mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
[3/3] Update .pyi
Python stub files and enable 'UFMT'
linter (#95268)
Changes: - #95200 1. Recognize `.py.in` and `.pyi.in` files as Python in VS Code for a better development experience. 2. Fix deep setting merge in `tools/vscode_settings.py`. - #95267 3. Use `Namedtuple` rather than `namedtuple + __annotations__` for `torch.nn.utils.rnn.PackedSequence_`: `namedtuple + __annotations__`: ```python PackedSequence_ = namedtuple('PackedSequence_', ['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices']) # type annotation for PackedSequence_ to make it compatible with TorchScript PackedSequence_.__annotations__ = {'data': torch.Tensor, 'batch_sizes': torch.Tensor, 'sorted_indices': Optional[torch.Tensor], 'unsorted_indices': Optional[torch.Tensor]} ``` `Namedtuple`: Python 3.6+ ```python class PackedSequence_(NamedTuple): data: torch.Tensor batch_sizes: torch.Tensor sorted_indices: Optional[torch.Tensor] unsorted_indices: Optional[torch.Tensor] ``` - => this PR: #95268 4. Sort import statements and remove unnecessary imports in `.pyi`, `.pyi.in` files. 5. Format `.pyi`, `.pyi.in` files and remove unnecessary ellipsis `...` in type stubs. Pull Request resolved: https://github.com/pytorch/pytorch/pull/95268 Approved by: https://github.com/huydhn
This commit is contained in:
committed by
PyTorch MergeBot
parent
b3d8fae042
commit
1fd119948e
@ -841,6 +841,7 @@ include_patterns = [
|
||||
'torch/_refs/**/*.py',
|
||||
'torch/_subclasses/**/*.py',
|
||||
'torch/_*.py',
|
||||
'torch/**/*.pyi',
|
||||
'torch/testing/_internal/opinfo/**/*.py',
|
||||
'torchgen/**/*.py',
|
||||
'torch/_functorch/make_functional.py',
|
||||
|
3
.vscode/extensions.json
vendored
3
.vscode/extensions.json
vendored
@ -1,5 +1,6 @@
|
||||
{
|
||||
"recommendations": [
|
||||
"ms-python.python"
|
||||
"ms-python.python",
|
||||
"omnilib.ufmt"
|
||||
]
|
||||
}
|
||||
|
3
.vscode/settings_recommended.json
vendored
3
.vscode/settings_recommended.json
vendored
@ -4,7 +4,8 @@
|
||||
},
|
||||
"files.associations": {
|
||||
"*.py.in": "python",
|
||||
"*.pyi.in": "python"
|
||||
"*.pyi.in": "python",
|
||||
"editor.defaultFormatter": "omnilib.ufmt"
|
||||
},
|
||||
"files.eol": "\n",
|
||||
"files.insertFinalNewline": true,
|
||||
|
@ -1,12 +1,37 @@
|
||||
# ${generated_comment}
|
||||
|
||||
from torch import Tensor, Generator, strided, memory_format, contiguous_format, strided, inf
|
||||
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload, Iterator, NamedTuple, Sequence, Literal, TypeVar
|
||||
|
||||
from torch.types import _int, _float, _bool, Number, _dtype, _device, _qscheme, _size, _layout, SymInt, Device
|
||||
import torch
|
||||
|
||||
import builtins
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
ContextManager,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
overload,
|
||||
Sequence,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
|
||||
import torch
|
||||
from torch import contiguous_format, Generator, inf, memory_format, strided, Tensor
|
||||
from torch.types import (
|
||||
_bool,
|
||||
_device,
|
||||
_dtype,
|
||||
_float,
|
||||
_int,
|
||||
_layout,
|
||||
_qscheme,
|
||||
_size,
|
||||
Device,
|
||||
Number,
|
||||
SymInt,
|
||||
)
|
||||
|
||||
${function_hints}
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,8 +1,14 @@
|
||||
from typing import List, Set, Callable, Any, Union, Optional
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, List, Optional, Set
|
||||
|
||||
import torch
|
||||
from ._profiler import _ProfilerEvent, ActiveProfilerType, ProfilerActivity, ProfilerConfig
|
||||
|
||||
from ._profiler import (
|
||||
_ProfilerEvent,
|
||||
ActiveProfilerType,
|
||||
ProfilerActivity,
|
||||
ProfilerConfig,
|
||||
)
|
||||
|
||||
# Defined in tools/autograd/init.cpp
|
||||
|
||||
@ -22,7 +28,6 @@ class DeviceType(Enum):
|
||||
Meta = ...
|
||||
Vulkan = ...
|
||||
Metal = ...
|
||||
...
|
||||
|
||||
class ProfilerEvent:
|
||||
def cpu_elapsed_us(self, other: ProfilerEvent) -> float: ...
|
||||
@ -41,7 +46,6 @@ class ProfilerEvent:
|
||||
def thread_id(self) -> int: ...
|
||||
def flops(self) -> float: ...
|
||||
def is_async(self) -> bool: ...
|
||||
...
|
||||
|
||||
class _KinetoEvent:
|
||||
def name(self) -> str: ...
|
||||
@ -50,7 +54,6 @@ class _KinetoEvent:
|
||||
def duration_us(self) -> int: ...
|
||||
def is_async(self) -> bool: ...
|
||||
def linked_correlation_id(self) -> int: ...
|
||||
...
|
||||
|
||||
class _ProfilerResult:
|
||||
def events(self) -> List[_KinetoEvent]: ...
|
||||
@ -58,11 +61,16 @@ class _ProfilerResult:
|
||||
def save(self, path: str) -> None: ...
|
||||
def experimental_event_tree(self) -> List[_ProfilerEvent]: ...
|
||||
|
||||
class SavedTensor:
|
||||
...
|
||||
class SavedTensor: ...
|
||||
|
||||
def _enable_profiler(config: ProfilerConfig, activities: Set[ProfilerActivity]) -> None: ...
|
||||
def _prepare_profiler(config: ProfilerConfig, activities: Set[ProfilerActivity]) -> None: ...
|
||||
def _enable_profiler(
|
||||
config: ProfilerConfig,
|
||||
activities: Set[ProfilerActivity],
|
||||
) -> None: ...
|
||||
def _prepare_profiler(
|
||||
config: ProfilerConfig,
|
||||
activities: Set[ProfilerActivity],
|
||||
) -> None: ...
|
||||
def _disable_profiler() -> _ProfilerResult: ...
|
||||
def _profiler_enabled() -> bool: ...
|
||||
def _add_metadata_json(key: str, value: str) -> None: ...
|
||||
@ -73,15 +81,15 @@ def _record_function_with_args_exit(handle: torch.Tensor) -> None: ...
|
||||
def _supported_activities() -> Set[ProfilerActivity]: ...
|
||||
def _enable_record_function(enable: bool) -> None: ...
|
||||
def _set_empty_test_observer(is_global: bool, sampling_prob: float) -> None: ...
|
||||
def _push_saved_tensors_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
|
||||
def _push_saved_tensors_default_hooks(
|
||||
pack_hook: Callable,
|
||||
unpack_hook: Callable,
|
||||
) -> None: ...
|
||||
def _pop_saved_tensors_default_hooks() -> None: ...
|
||||
|
||||
def _unsafe_set_version_counter(t: torch.Tensor, prev_version: int) -> None: ...
|
||||
|
||||
def _enable_profiler_legacy(config: ProfilerConfig) -> None: ...
|
||||
def _disable_profiler_legacy() -> List[List[ProfilerEvent]]: ...
|
||||
def _profiler_type() -> ActiveProfilerType: ...
|
||||
|
||||
def _saved_tensors_hooks_enable() -> None: ...
|
||||
def _saved_tensors_hooks_disable(message: str) -> None: ...
|
||||
def _saved_tensors_hooks_get_disabled_error_message() -> Optional[str]: ...
|
||||
|
@ -1,6 +1,6 @@
|
||||
from enum import Enum
|
||||
|
||||
from torch.types import Tuple, Number, _bool
|
||||
from torch.types import _bool, Tuple
|
||||
|
||||
# Defined in torch/csrc/cuda/shared/cudnn.cpp
|
||||
is_cuda: _bool
|
||||
|
@ -1,5 +1,6 @@
|
||||
from typing import Any, Dict, List, Set
|
||||
|
||||
import torch
|
||||
from typing import Dict, List, Set, Any
|
||||
|
||||
# This module is defined in torch/csrc/distributed/autograd/init.cpp
|
||||
|
||||
@ -20,6 +21,6 @@ def _get_debug_info() -> Dict[str, str]: ...
|
||||
def backward(
|
||||
context_id: int,
|
||||
roots: List[torch.Tensor],
|
||||
retain_graph = False
|
||||
retain_graph=False,
|
||||
) -> None: ...
|
||||
def get_gradients(context_id: int) -> Dict[torch.Tensor, torch.Tensor]: ...
|
||||
|
@ -17,7 +17,8 @@ class BuiltinCommHookType(Enum):
|
||||
|
||||
def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ...
|
||||
def _register_builtin_comm_hook(
|
||||
reducer: Reducer, comm_hook_type: BuiltinCommHookType
|
||||
reducer: Reducer,
|
||||
comm_hook_type: BuiltinCommHookType,
|
||||
): ...
|
||||
|
||||
class GradBucket:
|
||||
@ -50,7 +51,9 @@ class Reducer:
|
||||
def _get_zeros_like_grad_buckets(self) -> List[GradBucket]: ...
|
||||
def _push_all_rebuilt_params(self) -> None: ...
|
||||
def _set_forward_pass_work_handle(
|
||||
self, work: Work, use_static_world_size: bool
|
||||
self,
|
||||
work: Work,
|
||||
use_static_world_size: bool,
|
||||
): ...
|
||||
def _get_local_used_map(self) -> Tensor: ...
|
||||
def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ...
|
||||
@ -90,7 +93,6 @@ class DebugLevel(Enum):
|
||||
DETAIL = ...
|
||||
|
||||
class ReduceOp:
|
||||
|
||||
def __init__(self, op: "RedOpType"): ...
|
||||
|
||||
SUM = ...
|
||||
@ -149,7 +151,10 @@ class Store:
|
||||
def get(self, key: str) -> bytes: ...
|
||||
def add(self, key: str, value: int) -> int: ...
|
||||
def compare_set(
|
||||
self, key: str, expected_value: str, desired_value: str
|
||||
self,
|
||||
key: str,
|
||||
expected_value: str,
|
||||
desired_value: str,
|
||||
) -> bytes: ...
