[Test] Add simple MPS op benchmarks (#149914)

Lots of benchmark tests has been posted in PRs, but they might get lost over time
So let's create a benchmark and populate it with results (preferably from the run on CI machine)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149914
Approved by: https://github.com/dcci, https://github.com/cyyever
This commit is contained in:
Nikita Shulga
2025-03-24 22:44:57 -07:00
committed by PyTorch MergeBot
parent 86dcdf9c8b
commit 23183fef7e
2 changed files with 100 additions and 0 deletions

View File

@ -160,6 +160,14 @@ jobs:
run: |
cat test/**/*_toprint.log || true
- name: Run OP benchmark
run: |
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
${CONDA_RUN} python3 test/bench_mps_ops.py
- name: Upload test artifacts
uses: ./.github/actions/upload-test-artifacts
if: always() && steps.test.conclusion && steps.test.conclusion != 'skipped'

92
test/bench_mps_ops.py Normal file
View File

@ -0,0 +1,92 @@
# Owner(s): ["module: mps"]
# Collection of op level benchmarks for MPS
# Useful as reference tool when migrating ops from MPS to Metal
import itertools
import timeit
from typing import Optional
import torch
from torch.utils.benchmark import Compare, Measurement, Timer
def bench_unary_op(func, x, label) -> Measurement:
sync_cmd = "torch.mps.synchronize()" if "mps" in str(x.device) else ""
t = Timer(
stmt=f"f(x);{sync_cmd}",
globals={"f": func, "x": x},
language="python",
timer=timeit.default_timer,
sub_label=f"{func.__name__} ({str(x.dtype)})",
description=label,
env=torch.__version__,
)
return t.blocked_autorange()
def bench_binary_op(func, x, y, label) -> Measurement:
sync_cmd = "torch.mps.synchronize()" if "mps" in str(x.device) else ""
t = Timer(
stmt=f"f(x, y);{sync_cmd}",
globals={"f": func, "x": x, "y": y},
language="python",
timer=timeit.default_timer,
sub_label=f"{func.__name__} ({str(x.dtype)}, {str(y.dtype)})",
description=label,
env=torch.__version__,
)
return t.blocked_autorange()
def bench_unary(
unary_func, device: str = "mps", dtype: torch.dtype = torch.float32
) -> list[Measurement]:
x = torch.testing.make_tensor(1024, 1024, device=device, dtype=dtype)
x_s = torch.testing.make_tensor(1024, 2048, device=device, dtype=dtype)[::, ::2]
rc = []
rc.append(bench_unary_op(unary_func, x, "dense"))
rc.append(bench_unary_op(unary_func, x.t(), "transposed"))
rc.append(bench_unary_op(unary_func, x_s, "strided"))
rc.append(bench_unary_op(unary_func, x_s.t(), "strided + transposed"))
return rc
def bench_binary(
binary_func,
device: str = "mps",
dt_a: torch.dtype = torch.float32,
dt_b: Optional[torch.dtype] = None,
) -> list[Measurement]:
dt_b = dt_b if dt_b is not None else dt_a
x = torch.testing.make_tensor(1024, 1024, device=device, dtype=dt_a)
y = torch.testing.make_tensor(1024, 1024, device=device, dtype=dt_b)
s = torch.testing.make_tensor((), device=device, dtype=dt_b)
rc = []
rc.append(bench_binary_op(binary_func, x, y, "dense-dense"))
rc.append(bench_binary_op(binary_func, x.t(), y.t(), "transp-transp"))
rc.append(bench_binary_op(binary_func, x, y.t(), "dense-transp"))
rc.append(bench_binary_op(binary_func, x.t(), y, "transp-dense"))
rc.append(bench_binary_op(binary_func, x, s, "dense-scalar"))
rc.append(bench_binary_op(binary_func, x, y[0], "dense-bcast"))
return rc
def main() -> None:
dtypes = [torch.float16, torch.float32]
# Profile unary ops
rc = []
for op, dtype in itertools.product([torch.sqrt, torch.sin], dtypes):
rc.extend(bench_unary(op, dtype=dtype))
Compare(rc).print()
# Profile binary ops
rc = []
ops = [torch.fmax, torch.add]
for op, dtype in itertools.product(ops, dtypes):
rc.extend(bench_binary(op, dt_a=dtype))
for op in ops:
rc.extend(bench_binary(op, dt_b=torch.float16))
Compare(rc).print()
if __name__ == "__main__":
main()