[Caffe2] Add float batch box cox SVE128 implementation (#159778)

Introduce SVE128 SIMD batch box-cox computation.

We've seen about 65% throughput improvement.

Privacy Context Container: L1196524

This is a no-op from OSS point of view, therefore it could be landed without tests (see precedence set by https://github.com/pytorch/pytorch/pull/143627), but we should delete those at some point

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159778
Approved by: https://github.com/malfet
This commit is contained in:
Nicolas De Carli
2025-09-16 07:25:00 +00:00
committed by PyTorch MergeBot
parent 76fa381eef
commit 2459da4a64

View File

@ -0,0 +1,243 @@
#if defined(__aarch64__) && defined(CAFFE2_PERF_WITH_SVE128)
#include <arm_neon.h>
#include <arm_neon_sve_bridge.h>
#include <arm_sve.h>
#include "c10/macros/Macros.h"
// Log and exp approximations inspired from ACL implementation
inline float32x4_t vtaylor_polyq_for_log_f32(float32x4_t x) {
const float32x4_t log_tab_1 = vdupq_n_f32(-2.29561495781f);
const float32x4_t log_tab_2 = vdupq_n_f32(-2.47071170807f);
const float32x4_t log_tab_3 = vdupq_n_f32(-5.68692588806f);
const float32x4_t log_tab_4 = vdupq_n_f32(-0.165253549814f);
const float32x4_t log_tab_5 = vdupq_n_f32(5.17591238022f);
const float32x4_t log_tab_6 = vdupq_n_f32(0.844007015228f);
const float32x4_t log_tab_7 = vdupq_n_f32(4.58445882797f);
const float32x4_t log_tab_8 = vdupq_n_f32(0.0141278216615f);
float32x4_t A = vmlaq_f32(log_tab_1, log_tab_5, x);
float32x4_t B = vmlaq_f32(log_tab_3, log_tab_7, x);
float32x4_t C = vmlaq_f32(log_tab_2, log_tab_6, x);
float32x4_t x2 = vmulq_f32(x, x);
float32x4_t D = svget_neonq(svmad_f32_x(
svptrue_b8(),
svset_neonq(svundef_f32(), x),
svset_neonq(svundef_f32(), log_tab_8),
svset_neonq(svundef_f32(), log_tab_4)));
float32x4_t x4 = vmulq_f32(x2, x2);
float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
return res;
}
inline float32x4_t vlogq_f32(float32x4_t x) {
const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
// Extract exponent
int32x4_t m = svget_neonq(svsub_n_s32_x(
svptrue_b8(),
svset_neonq(
svundef_s32(),
vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23))),
127));
float32x4_t val = vreinterpretq_f32_s32(
vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
// Polynomial Approximation
float32x4_t poly = vtaylor_polyq_for_log_f32(val);
// Reconstruct
poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);
return poly;
}
inline float32x4_t vexpq_f32(float32x4_t x) {
const auto c1 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3f7ffff6)));
const auto c2 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3efffedb)));
const auto c3 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3e2aaf33)));
const auto c4 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3d2b9f17)));
const auto c5 = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(0x3c072010)));
const auto shift = vreinterpretq_f32_u32(
svget_neonq(svdup_n_u32(0x4b00007f))); // 2^23 + 127 = 0x1.0000fep23f
const auto inv_ln2 = vreinterpretq_f32_u32(
svget_neonq(svdup_n_u32(0x3fb8aa3b))); // 1 / ln(2) = 0x1.715476p+0f
const auto neg_ln2_hi = vreinterpretq_f32_u32(svget_neonq(
svdup_n_u32(0xbf317200))); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
const auto neg_ln2_lo = vreinterpretq_f32_u32(svget_neonq(svdup_n_u32(
0xb5bfbe8e))); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5)
const auto zero = svdup_n_f32(0.f);
const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125)
// Range reduction:
// e^x = 2^n * e^r
// where:
// n = floor(x / ln(2))
// r = x - n * ln(2)
//
// By adding x / ln(2) with 2^23 + 127 (shift):
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127
// forces decimal part
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n)
// + 127 will occupy the whole fraction part of z in FP32 format.
// Subtracting 2^23 + 127 (shift) from z will result in the integer part
// of x / ln(2) (i.e. n) because the decimal part has been pushed out and
// lost.
// * The addition of 127 makes the FP32 fraction part of z ready to be used
// as the exponent
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
const auto z = vfmaq_f32(shift, x, inv_ln2);
const auto n = z - shift;
const auto scale =
vreinterpretq_f32_u32(vreinterpretq_u32_f32(z) << 23); // 2^n
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy
// beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in term
// of accuracy and performance.
const auto r_hi = vfmaq_f32(x, n, neg_ln2_hi);
const auto r = vfmaq_f32(r_hi, n, neg_ln2_lo);
// Compute the truncated Taylor series of e^r.
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
const auto r2 = r * r;
const auto p1 = c1 * r;
const auto p23 = vfmaq_f32(c2, c3, r);
const auto p45 = vfmaq_f32(c4, c5, r);
const auto p2345 = vfmaq_f32(p23, p45, r2);
const auto p12345 = vfmaq_f32(p1, p2345, r2);
auto poly = svset_neonq(svundef_f32(), vfmaq_f32(scale, p12345, scale));
// Handle underflow and overflow.
poly = svsel_f32(
svcmplt_f32(svptrue_b8(), svset_neonq(svundef_f32(), x), min_input),
zero,
poly);
poly = svsel_f32(
svcmpgt_f32(svptrue_b8(), svset_neonq(svundef_f32(), x), max_input),
inf,
poly);
return svget_neonq(poly);
}
// ln(x) = log2(x) * ln(2)
// pow(x, n) = exp(n * ln(x))
inline float32x4_t compute_batch_box_cox_vec_sve128_float(
svfloat32_t lambda1_v,
svfloat32_t lambda2_v,
svfloat32_t data_v,
svfloat32_t k_eps) {
// sum_v = lambda2_v + data_v
float32x4_t sum_v = vaddq_f32(svget_neonq(data_v), svget_neonq(lambda2_v));
// test lambda1_v: predNZ == 1 iff lambda1_v != 0
svbool_t predNZ = svcmpne_n_f32(svptrue_b8(), lambda1_v, 0.0f);
// clamp sum_v: sum_v = max(sum_v, k_eps)
sum_v = vmaxq_f32(sum_v, svget_neonq(k_eps));
// lnData = log(sum_v)
svfloat32_t lnData = svset_neonq(svundef_f32(), vlogq_f32(sum_v));
// if any lambda1 != 0, compute pow(sum_v, lambda1) using lnData
// pow(sum_v, lambda1) == exp(lambda1 * ln(sum_v))
if (C10_LIKELY(svptest_any(predNZ, predNZ))) {
// mult = lambda1 * ln(sum_v)
float32x4_t mult = vmulq_f32(svget_neonq(lnData), svget_neonq(lambda1_v));
// lambda1_r = 1 / lambda1
svfloat32_t lambda1_r = svdivr_f32_m(predNZ, lambda1_v, svdup_n_f32(1.0f));
// pow = exp(mult)
float32x4_t pow = vexpq_f32(mult);
// merge results
// lnData if lambda1 == 0, (lambda1_r * pow - lambda1_r) if lambda1 != 0
lnData = svsel_f32(predNZ, lambda1_r, lnData);
lnData =
svnmsb_f32_m(predNZ, lnData, svset_neonq(svundef_f32(), pow), lnData);
}
return svget_neonq(lnData);
}
template <typename T>
void compute_batch_box_cox_vec_sve128(
std::size_t N,
std::size_t D,
const T* data_ptr,
const T* __restrict lambda1_ptr,
const T* __restrict lambda2_ptr,
T* output_ptr);
template <>
void compute_batch_box_cox_vec_sve128(
std::size_t N,
std::size_t D,
const float* data_ptr,
const float* __restrict lambda1_ptr,
const float* __restrict lambda2_ptr,
float* output_ptr) {
svfloat32_t k_eps = svdup_n_f32(static_cast<float>(1e-6));
std::size_t remainder = D % 4;
std::size_t loopBound = D - remainder;
svbool_t remainderPred = svwhilelt_b32_u64(0, remainder);
for (; C10_LIKELY(N > 0); --N) {
for (std::size_t j = 0; C10_LIKELY(j != loopBound);
j += 4, data_ptr += 4, output_ptr += 4) {
svfloat32_t lambda1_v =
svset_neonq(svundef_f32(), vld1q_f32(lambda1_ptr + j));
svfloat32_t lambda2_v =
svset_neonq(svundef_f32(), vld1q_f32(lambda2_ptr + j));
svfloat32_t data_v = svset_neonq(svundef_f32(), vld1q_f32(data_ptr));
float32x4_t result = compute_batch_box_cox_vec_sve128_float(
lambda1_v, lambda2_v, data_v, k_eps);
vst1q_f32(output_ptr, result);
}
if (C10_LIKELY(remainder > 0)) {
svfloat32_t lambda1_v = svld1_f32(remainderPred, lambda1_ptr + loopBound);
svfloat32_t lambda2_v = svld1_f32(remainderPred, lambda2_ptr + loopBound);
svfloat32_t data_v = svld1_f32(remainderPred, data_ptr);
float32x4_t result = compute_batch_box_cox_vec_sve128_float(
lambda1_v, lambda2_v, data_v, k_eps);
svst1_f32(remainderPred, output_ptr, svset_neonq(svundef_f32(), result));
data_ptr += remainder;
output_ptr += remainder;
}
}
}
namespace caffe2::details {
template <typename T>
void compute_batch_box_cox__sve128(
std::size_t N,
std::size_t D,
const T* self_data,
const T* __restrict lambda1_data,
const T* __restrict lambda2_data,
T* output_data) {
compute_batch_box_cox_vec_sve128<T>(
N, D, self_data, lambda1_data, lambda2_data, output_data);
}
// Vectorized version specializations for float and double
template void compute_batch_box_cox__sve128<float>(
std::size_t N,
std::size_t D,
const float* self_data,
const float* __restrict lambda1_data,
const float* __restrict lambda2_data,
float* output_data);
} // namespace caffe2::details
#endif // __aarch64__ && CAFFE2_PERF_WITH_SVE128