|
||||
def delete_key(self, key: str) -> bool: ...
|
||||
def num_keys(self) -> int: ...
|
||||
@ -195,7 +200,6 @@ class Work:
|
||||
def _source_rank(self) -> int: ...
|
||||
def result(self) -> List[Tensor]: ...
|
||||
def synchronize(self): ...
|
||||
...
|
||||
|
||||
class ProcessGroup:
|
||||
class Options: ...
|
||||
@ -385,11 +389,9 @@ class ProcessGroupGloo(ProcessGroup):
|
||||
timeout: timedelta,
|
||||
): ...
|
||||
@staticmethod
|
||||
def create_device(hostname=str(), interface=str()) -> Device: ...
|
||||
...
|
||||
def create_device(hostname="", interface="") -> Device: ...
|
||||
@staticmethod
|
||||
def create_default_device() -> Device: ...
|
||||
...
|
||||
|
||||
class _ProcessGroupWrapper(ProcessGroup):
|
||||
def __init__(self, pg: ProcessGroup, gloo_pg: ProcessGroupGloo): ...
|
||||
@ -409,7 +411,6 @@ class ProcessGroupNCCL(ProcessGroup):
|
||||
def _group_start() -> None: ...
|
||||
@staticmethod
|
||||
def _group_end() -> None: ...
|
||||
...
|
||||
|
||||
class ProcessGroupUCC(ProcessGroup):
|
||||
def __init__(
|
||||
|
@ -1,8 +1,8 @@
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union, overload
|
||||
from datetime import timedelta
|
||||
import enum
|
||||
from typing import Any, Dict, List, Optional, overload, Tuple
|
||||
|
||||
import torch
|
||||
from torch.types import Device
|
||||
|
||||
from . import Future
|
||||
from ._autograd import ProfilerEvent
|
||||
from ._distributed_c10d import ProcessGroup, Store
|
||||
@ -59,13 +59,12 @@ class PyRRef:
|
||||
def remote(self, timeout: float = _UNSET_RPC_TIMEOUT) -> Any: ...
|
||||
def _serialize(self) -> Tuple: ...
|
||||
@staticmethod
|
||||
def _deserialize(tp: Tuple) -> 'PyRRef': ...
|
||||
def _deserialize(tp: Tuple) -> "PyRRef": ...
|
||||
def _get_type(self) -> Any: ...
|
||||
def _get_future(self) -> Future: ...
|
||||
def _get_profiling_future(self) -> Future: ...
|
||||
def _set_profiling_future(self, profilingFuture: Future): ...
|
||||
def __repr__(self) -> str: ...
|
||||
...
|
||||
|
||||
class _TensorPipeRpcBackendOptionsBase(RpcBackendOptions):
|
||||
num_worker_threads: int
|
||||
@ -79,8 +78,13 @@ class _TensorPipeRpcBackendOptionsBase(RpcBackendOptions):
|
||||
rpc_timeout: float = _DEFAULT_RPC_TIMEOUT_SEC,
|
||||
init_method: str = _DEFAULT_INIT_METHOD,
|
||||
device_maps: Dict[str, Dict[torch.device, torch.device]] = {},
|
||||
devices: List[torch.device] = list()): ...
|
||||
def _set_device_map(self, to: str, device_map: Dict[torch.device, torch.device]): ...
|
||||
devices: List[torch.device] = [],
|
||||
): ...
|
||||
def _set_device_map(
|
||||
self,
|
||||
to: str,
|
||||
device_map: Dict[torch.device, torch.device],
|
||||
): ...
|
||||
|
||||
class TensorPipeAgent(RpcAgent):
|
||||
def __init__(
|
||||
@ -108,7 +112,8 @@ class TensorPipeAgent(RpcAgent):
|
||||
worker_info: WorkerInfo,
|
||||
my_devices: List[torch.device],
|
||||
reverse_device_map: Dict[str, Dict[torch.device, torch.device]],
|
||||
is_join: bool): ...
|
||||
is_join: bool,
|
||||
): ...
|
||||
def _get_backend_options(self) -> _TensorPipeRpcBackendOptionsBase: ...
|
||||
@property
|
||||
def is_static_group(self) -> bool: ...
|
||||
@ -116,7 +121,7 @@ class TensorPipeAgent(RpcAgent):
|
||||
def store(self) -> Store: ...
|
||||
|
||||
def _is_current_rpc_agent_set() -> bool: ...
|
||||
def _get_current_rpc_agent()-> RpcAgent: ...
|
||||
def _get_current_rpc_agent() -> RpcAgent: ...
|
||||
def _set_and_start_rpc_agent(agent: RpcAgent): ...
|
||||
def _reset_current_rpc_agent(): ...
|
||||
def _delete_all_user_and_unforked_owner_rrefs(timeout: timedelta = ...): ...
|
||||
@ -128,15 +133,15 @@ def _invoke_rpc_builtin(
|
||||
opName: str,
|
||||
rpcTimeoutSeconds: float,
|
||||
*args: Any,
|
||||
**kwargs: Any
|
||||
): ...
|
||||
**kwargs: Any,
|
||||
): ...
|
||||
def _invoke_rpc_python_udf(
|
||||
dst: WorkerInfo,
|
||||
pickledPythonUDF: str,
|
||||
tensors: List[torch.Tensor],
|
||||
rpcTimeoutSeconds: float,
|
||||
isAsyncExecution: bool
|
||||
): ...
|
||||
isAsyncExecution: bool,
|
||||
): ...
|
||||
def _invoke_rpc_torchscript(
|
||||
dstWorkerName: str,
|
||||
qualifiedNameStr: str,
|
||||
@ -144,29 +149,29 @@ def _invoke_rpc_torchscript(
|
||||
kwargsDict: Dict,
|
||||
rpcTimeoutSeconds: float,
|
||||
isAsyncExecution: bool,
|
||||
): ...
|
||||
): ...
|
||||
def _invoke_remote_builtin(
|
||||
dst: WorkerInfo,
|
||||
opName: str,
|
||||
rpcTimeoutSeconds: float,
|
||||
*args: Any,
|
||||
**kwargs: Any
|
||||
): ...
|
||||
**kwargs: Any,
|
||||
): ...
|
||||
def _invoke_remote_python_udf(
|
||||
dst: WorkerInfo,
|
||||
pickledPythonUDF: str,
|
||||
tensors: List[torch.Tensor],
|
||||
rpcTimeoutSeconds: float,
|
||||
isAsyncExecution: bool,
|
||||
): ...
|
||||
): ...
|
||||
def _invoke_remote_torchscript(
|
||||
dstWorkerName: WorkerInfo,
|
||||
qualifiedNameStr: str,
|
||||
rpcTimeoutSeconds: float,
|
||||
isAsyncExecution: bool,
|
||||
*args: Any,
|
||||
**kwargs: Any
|
||||
): ...
|
||||
**kwargs: Any,
|
||||
): ...
|
||||
def get_rpc_timeout() -> float: ...
|
||||
def enable_gil_profiling(flag: bool): ...
|
||||
def _set_rpc_timeout(rpcTimeoutSeconds: float): ...
|
||||
|
@ -1,12 +1,13 @@
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
|
||||
from ._distributed_c10d import ProcessGroup, Store
|
||||
from ._distributed_rpc import (
|
||||
_TensorPipeRpcBackendOptionsBase,
|
||||
TensorPipeAgent,
|
||||
WorkerInfo,
|
||||
)
|
||||
from typing import List, Dict, overload
|
||||
from datetime import timedelta
|
||||
|
||||
# This module is defined in torch/csrc/distributed/rpc/testing/init.cpp
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
import types
|
||||
from typing import Union
|
||||
|
||||
from torch._dynamo.types import DynamoCallback, DynamoGuardHook
|
||||
|
||||
def set_eval_frame(callback: DynamoCallback) -> DynamoCallback: ...
|
||||
|
@ -1,12 +1,11 @@
|
||||
from torch import Tensor
|
||||
from typing import AnyStr, List
|
||||
|
||||
from torch import Tensor
|
||||
|
||||
class UndefinedGrad:
|
||||
def __init__(self) -> None: ...
|
||||
def __call__(self, *inputs: Tensor) -> List[Tensor]: ...
|
||||
...
|
||||
|
||||
class DelayedError:
|
||||
def __init__(self, msg: AnyStr, num_inputs: int) -> None: ...
|
||||
def __call__(self, inputs: List[Tensor]) -> List[Tensor]: ...
|
||||
...
|
||||
|
@ -1,7 +1,8 @@
|
||||
from torch import Tensor
|
||||
from enum import Enum
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from torch import Tensor
|
||||
|
||||
# Defined in torch/csrc/functorch/init.cpp
|
||||
|
||||
def _set_dynamic_layer_keys_included(included: bool) -> None: ...
|
||||
@ -18,7 +19,6 @@ def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
|
||||
def _unwrap_batched(tensor: Tensor, level: int) -> Tuple[Tensor, Optional[int]]: ...
|
||||
def current_level() -> int: ...
|
||||
def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ...
|
||||
|
||||
def set_single_level_autograd_function_allowed(allowed: bool) -> None: ...
|
||||
def get_single_level_autograd_function_allowed() -> bool: ...
