vfmaq_f32(scale, p12345, scale));
|
||||
|
||||
// Handle underflow and overflow.
|
||||
poly = svsel_f32(
|
||||
svcmplt_f32(svptrue_b8(), svset_neonq(svundef_f32(), x), min_input),
|
||||
zero,
|
||||
poly);
|
||||
poly = svsel_f32(
|
||||
svcmpgt_f32(svptrue_b8(), svset_neonq(svundef_f32(), x), max_input),
|
||||
inf,
|
||||
poly);
|
||||
|
||||
return svget_neonq(poly);
|
||||
}
|
||||
|
||||
// ln(x) = log2(x) * ln(2)
|
||||
// pow(x, n) = exp(n * ln(x))
|
||||
inline float32x4_t compute_batch_box_cox_vec_sve128_float(
|
||||
svfloat32_t lambda1_v,
|
||||
svfloat32_t lambda2_v,
|
||||
svfloat32_t data_v,
|
||||
svfloat32_t k_eps) {
|
||||
// sum_v = lambda2_v + data_v
|
||||
float32x4_t sum_v = vaddq_f32(svget_neonq(data_v), svget_neonq(lambda2_v));
|
||||
|
||||
// test lambda1_v: predNZ == 1 iff lambda1_v != 0
|
||||
svbool_t predNZ = svcmpne_n_f32(svptrue_b8(), lambda1_v, 0.0f);
|
||||
|
||||
// clamp sum_v: sum_v = max(sum_v, k_eps)
|
||||
sum_v = vmaxq_f32(sum_v, svget_neonq(k_eps));
|
||||
|
||||
// lnData = log(sum_v)
|
||||
svfloat32_t lnData = svset_neonq(svundef_f32(), vlogq_f32(sum_v));
|
||||
|
||||
// if any lambda1 != 0, compute pow(sum_v, lambda1) using lnData
|
||||
// pow(sum_v, lambda1) == exp(lambda1 * ln(sum_v))
|
||||
if (C10_LIKELY(svptest_any(predNZ, predNZ))) {
|
||||
// mult = lambda1 * ln(sum_v)
|
||||
float32x4_t mult = vmulq_f32(svget_neonq(lnData), svget_neonq(lambda1_v));
|
||||
|
||||
// lambda1_r = 1 / lambda1
|
||||
svfloat32_t lambda1_r = svdivr_f32_m(predNZ, lambda1_v, svdup_n_f32(1.0f));
|
||||
|
||||
// pow = exp(mult)
|
||||
float32x4_t pow = vexpq_f32(mult);
|
||||
|
||||
// merge results
|
||||
// lnData if lambda1 == 0, (lambda1_r * pow - lambda1_r) if lambda1 != 0
|
||||
lnData = svsel_f32(predNZ, lambda1_r, lnData);
|
||||
lnData =
|
||||
svnmsb_f32_m(predNZ, lnData, svset_neonq(svundef_f32(), pow), lnData);
|
||||
}
|
||||
return svget_neonq(lnData);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void compute_batch_box_cox_vec_sve128(
|
||||
std::size_t N,
|
||||
std::size_t D,
|
||||
const T* data_ptr,
|
||||
const T* __restrict lambda1_ptr,
|
||||
const T* __restrict lambda2_ptr,
|
||||
T* output_ptr);
|
||||
|
||||
template <>
|
||||
void compute_batch_box_cox_vec_sve128(
|
||||
std::size_t N,
|
||||
std::size_t D,
|
||||
const float* data_ptr,
|
||||
const float* __restrict lambda1_ptr,
|
||||
const float* __restrict lambda2_ptr,
|
||||
float* output_ptr) {
|
||||
svfloat32_t k_eps = svdup_n_f32(static_cast<float>(1e-6));
|
||||
|
||||
std::size_t remainder = D % 4;
|
||||
std::size_t loopBound = D - remainder;
|
||||
svbool_t remainderPred = svwhilelt_b32_u64(0, remainder);
|
||||
|
||||
for (; C10_LIKELY(N > 0); --N) {
|
||||
for (std::size_t j = 0; C10_LIKELY(j != loopBound);
|
||||
j += 4, data_ptr += 4, output_ptr += 4) {
|
||||
svfloat32_t lambda1_v =
|
||||
svset_neonq(svundef_f32(), vld1q_f32(lambda1_ptr + j));
|
||||
svfloat32_t lambda2_v =
|
||||
svset_neonq(svundef_f32(), vld1q_f32(lambda2_ptr + j));
|
||||
svfloat32_t data_v = svset_neonq(svundef_f32(), vld1q_f32(data_ptr));
|
||||
float32x4_t result = compute_batch_box_cox_vec_sve128_float(
|
||||
lambda1_v, lambda2_v, data_v, k_eps);
|
||||
vst1q_f32(output_ptr, result);
|
||||
}
|
||||
if (C10_LIKELY(remainder > 0)) {
|
||||
svfloat32_t lambda1_v = svld1_f32(remainderPred, lambda1_ptr + loopBound);
|
||||
svfloat32_t lambda2_v = svld1_f32(remainderPred, lambda2_ptr + loopBound);
|
||||
svfloat32_t data_v = svld1_f32(remainderPred, data_ptr);
|
||||
float32x4_t result = compute_batch_box_cox_vec_sve128_float(
|
||||
lambda1_v, lambda2_v, data_v, k_eps);
|
||||
svst1_f32(remainderPred, output_ptr, svset_neonq(svundef_f32(), result));
|
||||
data_ptr += remainder;
|
||||
output_ptr += remainder;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace caffe2::details {
|
||||
|
||||
template <typename T>
|
||||
void compute_batch_box_cox__sve128(
|
||||
std::size_t N,
|
||||
std::size_t D,
|
||||
const T* self_data,
|
||||
const T* __restrict lambda1_data,
|
||||
const T* __restrict lambda2_data,
|
||||
T* output_data) {
|
||||
compute_batch_box_cox_vec_sve128<T>(
|
||||
N, D, self_data, lambda1_data, lambda2_data, output_data);
|
||||
}
|
||||
|
||||
// Vectorized version specializations for float and double
|
||||
template void compute_batch_box_cox__sve128<float>(
|
||||
std::size_t N,
|
||||
std::size_t D,
|
||||
const float* self_data,
|
||||
const float* __restrict lambda1_data,
|
||||
const float* __restrict lambda2_data,
|
||||
float* output_data);
|
||||
|
||||
} // namespace caffe2::details
|
||||
|
||||
#endif // __aarch64__ && CAFFE2_PERF_WITH_SVE128
|
Reference in New Issue
Block a user