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
from typing import List
|
||||
|
||||
from torch import Tensor
|
||||
|
||||
# defined in torch/csrc/lazy/python/init.cpp
|
||||
|
@ -1,8 +1,11 @@
|
||||
#defined in torch/csrc/lazy/python/init.cpp
|
||||
# defined in torch/csrc/lazy/python/init.cpp
|
||||
|
||||
from typing import Any, List, Tuple
|
||||
|
||||
from typing import List, Tuple, Any
|
||||
from torch import Tensor
|
||||
|
||||
def _init(): ...
|
||||
def _get_tensors_ts_device_data_node(tensors: List[Tensor]) -> Tuple[List[int], List[Any]]: ...
|
||||
def _get_tensors_ts_device_data_node(
|
||||
tensors: List[Tensor],
|
||||
) -> Tuple[List[int], List[Any]]: ...
|
||||
def _run_cached_graph(hash_str: str, graph_inputs: List[Any]) -> List[Tensor]: ...
|
||||
|
@ -1,8 +1,8 @@
|
||||
# Defined in torch/csrc/monitor/python_init.cpp
|
||||
|
||||
from typing import List, Dict, Callable, Union
|
||||
from enum import Enum
|
||||
import datetime
|
||||
from enum import Enum
|
||||
from typing import Callable, Dict, List, Union
|
||||
|
||||
class Aggregation(Enum):
|
||||
VALUE = ...
|
||||
@ -16,7 +16,10 @@ class Stat:
|
||||
name: str
|
||||
count: int
|
||||
def __init__(
|
||||
self, name: str, aggregations: List[Aggregation], window_size: int,
|
||||
self,
|
||||
name: str,
|
||||
aggregations: List[Aggregation],
|
||||
window_size: int,
|
||||
max_samples: int = -1,
|
||||
) -> None: ...
|
||||
def add(self, v: float) -> None: ...
|
||||
|
@ -1,6 +1,7 @@
|
||||
from torch import Tensor, memory_format
|
||||
from typing import Callable, Optional, List, overload, Tuple
|
||||
from torch.types import _bool, _dtype, _device
|
||||
from typing import Callable, List, Optional, overload, Tuple
|
||||
|
||||
from torch import memory_format, Tensor
|
||||
from torch.types import _bool, _device, _dtype
|
||||
|
||||
# Defined in tools/autograd/templates/python_nn_functions.cpp
|
||||
|
||||
@ -10,27 +11,56 @@ ${dispatched_hints}
|
||||
def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
|
||||
|
||||
# Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
|
||||
def mkldnn_reorder_conv2d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ...
|
||||
def mkldnn_reorder_conv3d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ...
|
||||
def mkldnn_reorder_conv2d_weight(
|
||||
self: Tensor,
|
||||
padding: List,
|
||||
stride: List,
|
||||
dilatation: List,
|
||||
groups: int,
|
||||
) -> Tensor: ...
|
||||
def mkldnn_reorder_conv3d_weight(
|
||||
self: Tensor,
|
||||
padding: List,
|
||||
stride: List,
|
||||
dilatation: List,
|
||||
groups: int,
|
||||
) -> Tensor: ...
|
||||
|
||||
# Defined in aten/src/ATen/native/mkldnn/Prelu.cpp
|
||||
def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ...
|
||||
|
||||
# Defined at tools/autograd/templates/python_nn_functions.cpp
|
||||
@overload
|
||||
def _parse_to(device: _device, dtype: _dtype, non_blocking: _bool, copy: _bool, *,
|
||||
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
||||
def _parse_to(
|
||||
device: _device,
|
||||
dtype: _dtype,
|
||||
non_blocking: _bool,
|
||||
copy: _bool,
|
||||
*,
|
||||
memory_format: memory_format,
|
||||
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
||||
@overload
|
||||
def _parse_to(dtype: _dtype, non_blocking: _bool, copy: _bool, *,
|
||||
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
||||
def _parse_to(
|
||||
dtype: _dtype,
|
||||
non_blocking: _bool,
|
||||
copy: _bool,
|
||||
*,
|
||||
memory_format: memory_format,
|
||||
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
||||
@overload
|
||||
def _parse_to(tensor: Tensor, non_blocking: _bool, copy: _bool, *,
|
||||
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
||||
def _parse_to(
|
||||
tensor: Tensor,
|
||||
non_blocking: _bool,
|
||||
copy: _bool,
|
||||
*,
|
||||
memory_format: memory_format,
|
||||
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
||||
|
||||
# Defined in aten/src/ATen/naitve/PadSequence.cpp
|
||||
def pad_sequence(sequences: List[Tensor], batch_first: bool = False,
|
||||
padding_value: float = ...) -> Tensor: ...
|
||||
|
||||
def pad_sequence(
|
||||
sequences: List[Tensor],
|
||||
batch_first: bool = False,
|
||||
padding_value: float = ...,
|
||||
) -> Tensor: ...
|
||||
def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ...
|
||||
|
||||
def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ...
|
||||
|
@ -53,7 +53,6 @@ class _ExperimentalConfig:
|
||||
profiler_measure_per_kernel: bool = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
...
|
||||
|
||||
class ProfilerConfig:
|
||||
def __init__(
|
||||
@ -66,7 +65,6 @@ class ProfilerConfig:
|
||||
with_modules: bool,
|
||||
experimental_config: _ExperimentalConfig,
|
||||
) -> None: ...
|
||||
...
|
||||
|
||||
class _ProfilerEvent:
|
||||
start_tid: int
|
||||
|
@ -1,8 +1,32 @@
|
||||
# ${generated_comment}
|
||||
|
||||
from torch import Tensor, Generator, strided, memory_format, contiguous_format, strided, inf
|
||||
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload, Iterator, NamedTuple, Sequence, Literal, TypeVar
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
ContextManager,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
overload,
|
||||
Sequence,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
|
||||
from torch.types import _int, _float, _bool, Number, _dtype, _device, _qscheme, _size, _layout
|
||||
from torch import contiguous_format, Generator, inf, memory_format, strided, Tensor
|
||||
from torch.types import (
|
||||
_bool,
|
||||
_device,
|
||||
_dtype,
|
||||
_float,
|
||||
_int,
|
||||
_layout,
|
||||
_qscheme,
|
||||
_size,
|
||||
Number,
|
||||
)
|
||||
|
||||
${namedtuple_defs}
|
||||
|
@ -1,7 +1,11 @@
|
||||
from ._symbolic_trace import (
|
||||
symbolic_trace as symbolic_trace,
|
||||
Tracer as Tracer,
|
||||
wrap as wrap,
|
||||
)
|
||||
from .graph import Graph as Graph
|
||||
from .graph_module import GraphModule as GraphModule
|
||||
from .node import Node as Node, map_arg as map_arg
|
||||
from .proxy import Proxy as Proxy
|
||||
from ._symbolic_trace import Tracer as Tracer, symbolic_trace as symbolic_trace, wrap as wrap
|
||||
from .interpreter import Interpreter as Interpreter, Transformer as Transformer
|
||||
from .node import map_arg as map_arg, Node as Node
|
||||
from .proxy import Proxy as Proxy
|
||||
from .subgraph_rewriter import replace_pattern as replace_pattern
|
||||
|
@ -1,7 +1,17 @@
|
||||
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
from torch import Tensor
|
||||
from torch.types import _size, _dtype
|
||||
from typing import Any, Optional, Tuple, Dict, List, Callable, Sequence, Union
|
||||
from .common_types import _ratio_any_t, _size_any_t, _size_1_t, _size_2_t, _size_3_t, _size_2_opt_t, _size_3_opt_t
|
||||
from torch.types import _dtype, _size
|
||||
|
||||
from .common_types import (
|
||||
_ratio_any_t,
|
||||
_size_1_t,
|
||||
_size_2_opt_t,
|
||||
_size_2_t,
|
||||
_size_3_opt_t,
|
||||
_size_3_t,
|
||||
_size_any_t,
|
||||
)
|
||||
|
||||
# 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
|
||||
# It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
|
||||
@ -15,7 +25,6 @@ from .common_types import _ratio_any_t, _size_any_t, _size_1_t, _size_2_t, _size
|
||||
GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
|
||||
GRID_SAMPLE_PADDING_MODES = Dict[str, int]
|
||||
|
||||
|
||||
# These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
|
||||
#
|
||||
# The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
|
||||
@ -26,374 +35,570 @@ GRID_SAMPLE_PADDING_MODES = Dict[str, int]
|
||||
# deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
|
||||
# generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
|
||||
# to encode the type semantics of `_add_docstr`, should that system ever become widespread.
|
||||
def fractional_max_pool2d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
|
||||
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
|
||||
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def fractional_max_pool3d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
|
||||
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
|
||||
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def max_pool1d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
|
||||
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
|
||||
Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def max_pool2d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
|
||||
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
|
||||
Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def max_pool3d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
|
||||
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
|
||||
Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def max_unpool1d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
|
||||
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def max_unpool2d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
|
||||
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def max_unpool3d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
|
||||
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def lp_pool1d(input: Tensor, norm_type: float, kernel_size: _size_1_t, stride: Union[Optional[_size], Optional[int]] = ...,
|
||||
ceil_mode: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def lp_pool2d(input: Tensor, norm_type: float, kernel_size: _size_2_t, stride: Union[Optional[_size], Optional[int]] = ...,
|
||||
ceil_mode: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def adaptive_max_pool1d_with_indices(input: Tensor, output_size: _size, return_indices: bool = ...) -> Tuple[
|
||||
Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def adaptive_max_pool2d_with_indices(input: Tensor, output_size: _size_2_opt_t, return_indices: bool = ...) -> Tuple[
|
||||
Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def adaptive_max_pool3d_with_indices(input: Tensor, output_size: _size_3_opt_t, return_indices: bool = ...) -> Tuple[
|
||||
Tensor, Tensor]: ...
|
||||
|
||||
|
||||
def fractional_max_pool2d_with_indices(
|
||||
input: Tensor,
|
||||
kernel_size: _size,
|
||||
output_size: Optional[_size] = ...,
|
||||
output_ratio: Optional[_ratio_any_t] = ...,
|
||||
return_indices: bool = ...,
|
||||
_random_samples: Optional[Tensor] = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def fractional_max_pool3d_with_indices(
|
||||
input: Tensor,
|
||||
kernel_size: _size,
|
||||
output_size: Optional[_size] = ...,
|
||||
output_ratio: Optional[_ratio_any_t] = ...,
|
||||
return_indices: bool = ...,
|
||||
_random_samples: Optional[Tensor] = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def max_pool1d_with_indices(
|
||||
input: Tensor,
|
||||
kernel_size: _size,
|
||||
stride: Optional[_size] = ...,
|
||||
padding: _size = ...,
|
||||
dilation: _size = ...,
|
||||
ceil_mode: bool = ...,
|
||||
return_indices: bool = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def max_pool2d_with_indices(
|
||||
input: Tensor,
|
||||
kernel_size: _size,
|
||||
stride: Optional[_size] = ...,
|
||||
padding: _size = ...,
|
||||
dilation: _size = ...,
|
||||
ceil_mode: bool = ...,
|
||||
return_indices: bool = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def max_pool3d_with_indices(
|
||||
input: Tensor,
|
||||
kernel_size: _size,
|
||||
stride: Optional[_size] = ...,
|
||||
padding: _size = ...,
|
||||
dilation: _size = ...,
|
||||
ceil_mode: bool = ...,
|
||||
return_indices: bool = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def max_unpool1d(
|
||||
input: Tensor,
|
||||
indices: Tensor,
|
||||
kernel_size: _size,
|
||||
stride: Optional[_size] = ...,
|
||||
padding: _size = ...,
|
||||
output_size: Optional[_size] = ...,
|
||||
) -> Tensor: ...
|
||||
def max_unpool2d(
|
||||
input: Tensor,
|
||||
indices: Tensor,
|
||||
kernel_size: _size,
|
||||
stride: Optional[_size] = ...,
|
||||
padding: _size = ...,
|
||||
output_size: Optional[_size] = ...,
|
||||
) -> Tensor: ...
|
||||
def max_unpool3d(
|
||||
input: Tensor,
|
||||
indices: Tensor,
|
||||
kernel_size: _size,
|
||||
stride: Optional[_size] = ...,
|
||||
padding: _size = ...,
|
||||
output_size: Optional[_size] = ...,
|
||||
) -> Tensor: ...
|
||||
def lp_pool1d(
|
||||
input: Tensor,
|
||||
norm_type: float,
|
||||
kernel_size: _size_1_t,
|
||||
stride: Union[Optional[_size], Optional[int]] = ...,
|
||||
ceil_mode: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def lp_pool2d(
|
||||
input: Tensor,
|
||||
norm_type: float,
|
||||
kernel_size: _size_2_t,
|
||||
stride: Union[Optional[_size], Optional[int]] = ...,
|
||||
ceil_mode: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def adaptive_max_pool1d_with_indices(
|
||||
input: Tensor,
|
||||
output_size: _size,
|
||||
return_indices: bool = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def adaptive_max_pool2d_with_indices(
|
||||
input: Tensor,
|
||||
output_size: _size_2_opt_t,
|
||||
return_indices: bool = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def adaptive_max_pool3d_with_indices(
|
||||
input: Tensor,
|
||||
output_size: _size_3_opt_t,
|
||||
return_indices: bool = ...,
|
||||
) -> Tuple[Tensor, Tensor]: ...
|
||||
def adaptive_avg_pool1d(input: Tensor, output_size: _size_1_t) -> Tensor: ...
|
||||
|
||||
|
||||
def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...
|
||||
|
||||
|
||||
def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...
|
||||
|
||||
|
||||
def dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def dropout1d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def dropout2d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def dropout3d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def feature_alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def threshold(input: Tensor, threshold: float, value: float, inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def dropout(
|
||||
input: Tensor,
|
||||
p: float = ...,
|
||||
training: bool = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def alpha_dropout(
|
||||
input: Tensor,
|
||||
p: float = ...,
|
||||
training: bool = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def dropout1d(
|
||||
input: Tensor,
|
||||
p: float = ...,
|
||||
training: bool = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def dropout2d(
|
||||
input: Tensor,
|
||||
p: float = ...,
|
||||
training: bool = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def dropout3d(
|
||||
input: Tensor,
|
||||
p: float = ...,
|
||||
training: bool = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def feature_alpha_dropout(
|
||||
input: Tensor,
|
||||
p: float = ...,
|
||||
training: bool = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def threshold(
|
||||
input: Tensor,
|
||||
threshold: float,
|
||||
value: float,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def glu(input: Tensor, dim: int = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def hardtanh(
|
||||
input: Tensor,
|
||||
min_val: float = ...,
|
||||
max_val: float = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def leaky_relu(input: Tensor, negative_slope: float = ..., inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def leaky_relu(
|
||||
input: Tensor,
|
||||
negative_slope: float = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def prelu(input: Tensor, weight: Tensor) -> Tensor: ...
|
||||
|
||||
|
||||
def rrelu(input: Tensor, lower: float = ..., upper: float = ..., training: bool = ...,
|
||||
inplace: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def rrelu(
|
||||
input: Tensor,
|
||||
lower: float = ...,
|
||||
upper: float = ...,
|
||||
training: bool = ...,
|
||||
inplace: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def gelu(input: Any, approximate: str = ...): ...
|
||||
|
||||
|
||||
def hardshrink(input: Tensor, lambd: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def tanhshrink(input: Any): ...
|
||||
|
||||
|
||||
def softsign(input: Any): ...
|
||||
|
||||
|
||||
def softmin(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def gumbel_softmax(logits: Tensor, tau: float = ..., hard: bool = ..., eps: float = ..., dim: int = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def log_softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ...,
|
||||
dtype: Optional[_dtype] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def softmin(
|
||||
input: Tensor,
|
||||
dim: Optional[int] = ...,
|
||||
_stacklevel: int = ...,
|
||||
dtype: Optional[_dtype] = ...,
|
||||
) -> Tensor: ...
|
||||
def softmax(
|
||||
input: Tensor,
|
||||
dim: Optional[int] = ...,
|
||||
_stacklevel: int = ...,
|
||||
dtype: Optional[_dtype] = ...,
|
||||
) -> Tensor: ...
|
||||
def gumbel_softmax(
|
||||
logits: Tensor,
|
||||
tau: float = ...,
|
||||
hard: bool = ...,
|
||||
eps: float = ...,
|
||||
dim: int = ...,
|
||||
) -> Tensor: ...
|
||||
def log_softmax(
|
||||
input: Tensor,
|
||||
dim: Optional[int] = ...,
|
||||
_stacklevel: int = ...,
|
||||
dtype: Optional[_dtype] = ...,
|
||||
) -> Tensor: ...
|
||||
def tanh(input: Any): ...
|
||||
|
||||
|
||||
def sigmoid(input: Any) -> Tensor: ...
|
||||
|
||||
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...
|
||||
|
||||
|
||||
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def bilinear(
|
||||
input1: Tensor,
|
||||
input2: Tensor,
|
||||
weight: Tensor,
|
||||
bias: Optional[Tensor] = ...,
|
||||
) -> Tensor: ...
|
||||
def silu(input: Tensor, inplace: bool = False) -> Tensor: ...
|
||||
|
||||
def mish(input: Tensor, inplace: bool = False) -> Tensor: ...
|
||||
|
||||
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...
|
||||
|
||||
|
||||
def embedding(input: Tensor, weight: Tensor, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ...,
|
||||
norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def embedding_bag(input: Tensor, weight: Tensor, offsets: Optional[Tensor] = ..., max_norm: Optional[float] = ...,
|
||||
norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ...,
|
||||
sparse: bool = ..., per_sample_weights: Optional[Tensor] = ...,
|
||||
include_last_offset: bool = ..., padding_idx: Optional[int] = ...) -> Tensor: ...
|
||||
|
||||
def batch_norm(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor],
|
||||
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., training: bool = ...,
|
||||
momentum: float = ..., eps: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def instance_norm(input: Tensor, running_mean: Optional[Tensor] = ..., running_var: Optional[Tensor] = ...,
|
||||
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., use_input_stats: bool = ...,
|
||||
momentum: float = ..., eps: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def layer_norm(input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
|
||||
eps: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def group_norm(input: Tensor, num_groups: int, weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
|
||||
eps: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def local_response_norm(input: Tensor, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = ...,
|
||||
reduction: str = ..., zero_infinity: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def nll_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
|
||||
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def poisson_nll_loss(input: Tensor, target: Tensor, log_input: bool = ..., full: bool = ...,
|
||||
size_average: Optional[bool] = ..., eps: float = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def gaussian_nll_loss(input: Tensor, target: Tensor, var: Tensor, full: Optional[bool] = ...,
|
||||
eps: Optional[float] = ..., reduction: Optional[str] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def kl_div(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ..., log_target: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
|
||||
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...,
|
||||
label_smoothing: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def binary_cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ..., pos_weight: Optional[Tensor] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def smooth_l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ..., beta: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def huber_loss(input: Tensor, target: Tensor, reduction: str = ..., delta: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def mse_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
|
||||
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def hinge_embedding_loss(input: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def multilabel_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def soft_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def multilabel_soft_margin_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
|
||||
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def multi_margin_loss(input: Tensor, target: Tensor, p: int = ..., margin: float = ..., weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
|
||||
reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def upsample(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
|
||||
align_corners: Optional[Any] = ...): ...
|
||||
|
||||
|
||||
def interpolate(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
|
||||
align_corners: Optional[Any] = ..., recompute_scale_factor: Optional[Any] = ...,
|
||||
antialias: bool = ...): ...
|
||||
|
||||
|
||||
def upsample_nearest(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
|
||||
|
||||
|
||||
def upsample_bilinear(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
|
||||
|
||||
|
||||
def grid_sample(input: Tensor, grid: Tensor, mode: str = ..., padding_mode: str = ...,
|
||||
align_corners: Optional[Any] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[Any] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def pairwise_distance(x1: Tensor, x2: Tensor, p: float = ..., eps: float = ..., keepdim: bool = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = ..., p: float = ...,
|
||||
eps: float = ..., swap: bool = ..., size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def triplet_margin_with_distance_loss(anchor: Tensor, positive: Tensor, negative: Tensor, *,
|
||||
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]]=...,
|
||||
margin: float=..., swap: bool=..., reduction: str=...) -> Tensor: ...
|
||||
|
||||
|
||||
def normalize(input: Tensor, p: float = ..., dim: int = ..., eps: float = ...,
|
||||
out: Optional[Tensor] = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def assert_int_or_pair(arg: Any, arg_name: Any, message: Any) -> None: ...
|
||||
|
||||
|
||||
def unfold(input: Tensor, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
|
||||
stride: _size_any_t = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def fold(input: Tensor, output_size: _size_any_t, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
|
||||
stride: _size_any_t = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def embedding(
|
||||
input: Tensor,
|
||||
weight: Tensor,
|
||||
padding_idx: Optional[int] = ...,
|
||||
max_norm: Optional[float] = ...,
|
||||
norm_type: float = ...,
|
||||
scale_grad_by_freq: bool = ...,
|
||||
sparse: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def embedding_bag(
|
||||
input: Tensor,
|
||||
weight: Tensor,
|
||||
offsets: Optional[Tensor] = ...,
|
||||
max_norm: Optional[float] = ...,
|
||||
norm_type: float = ...,
|
||||
scale_grad_by_freq: bool = ...,
|
||||
mode: str = ...,
|
||||
sparse: bool = ...,
|
||||
per_sample_weights: Optional[Tensor] = ...,
|
||||
include_last_offset: bool = ...,
|
||||
padding_idx: Optional[int] = ...,
|
||||
) -> Tensor: ...
|
||||
def batch_norm(
|
||||
input: Tensor,
|
||||
running_mean: Optional[Tensor],
|
||||
running_var: Optional[Tensor],
|
||||
weight: Optional[Tensor] = ...,
|
||||
bias: Optional[Tensor] = ...,
|
||||
training: bool = ...,
|
||||
momentum: float = ...,
|
||||
eps: float = ...,
|
||||
) -> Tensor: ...
|
||||
def instance_norm(
|
||||
input: Tensor,
|
||||
running_mean: Optional[Tensor] = ...,
|
||||
running_var: Optional[Tensor] = ...,
|
||||
weight: Optional[Tensor] = ...,
|
||||
bias: Optional[Tensor] = ...,
|
||||
use_input_stats: bool = ...,
|
||||
momentum: float = ...,
|
||||
eps: float = ...,
|
||||
) -> Tensor: ...
|
||||
def layer_norm(
|
||||
input: Tensor,
|
||||
normalized_shape: Sequence[int],
|
||||
weight: Optional[Tensor] = ...,
|
||||
bias: Optional[Tensor] = ...,
|
||||
eps: float = ...,
|
||||
) -> Tensor: ...
|
||||
def group_norm(
|
||||
input: Tensor,
|
||||
num_groups: int,
|
||||
weight: Optional[Tensor] = ...,
|
||||
bias: Optional[Tensor] = ...,
|
||||
eps: float = ...,
|
||||
) -> Tensor: ...
|
||||
def local_response_norm(
|
||||
input: Tensor,
|
||||
size: int,
|
||||
alpha: float = ...,
|
||||
beta: float = ...,
|
||||
k: float = ...,
|
||||
) -> Tensor: ...
|
||||
def ctc_loss(
|
||||
log_probs: Tensor,
|
||||
targets: Tensor,
|
||||
input_lengths: Tensor,
|
||||
target_lengths: Tensor,
|
||||
blank: int = ...,
|
||||
reduction: str = ...,
|
||||
zero_infinity: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def nll_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
ignore_index: int = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def poisson_nll_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
log_input: bool = ...,
|
||||
full: bool = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
eps: float = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def gaussian_nll_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
var: Tensor,
|
||||
full: Optional[bool] = ...,
|
||||
eps: Optional[float] = ...,
|
||||
reduction: Optional[str] = ...,
|
||||
) -> Tensor: ...
|
||||
def kl_div(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
log_target: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def cross_entropy(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
ignore_index: int = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
label_smoothing: float = ...,
|
||||
) -> Tensor: ...
|
||||
def binary_cross_entropy(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def binary_cross_entropy_with_logits(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
pos_weight: Optional[Tensor] = ...,
|
||||
) -> Tensor: ...
|
||||
def smooth_l1_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
beta: float = ...,
|
||||
) -> Tensor: ...
|
||||
def huber_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
reduction: str = ...,
|
||||
delta: float = ...,
|
||||
) -> Tensor: ...
|
||||
def l1_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def mse_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def margin_ranking_loss(
|
||||
input1: Tensor,
|
||||
input2: Tensor,
|
||||
target: Tensor,
|
||||
margin: float = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def hinge_embedding_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
margin: float = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def multilabel_margin_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def soft_margin_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def multilabel_soft_margin_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def cosine_embedding_loss(
|
||||
input1: Tensor,
|
||||
input2: Tensor,
|
||||
target: Tensor,
|
||||
margin: float = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def multi_margin_loss(
|
||||
input: Tensor,
|
||||
target: Tensor,
|
||||
p: int = ...,
|
||||
margin: float = ...,
|
||||
weight: Optional[Tensor] = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def upsample(
|
||||
input: Any,
|
||||
size: Optional[Any] = ...,
|
||||
scale_factor: Optional[Any] = ...,
|
||||
mode: str = ...,
|
||||
align_corners: Optional[Any] = ...,
|
||||
): ...
|
||||
def interpolate(
|
||||
input: Any,
|
||||
size: Optional[Any] = ...,
|
||||
scale_factor: Optional[Any] = ...,
|
||||
mode: str = ...,
|
||||
align_corners: Optional[Any] = ...,
|
||||
recompute_scale_factor: Optional[Any] = ...,
|
||||
antialias: bool = ...,
|
||||
): ...
|
||||
def upsample_nearest(
|
||||
input: Any,
|
||||
size: Optional[Any] = ...,
|
||||
scale_factor: Optional[Any] = ...,
|
||||
): ...
|
||||
def upsample_bilinear(
|
||||
input: Any,
|
||||
size: Optional[Any] = ...,
|
||||
scale_factor: Optional[Any] = ...,
|
||||
): ...
|
||||
def grid_sample(
|
||||
input: Tensor,
|
||||
grid: Tensor,
|
||||
mode: str = ...,
|
||||
padding_mode: str = ...,
|
||||
align_corners: Optional[Any] = ...,
|
||||
) -> Tensor: ...
|
||||
def affine_grid(
|
||||
theta: Tensor,
|
||||
size: List[int],
|
||||
align_corners: Optional[Any] = ...,
|
||||
) -> Tensor: ...
|
||||
def pad(
|
||||
input: Tensor,
|
||||
pad: Sequence[int],
|
||||
mode: str = ...,
|
||||
value: float = ...,
|
||||
) -> Tensor: ...
|
||||
def pairwise_distance(
|
||||
x1: Tensor,
|
||||
x2: Tensor,
|
||||
p: float = ...,
|
||||
eps: float = ...,
|
||||
keepdim: bool = ...,
|
||||
) -> Tensor: ...
|
||||
def triplet_margin_loss(
|
||||
anchor: Tensor,
|
||||
positive: Tensor,
|
||||
negative: Tensor,
|
||||
margin: float = ...,
|
||||
p: float = ...,
|
||||
eps: float = ...,
|
||||
swap: bool = ...,
|
||||
size_average: Optional[bool] = ...,
|
||||
reduce: Optional[bool] = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def triplet_margin_with_distance_loss(
|
||||
anchor: Tensor,
|
||||
positive: Tensor,
|
||||
negative: Tensor,
|
||||
*,
|
||||
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = ...,
|
||||
margin: float = ...,
|
||||
swap: bool = ...,
|
||||
reduction: str = ...,
|
||||
) -> Tensor: ...
|
||||
def normalize(
|
||||
input: Tensor,
|
||||
p: float = ...,
|
||||
dim: int = ...,
|
||||
eps: float = ...,
|
||||
out: Optional[Tensor] = ...,
|
||||
) -> Tensor: ...
|
||||
def assert_int_or_pair(
|
||||
arg: Any,
|
||||
arg_name: Any,
|
||||
message: Any,
|
||||
) -> None: ...
|
||||
def unfold(
|
||||
input: Tensor,
|
||||
kernel_size: _size_any_t,
|
||||
dilation: _size_any_t = ...,
|
||||
padding: _size_any_t = ...,
|
||||
stride: _size_any_t = ...,
|
||||
) -> Tensor: ...
|
||||
def fold(
|
||||
input: Tensor,
|
||||
output_size: _size_any_t,
|
||||
kernel_size: _size_any_t,
|
||||
dilation: _size_any_t = ...,
|
||||
padding: _size_any_t = ...,
|
||||
stride: _size_any_t = ...,
|
||||
) -> Tensor: ...
|
||||
def _canonical_mask(
|
||||
mask: Optional[Tensor],
|
||||
mask_name: str,
|
||||
other_type: Optional[_dtype],
|
||||
other_name: str,
|
||||
target_type: _dtype,
|
||||
check_other: bool = True,
|
||||
mask: Optional[Tensor],
|
||||
mask_name: str,
|
||||
other_type: Optional[_dtype],
|
||||
other_name: str,
|
||||
target_type: _dtype,
|
||||
check_other: bool = True,
|
||||
) -> Optional[Tensor]: ...
|
||||
|
||||
def _none_or_dtype(input: Optional[Tensor]) -> Optional[_dtype]: ...
|
||||
|
||||
def multi_head_attention_forward(query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Optional[Tensor],
|
||||
in_proj_bias: Optional[Tensor],
|
||||
bias_k: Optional[Tensor],
|
||||
bias_v: Optional[Tensor],
|
||||
add_zero_attn: bool,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Optional[Tensor],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Tensor] = None,
|
||||
k_proj_weight: Optional[Tensor] = None,
|
||||
v_proj_weight: Optional[Tensor] = None,
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False
|
||||
) -> Tuple[Tensor, Optional[Tensor]]: ...
|
||||
|
||||
def multi_head_attention_forward(
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Optional[Tensor],
|
||||
in_proj_bias: Optional[Tensor],
|
||||
bias_k: Optional[Tensor],
|
||||
bias_v: Optional[Tensor],
|
||||
add_zero_attn: bool,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Optional[Tensor],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Tensor] = None,
|
||||
k_proj_weight: Optional[Tensor] = None,
|
||||
v_proj_weight: Optional[Tensor] = None,
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]: ...
|
||||
|
||||
${imported_hints}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
from .data_parallel import DataParallel as DataParallel, data_parallel as data_parallel
|
||||
from .data_parallel import data_parallel as data_parallel, DataParallel as DataParallel
|
||||
from .distributed import DistributedDataParallel as DistributedDataParallel
|
||||
from .parallel_apply import parallel_apply as parallel_apply
|
||||
from .replicate import replicate as replicate
|
||||
|
@ -1,5 +1,6 @@
|
||||
from typing import Union, Sequence
|
||||
from ... import device
|
||||
from typing import Sequence, Union
|
||||
|
||||
from torch import device
|
||||
|
||||
_device_t = Union[int, device]
|
||||
_devices_t = Sequence[_device_t]
|
||||
|
@ -1,7 +1,8 @@
|
||||
from typing import Any, Optional
|
||||
from .common_types import _devices_t, _device_t
|
||||
|
||||
from torch import device, Tensor
|
||||
from ..modules import Module
|
||||
from ... import device, Tensor
|
||||
from .common_types import _device_t, _devices_t
|
||||
|
||||
class DataParallel(Module):
|
||||
module: Module = ...
|
||||
@ -10,10 +11,19 @@ class DataParallel(Module):
|
||||
output_device: _device_t = ...
|
||||
src_device_obj: device = ...
|
||||
|
||||
def __init__(self, module: Module, device_ids: Optional[_devices_t] = ..., output_device: Optional[_device_t] = ...,
|
||||
dim: int = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
module: Module,
|
||||
device_ids: Optional[_devices_t] = ...,
|
||||
output_device: Optional[_device_t] = ...,
|
||||
dim: int = ...,
|
||||
) -> None: ...
|
||||
|
||||
|
||||
def data_parallel(module: Module, inputs: Any, device_ids: Optional[_devices_t] = ...,
|
||||
output_device: Optional[_device_t] = ..., dim: int = ...,
|
||||
module_kwargs: Optional[Any] = ...) -> Tensor: ...
|
||||
def data_parallel(
|
||||
module: Module,
|
||||
inputs: Any,
|
||||
device_ids: Optional[_devices_t] = ...,
|
||||
output_device: Optional[_device_t] = ...,
|
||||
dim: int = ...,
|
||||
module_kwargs: Optional[Any] = ...,
|
||||
) -> Tensor: ...
|
||||
|
@ -1,7 +1,11 @@
|
||||
from typing import Any, Optional, Sequence, List
|
||||
from .common_types import _devices_t
|
||||
from typing import Any, List, Optional, Sequence
|
||||
|
||||
from ..modules import Module
|
||||
from .common_types import _devices_t
|
||||
|
||||
|
||||
def parallel_apply(modules: Sequence[Module], inputs: Sequence[Any], kwargs_tup: Optional[Any] = ...,
|
||||
devices: Optional[_devices_t] = ...) -> List[Any]: ...
|
||||
def parallel_apply(
|
||||
modules: Sequence[Module],
|
||||
inputs: Sequence[Any],
|
||||
kwargs_tup: Optional[Any] = ...,
|
||||
devices: Optional[_devices_t] = ...,
|
||||
) -> List[Any]: ...
|
||||
|
@ -1,7 +1,10 @@
|
||||
from typing import List, Union, Sequence, TypeVar
|
||||
from typing import List, Sequence, Union
|
||||
|
||||
from ..modules import Module
|
||||
from .common_types import _devices_t
|
||||
|
||||
|
||||
def replicate(network: Module, devices: Union[_devices_t, Sequence[_devices_t]], detach: bool = ...) -> List[
|
||||
Module]: ...
|
||||
def replicate(
|
||||
network: Module,
|
||||
devices: Union[_devices_t, Sequence[_devices_t]],
|
||||
detach: bool = ...,
|
||||
) -> List[Module]: ...
|
||||
|
@ -1,13 +1,17 @@
|
||||
from typing import Any, Dict, List, Tuple, overload, TypeVar
|
||||
from ... import Tensor
|
||||
from typing import Any, Dict, List, overload, Tuple, TypeVar
|
||||
|
||||
from torch import Tensor
|
||||
from .common_types import _device_t, _devices_t
|
||||
|
||||
|
||||
T = TypeVar('T', Dict, List, Tuple)
|
||||
T = TypeVar("T", Dict, List, Tuple)
|
||||
|
||||
# For some reason, 'scatter' returns a tuple when given a single Tensor input but a list otherwise.
|
||||
@overload
|
||||
def scatter(inputs: Tensor, target_gpus: _devices_t, dim: int = ...) -> Tuple[Tensor, ...]: ...
|
||||
def scatter(
|
||||
inputs: Tensor,
|
||||
target_gpus: _devices_t,
|
||||
dim: int = ...,
|
||||
) -> Tuple[Tensor, ...]: ...
|
||||
|
||||
# flake8 will raise a spurious error here since `torch/__init__.pyi` has not been generated yet
|
||||
# so mypy will interpret `Tensor` as `Any` since it is an import from what it believes to be an
|
||||
@ -16,9 +20,11 @@ def scatter(inputs: Tensor, target_gpus: _devices_t, dim: int = ...) -> Tuple[Te
|
||||
@overload
|
||||
def scatter(inputs: T, target_gpus: _devices_t, dim: int = ...) -> List[T]: ...
|
||||
|
||||
|
||||
# TODO More precise types here.
|
||||
def scatter_kwargs(inputs: Any, kwargs: Any, target_gpus: _devices_t, dim: int = ...) -> Any: ...
|
||||
|
||||
|
||||
def scatter_kwargs(
|
||||
inputs: Any,
|
||||
kwargs: Any,
|
||||
target_gpus: _devices_t,
|
||||
dim: int = ...,
|
||||
) -> Any: ...
|
||||
def gather(outputs: Any, target_device: _device_t, dim: int = ...) -> Any: ...
|
||||
|
@ -1,23 +1,40 @@
|
||||
import torch
|
||||
from .. import Tensor
|
||||
from typing import Tuple, Optional
|
||||
import builtins
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
class Parameter(Tensor):
|
||||
def __init__(self, data: Tensor=..., requires_grad: builtins.bool=...): ...
|
||||
|
||||
...
|
||||
def __init__(
|
||||
self,
|
||||
data: Tensor = ...,
|
||||
requires_grad: builtins.bool = ...,
|
||||
): ...
|
||||
|
||||
def is_lazy(param: Tensor): ...
|
||||
|
||||
class UninitializedParameter(Tensor):
|
||||
def __init__(self, data: Tensor=..., requires_grad: builtins.bool=...): ...
|
||||
|
||||
def materialize(self, shape: Tuple[int, ...], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None): ...
|
||||
...
|
||||
def __init__(
|
||||
self,
|
||||
data: Tensor = ...,
|
||||
requires_grad: builtins.bool = ...,
|
||||
): ...
|
||||
def materialize(
|
||||
self,
|
||||
shape: Tuple[int, ...],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
): ...
|
||||
|
||||
class UninitializedBuffer(Tensor):
|
||||
def __init__(self, data: Tensor=..., requires_grad: builtins.bool=...): ...
|
||||
|
||||
def materialize(self, shape: Tuple[int, ...], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None): ...
|
||||
...
|
||||
def __init__(
|
||||
self,
|
||||
data: Tensor = ...,
|
||||
requires_grad: builtins.bool = ...,
|
||||
): ...
|
||||
def materialize(
|
||||
self,
|
||||
shape: Tuple[int, ...],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
): ...
|
||||
|
@ -1,13 +1,13 @@
|
||||
from typing import (
|
||||
Any,
|
||||
List,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
overload,
|
||||
Sequence,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
Union,
|
||||
NamedTuple,
|
||||
overload,
|
||||
)
|
||||
|
||||
from torch import Tensor
|
||||
@ -21,68 +21,78 @@ class PackedSequence_(NamedTuple):
|
||||
|
||||
def bind(optional: Any, fn: Any): ...
|
||||
|
||||
|
||||
T = TypeVar('T')
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
class PackedSequence(PackedSequence_):
|
||||
def __new__(cls, data: Tensor, batch_sizes: Optional[Tensor] = ..., sorted_indices: Optional[Tensor] = ...,
|
||||
unsorted_indices: Optional[Tensor] = ...) -> PackedSequence: ...
|
||||
|
||||
def __new__(
|
||||
cls,
|
||||
data: Tensor,
|
||||
batch_sizes: Optional[Tensor] = ...,
|
||||
sorted_indices: Optional[Tensor] = ...,
|
||||
unsorted_indices: Optional[Tensor] = ...,
|
||||
) -> PackedSequence: ...
|
||||
def pin_memory(self: T) -> T: ...
|
||||
|
||||
def cuda(self: T, *args: Any, **kwargs: Any) -> T: ...
|
||||
|
||||
def cpu(self: T) -> T: ...
|
||||
|
||||
def double(self: T) -> T: ...
|
||||
|
||||
def float(self: T) -> T: ...
|
||||
|
||||
def half(self: T) -> T: ...
|
||||
|
||||
def long(self: T) -> T: ...
|
||||
|
||||
def int(self: T) -> T: ...
|
||||
|
||||
def short(self: T) -> T: ...
|
||||
|
||||
def char(self: T) -> T: ...
|
||||
|
||||
def byte(self: T) -> T: ...
|
||||
|
||||
@overload
|
||||
def to(self: T, dtype: _dtype, non_blocking: bool = False, copy: bool = False) -> T: ...
|
||||
|
||||
def to(
|
||||
self: T,
|
||||
dtype: _dtype,
|
||||
non_blocking: bool = False,
|
||||
copy: bool = False,
|
||||
) -> T: ...
|
||||
@overload
|
||||
def to(self: T, device: Optional[Union[_device, str]] = None, dtype: Optional[_dtype] = None,
|
||||
non_blocking: bool = False, copy: bool = False) -> T: ...
|
||||
|
||||
def to(
|
||||
self: T,
|
||||
device: Optional[Union[_device, str]] = None,
|
||||
dtype: Optional[_dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
copy: bool = False,
|
||||
) -> T: ...
|
||||
@overload
|
||||
def to(self, other: Tensor, non_blocking: bool = False, copy: bool = False) -> T: ...
|
||||
|
||||
def to(
|
||||
self,
|
||||
other: Tensor,
|
||||
non_blocking: bool = False,
|
||||
copy: bool = False,
|
||||
) -> T: ...
|
||||
@property
|
||||
def is_cuda(self) -> bool: ...
|
||||
|
||||
def is_pinned(self) -> bool: ...
|
||||
|
||||
|
||||
def invert_permutation(permutation: Optional[Tensor]): ...
|
||||
|
||||
|
||||
def pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: bool = ...,
|
||||
enforce_sorted: bool = ...) -> PackedSequence: ...
|
||||
|
||||
|
||||
def pad_packed_sequence(sequence: PackedSequence, batch_first: bool = ..., padding_value: float = ...,
|
||||
total_length: Optional[int] = ...) -> Tuple[Tensor, ...]: ...
|
||||
|
||||
|
||||
def pad_sequence(sequences: List[Tensor], batch_first: bool = False, padding_value: float = ...) -> Tensor: ...
|
||||
|
||||
|
||||
def pack_sequence(sequences: Sequence[Tensor], enforce_sorted: bool = ...) -> PackedSequence: ...
|
||||
|
||||
|
||||
def get_packed_sequence(data: Tensor, batch_sizes: Optional[Tensor], sorted_indices: Optional[Tensor],
|
||||
unsorted_indices: Optional[Tensor]) -> PackedSequence: ...
|
||||
def pack_padded_sequence(
|
||||
input: Tensor,
|
||||
lengths: Tensor,
|
||||
batch_first: bool = ...,
|
||||
enforce_sorted: bool = ...,
|
||||
) -> PackedSequence: ...
|
||||
def pad_packed_sequence(
|
||||
sequence: PackedSequence,
|
||||
batch_first: bool = ...,
|
||||
padding_value: float = ...,
|
||||
total_length: Optional[int] = ...,
|
||||
) -> Tuple[Tensor, ...]: ...
|
||||
def pad_sequence(
|
||||
sequences: List[Tensor],
|
||||
batch_first: bool = False,
|
||||
padding_value: float = ...,
|
||||
) -> Tensor: ...
|
||||
def pack_sequence(
|
||||
sequences: Sequence[Tensor],
|
||||
enforce_sorted: bool = ...,
|
||||
) -> PackedSequence: ...
|
||||
def get_packed_sequence(
|
||||
data: Tensor,
|
||||
batch_sizes: Optional[Tensor],
|
||||
sorted_indices: Optional[Tensor],
|
||||
unsorted_indices: Optional[Tensor],
|
||||
) -> PackedSequence: ...
|
||||
|
@ -1,5 +1,4 @@
|
||||
from . import swa_utils as swa_utils
|
||||
from . import lr_scheduler as lr_scheduler
|
||||
from . import lr_scheduler as lr_scheduler, swa_utils as swa_utils
|
||||
from .adadelta import Adadelta as Adadelta
|
||||
from .adagrad import Adagrad as Adagrad
|
||||
from .adam import Adam as Adam
|
||||
|
@ -1,4 +1,5 @@
|
||||
from functools import partial
|
||||
|
||||
from torch import optim
|
||||
|
||||
Adam = partial(optim.Adam, foreach=True)
|
||||
|
@ -1,5 +1,11 @@
|
||||
from typing import Tuple
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class Adadelta(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., rho: float=..., eps: float=..., weight_decay: float=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
rho: float = ...,
|
||||
eps: float = ...,
|
||||
weight_decay: float = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,12 @@
|
||||
from typing import Tuple
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class Adagrad(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., lr_decay: float=..., weight_decay: float=..., initial_accumulator_value: float=..., eps: float=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
lr_decay: float = ...,
|
||||
weight_decay: float = ...,
|
||||
initial_accumulator_value: float = ...,
|
||||
eps: float = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,20 @@
|
||||
from typing import Tuple, Optional
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class Adam(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., betas: Tuple[float, float]=..., eps: float=..., weight_decay: float=..., amsgrad: bool = ..., *, foreach: Optional[bool] = ..., maximize: bool = ..., capturable: bool = ..., differentiable: bool = ..., fused: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
betas: Tuple[float, float] = ...,
|
||||
eps: float = ...,
|
||||
weight_decay: float = ...,
|
||||
amsgrad: bool = ...,
|
||||
*,
|
||||
foreach: Optional[bool] = ...,
|
||||
maximize: bool = ...,
|
||||
capturable: bool = ...,
|
||||
differentiable: bool = ...,
|
||||
fused: bool = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,13 @@
|
||||
from typing import Tuple
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class Adamax(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., betas: Tuple[float, float]=..., eps: float=..., weight_decay: float=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
betas: Tuple[float, float] = ...,
|
||||
eps: float = ...,
|
||||
weight_decay: float = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,20 @@
|
||||
from typing import Tuple, Optional
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class AdamW(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., betas: Tuple[float, float]=..., eps: float=..., weight_decay: float=..., amsgrad: bool = ..., *, foreach: Optional[bool] = ..., maximize: bool = ..., capturable: bool = ..., differentiable: bool = ..., fused: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
betas: Tuple[float, float] = ...,
|
||||
eps: float = ...,
|
||||
weight_decay: float = ...,
|
||||
amsgrad: bool = ...,
|
||||
*,
|
||||
foreach: Optional[bool] = ...,
|
||||
maximize: bool = ...,
|
||||
capturable: bool = ...,
|
||||
differentiable: bool = ...,
|
||||
fused: bool = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,12 @@
|
||||
from typing import Tuple
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class ASGD(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., lambd: float=..., alpha: float=..., t0: float=..., weight_decay: float=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
lambd: float = ...,
|
||||
alpha: float = ...,
|
||||
t0: float = ...,
|
||||
weight_decay: float = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,16 @@
|
||||
from typing import Tuple, Optional
|
||||
from typing import Optional
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class LBFGS(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., max_iter: int=..., max_eval: Optional[int]=..., tolerance_grad: float=..., tolerance_change: float=..., history_size: int=..., line_search_fn: Optional[str]=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
max_iter: int = ...,
|
||||
max_eval: Optional[int] = ...,
|
||||
tolerance_grad: float = ...,
|
||||
tolerance_change: float = ...,
|
||||
history_size: int = ...,
|
||||
line_search_fn: Optional[str] = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,4 +1,5 @@
|
||||
from typing import Iterable, Any, Optional, Callable, Union, List, Dict
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||
|
||||
from .optimizer import Optimizer
|
||||
|
||||
class LRScheduler:
|
||||
@ -6,60 +7,131 @@ class LRScheduler:
|
||||
base_lrs: List[float] = ...
|
||||
last_epoch: int = ...
|
||||
verbose: bool = ...
|
||||
def __init__(self, optimizer: Optimizer, last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
def state_dict(self) -> Dict[str, Any]: ...
|
||||
def load_state_dict(self, state_dict: Dict[str, Any]) -> None: ...
|
||||
def get_last_lr(self) -> List[float]: ...
|
||||
def get_lr(self) -> float: ...
|
||||
def step(self, epoch: Optional[int] = ...) -> None: ...
|
||||
def print_lr(self, is_verbose: bool, group: Dict[str, Any], lr: float, epoch: Optional[int] = ...) -> None: ...
|
||||
def print_lr(
|
||||
self,
|
||||
is_verbose: bool,
|
||||
group: Dict[str, Any],
|
||||
lr: float,
|
||||
epoch: Optional[int] = ...,
|
||||
) -> None: ...
|
||||
|
||||
class _LRScheduler(LRScheduler):
|
||||
...
|
||||
class _LRScheduler(LRScheduler): ...
|
||||
|
||||
class LambdaLR(LRScheduler):
|
||||
lr_lambdas: List[Callable[[int], float]] = ...
|
||||
def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]],
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class MultiplicativeLR(LRScheduler):
|
||||
lr_lambdas: List[Callable[[int], float]] = ...
|
||||
def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]],
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class StepLR(LRScheduler):
|
||||
step_size: int = ...
|
||||
gamma: float = ...
|
||||
def __init__(self, optimizer: Optimizer, step_size: int, gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
step_size: int,
|
||||
gamma: float = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class MultiStepLR(LRScheduler):
|
||||
milestones: Iterable[int] = ...
|
||||
gamma: float = ...
|
||||
def __init__(self, optimizer: Optimizer, milestones: Iterable[int], gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
milestones: Iterable[int],
|
||||
gamma: float = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class ConstantLR(LRScheduler):
|
||||
factor: float = ...
|
||||
total_iters: int = ...
|
||||
def __init__(self, optimizer: Optimizer, factor: float=..., total_iters: int=..., last_epoch: int=..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
factor: float = ...,
|
||||
total_iters: int = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class LinearLR(LRScheduler):
|
||||
start_factor: float = ...
|
||||
end_factor: float = ...
|
||||
total_iters: int = ...
|
||||
def __init__(self, optimizer: Optimizer, start_factor: float=..., end_factor: float= ..., total_iters: int= ..., last_epoch: int= ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
start_factor: float = ...,
|
||||
end_factor: float = ...,
|
||||
total_iters: int = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class ExponentialLR(LRScheduler):
|
||||
gamma: float = ...
|
||||
def __init__(self, optimizer: Optimizer, gamma: float, last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
gamma: float,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class ChainedScheduler(LRScheduler):
|
||||
def __init__(self, schedulers: List[LRScheduler]) -> None: ...
|
||||
|
||||
class SequentialLR(LRScheduler):
|
||||
def __init__(self, optimizer: Optimizer, schedulers: List[LRScheduler], milestones: List[int], last_epoch: int=..., verbose: bool=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
schedulers: List[LRScheduler],
|
||||
milestones: List[int],
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class CosineAnnealingLR(LRScheduler):
|
||||
T_max: int = ...
|
||||
eta_min: float = ...
|
||||
def __init__(self, optimizer: Optimizer, T_max: int, eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
T_max: int,
|
||||
eta_min: float = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class ReduceLROnPlateau:
|
||||
factor: float = ...
|
||||
@ -77,7 +149,19 @@ class ReduceLROnPlateau:
|
||||
mode_worse: Optional[float] = ...
|
||||
eps: float = ...
|
||||
last_epoch: int = ...
|
||||
def __init__(self, optimizer: Optimizer, mode: str = ..., factor: float = ..., patience: int = ..., threshold: float = ..., threshold_mode: str = ..., cooldown: int = ..., min_lr: Union[List[float], float] = ..., eps: float = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
mode: str = ...,
|
||||
factor: float = ...,
|
||||
patience: int = ...,
|
||||
threshold: float = ...,
|
||||
threshold_mode: str = ...,
|
||||
cooldown: int = ...,
|
||||
min_lr: Union[List[float], float] = ...,
|
||||
eps: float = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
def step(self, metrics: Any, epoch: Optional[int] = ...) -> None: ...
|
||||
@property
|
||||
def in_cooldown(self) -> bool: ...
|
||||
@ -95,7 +179,23 @@ class CyclicLR(LRScheduler):
|
||||
cycle_momentum: bool = ...
|
||||
base_momentums: List[float] = ...
|
||||
max_momentums: List[float] = ...
|
||||
def __init__(self, optimizer: Optimizer, base_lr: Union[float, List[float]], max_lr: Union[float, List[float]], step_size_up: int = ..., step_size_down: Optional[int] = ..., mode: str = ..., gamma: float = ..., scale_fn: Optional[Callable[[float], float]] = ..., scale_mode: str = ..., cycle_momentum: bool = ..., base_momentum: float = ..., max_momentum: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
base_lr: Union[float, List[float]],
|
||||
max_lr: Union[float, List[float]],
|
||||
step_size_up: int = ...,
|
||||
step_size_down: Optional[int] = ...,
|
||||
mode: str = ...,
|
||||
gamma: float = ...,
|
||||
scale_fn: Optional[Callable[[float], float]] = ...,
|
||||
scale_mode: str = ...,
|
||||
cycle_momentum: bool = ...,
|
||||
base_momentum: float = ...,
|
||||
max_momentum: float = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
def scale_fn(self, x: Any) -> float: ...
|
||||
|
||||
class CosineAnnealingWarmRestarts(LRScheduler):
|
||||
@ -104,7 +204,15 @@ class CosineAnnealingWarmRestarts(LRScheduler):
|
||||
T_mult: Optional[int] = ...
|
||||
eta_min: Optional[float] = ...
|
||||
T_cur: Any = ...
|
||||
def __init__(self, optimizer: Optimizer, T_0: int, T_mult: int = ..., eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
T_0: int,
|
||||
T_mult: int = ...,
|
||||
eta_min: float = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
def step(self, epoch: Optional[Any] = ...): ...
|
||||
|
||||
class OneCycleLR(LRScheduler):
|
||||
@ -112,9 +220,33 @@ class OneCycleLR(LRScheduler):
|
||||
anneal_func: Callable[[float, float, float], float] = ...
|
||||
cycle_momentum: bool = ...
|
||||
use_beta1: bool = ...
|
||||
def __init__(self, optimizer: Optimizer, max_lr: Union[float, List[float]], total_steps: int = ..., epochs: int = ..., steps_per_epoch: int = ..., pct_start: float = ..., anneal_strategy: str = ..., cycle_momentum: bool = ..., base_momentum: Union[float, List[float]] = ..., max_momentum: Union[float, List[float]] = ..., div_factor: float = ..., final_div_factor: float = ..., three_phase: bool = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
max_lr: Union[float, List[float]],
|
||||
total_steps: int = ...,
|
||||
epochs: int = ...,
|
||||
steps_per_epoch: int = ...,
|
||||
pct_start: float = ...,
|
||||
anneal_strategy: str = ...,
|
||||
cycle_momentum: bool = ...,
|
||||
base_momentum: Union[float, List[float]] = ...,
|
||||
max_momentum: Union[float, List[float]] = ...,
|
||||
div_factor: float = ...,
|
||||
final_div_factor: float = ...,
|
||||
three_phase: bool = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
||||
class PolynomialLR(LRScheduler):
|
||||
total_iters: int = ...
|
||||
power: float = ...
|
||||
def __init__(self, optimizer: Optimizer, total_iters: int = ..., power: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
total_iters: int = ...,
|
||||
power: float = ...,
|
||||
last_epoch: int = ...,
|
||||
verbose: bool = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,14 @@
|
||||
from typing import Tuple
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class NAdam(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., betas: Tuple[float, float]=..., eps: float=..., weight_decay: float=..., momentum_decay: float=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
betas: Tuple[float, float] = ...,
|
||||
eps: float = ...,
|
||||
weight_decay: float = ...,
|
||||
momentum_decay: float = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,11 +1,11 @@
|
||||
from typing import Iterable, Union, Callable, Optional, List, Dict, Any
|
||||
from .. import Tensor
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||
|
||||
from torch import Tensor
|
||||
from torch.utils.hooks import RemovableHandle
|
||||
|
||||
_params_t = Union[Iterable[Tensor], Iterable[Dict[str, Any]]]
|
||||
|
||||
def register_optimizer_step_pre_hook(hook: Callable[..., None]) -> RemovableHandle: ...
|
||||
|
||||
def register_optimizer_step_post_hook(hook: Callable[..., None]) -> RemovableHandle: ...
|
||||
|
||||
class Optimizer:
|
||||
@ -19,6 +19,6 @@ class Optimizer:
|
||||
def register_step_post_hook(self, hook: Callable[..., None]) -> RemovableHandle: ...
|
||||
def state_dict(self) -> Dict[str, Any]: ...
|
||||
def load_state_dict(self, state_dict: Dict[str, Any]) -> None: ...
|
||||
def zero_grad(self, set_to_none: bool=...) -> None: ...
|
||||
def step(self, closure: Optional[Callable[[], float]]=...) -> Optional[float]: ...
|
||||
def zero_grad(self, set_to_none: bool = ...) -> None: ...
|
||||
def step(self, closure: Optional[Callable[[], float]] = ...) -> Optional[float]: ...
|
||||
def add_param_group(self, param_group: Dict[str, Any]) -> None: ...
|
||||
|
@ -1,5 +1,13 @@
|
||||
from typing import Tuple
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class RAdam(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., betas: Tuple[float, float]=..., eps: float=..., weight_decay: float=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
betas: Tuple[float, float] = ...,
|
||||
eps: float = ...,
|
||||
weight_decay: float = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,13 @@
|
||||
from typing import Tuple
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class RMSprop(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., alpha: float=..., eps: float=..., weight_decay: float=..., momentum: float=..., centered: bool=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
alpha: float = ...,
|
||||
eps: float = ...,
|
||||
weight_decay: float = ...,
|
||||
momentum: float = ...,
|
||||
centered: bool = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,5 +1,12 @@
|
||||
from typing import Tuple
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class Rprop(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., etas: Tuple[float, float]=..., step_sizes: Tuple[float, float]=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
etas: Tuple[float, float] = ...,
|
||||
step_sizes: Tuple[float, float] = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,4 +1,12 @@
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class SGD(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float, momentum: float=..., dampening: float=..., weight_decay:float=..., nesterov:bool=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float,
|
||||
momentum: float = ...,
|
||||
dampening: float = ...,
|
||||
weight_decay: float = ...,
|
||||
nesterov: bool = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,6 +1,12 @@
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
from .optimizer import _params_t, Optimizer
|
||||
|
||||
class SparseAdam(Optimizer):
|
||||
def __init__(self, params: _params_t, lr: float=..., betas: Tuple[float, float]=..., eps: float=...) -> None: ...
|
||||
def __init__(
|
||||
self,
|
||||
params: _params_t,
|
||||
lr: float = ...,
|
||||
betas: Tuple[float, float] = ...,
|
||||
eps: float = ...,
|
||||
) -> None: ...
|
||||
|
@ -1,17 +1,31 @@
|
||||
from .optimizer import Optimizer
|
||||
from ..nn.modules import Module
|
||||
from typing import Any, Callable, Iterable, Union
|
||||
|
||||
from torch import device, Tensor
|
||||
from torch.nn.modules import Module
|
||||
from .lr_scheduler import _LRScheduler
|
||||
from .. import device, Tensor
|
||||
from typing import Iterable, Any, Optional, Callable, Union, List
|
||||
from .optimizer import Optimizer
|
||||
|
||||
class AveragedModel(Module):
|
||||
def __init__(self, model: Module, device: Union[int, device]=...,
|
||||
avg_fn: Callable[[Tensor, Tensor, int], Tensor]=...) -> None:...
|
||||
def __init__(
|
||||
self,
|
||||
model: Module,
|
||||
device: Union[int, device] = ...,
|
||||
avg_fn: Callable[[Tensor, Tensor, int], Tensor] = ...,
|
||||
) -> None: ...
|
||||
def update_parameters(self, model: Module) -> None: ...
|
||||
|
||||
def update_parameters(self, model: Module) -> None:...
|
||||
|
||||
def update_bn(loader: Iterable[Any], model: Module, device: Union[int, device]=...) -> None:...
|
||||
def update_bn(
|
||||
loader: Iterable[Any],
|
||||
model: Module,
|
||||
device: Union[int, device] = ...,
|
||||
) -> None: ...
|
||||
|
||||
class SWALR(_LRScheduler):
|
||||
def __init__(self, optimizer: Optimizer, swa_lr: float, anneal_epochs: int,
|
||||
anneal_strategy: str, last_epoch: int=...) -> None:...
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
swa_lr: float,
|
||||
anneal_epochs: int,
|
||||
anneal_strategy: str,
|
||||
last_epoch: int = ...,
|
||||
) -> None: ...
|
||||
|
@ -3,16 +3,16 @@
|
||||
# Note that, for mypy, .pyi file takes precedent over .py file, such that we must define the interface for other
|
||||
# classes/objects here, even though we are not injecting extra code into them at the moment.
|
||||
|
||||
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
|
||||
from typing import Any, Callable, Dict, Generic, Iterator, Optional, TypeVar
|
||||
|
||||
from torch.utils.data import Dataset, default_collate, IterableDataset
|
||||
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
|
||||
from typing import Any, Callable, Dict, Generic, Iterator, List, Optional, TypeVar, Union
|
||||
from torch.utils.data import Dataset, IterableDataset, default_collate
|
||||
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
|
||||
|
||||
T_co = TypeVar('T_co', covariant=True)
|
||||
T = TypeVar('T')
|
||||
T_co = TypeVar("T_co", covariant=True)
|
||||
T = TypeVar("T")
|
||||
UNTRACABLE_DATAFRAME_PIPES: Any
|
||||
|
||||
|
||||
class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
|
||||
functions: Dict[str, Callable] = ...
|
||||
reduce_ex_hook: Optional[Callable] = ...
|
||||
@ -23,7 +23,11 @@ class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
|
||||
@classmethod
|
||||
def register_function(cls, function_name: Any, function: Any) -> None: ...
|
||||
@classmethod
|
||||
def register_datapipe_as_function(cls, function_name: Any, cls_to_register: Any): ...
|
||||
def register_datapipe_as_function(
|
||||
cls,
|
||||
function_name: Any,
|
||||
cls_to_register: Any,
|
||||
): ...
|
||||
def __getstate__(self): ...
|
||||
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
|
||||
@classmethod
|
||||
@ -32,7 +36,6 @@ class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
|
||||
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
|
||||
${MapDataPipeMethods}
|
||||
|
||||
|
||||
class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
|
||||
functions: Dict[str, Callable] = ...
|
||||
reduce_ex_hook: Optional[Callable] = ...
|
||||
@ -46,7 +49,12 @@ class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
|
||||
@classmethod
|
||||
def register_function(cls, function_name: Any, function: Any) -> None: ...
|
||||
@classmethod
|
||||
def register_datapipe_as_function(cls, function_name: Any, cls_to_register: Any, enable_df_api_tracing: bool = ...): ...
|
||||
def register_datapipe_as_function(
|
||||
cls,
|
||||
function_name: Any,
|
||||
cls_to_register: Any,
|
||||
enable_df_api_tracing: bool = ...,
|
||||
): ...
|
||||
def __getstate__(self): ...
|
||||
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
|
||||
@classmethod
|
||||
@ -55,39 +63,29 @@ class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
|
||||
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
|
||||
${IterDataPipeMethods}
|
||||
|
||||
|
||||
class DFIterDataPipe(IterDataPipe):
|
||||
def _is_dfpipe(self): ...
|
||||
|
||||
|
||||
class _DataPipeSerializationWrapper:
|
||||
def __init__(self, datapipe): ...
|
||||
def __getstate__(self): ...
|
||||
def __setstate__(self, state): ...
|
||||
def __len__(self): ...
|
||||
|
||||
|
||||
class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
|
||||
def __iter__(self): ...
|
||||
|
||||
|
||||
class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
|
||||
def __getitem__(self, idx): ...
|
||||
|
||||
|
||||
class DataChunk(list, Generic[T]):
|
||||
def __init__(self, items):
|
||||
super().__init__(items)
|
||||
self.items = items
|
||||
|
||||
def as_str(self, indent=''):
|
||||
def as_str(self, indent: str = "") -> str:
|
||||
res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
|
||||
return res
|
||||
|
||||
def __iter__(self) -> Iterator[T]:
|
||||
for i in super().__iter__():
|
||||
yield i
|
||||
|
||||
yield from super().__iter__()
|
||||
def raw_iterator(self) -> T: # type: ignore[misc]
|
||||
for i in self.items:
|
||||
yield i
|
||||
yield from self.items
|
||||
|
Reference in New Issue
Block a user