mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Enable modernize-use-default-member-init (#149046)
``modernize-use-default-member-init`` prefers initialisation in class members, that make more ``= default`` constructors possible. Some violations or modernize rules have been fixed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/149046 Approved by: https://github.com/zou3519
This commit is contained in:
@ -52,7 +52,6 @@ modernize-*,
|
|||||||
-modernize-macro-to-enum,
|
-modernize-macro-to-enum,
|
||||||
-modernize-return-braced-init-list,
|
-modernize-return-braced-init-list,
|
||||||
-modernize-use-auto,
|
-modernize-use-auto,
|
||||||
-modernize-use-default-member-init,
|
|
||||||
-modernize-use-using,
|
-modernize-use-using,
|
||||||
-modernize-use-trailing-return-type,
|
-modernize-use-trailing-return-type,
|
||||||
-modernize-use-nodiscard,
|
-modernize-use-nodiscard,
|
||||||
|
@ -116,10 +116,7 @@ public:
|
|||||||
|
|
||||||
DictIterator(const DictIterator& rhs): entryRef_(rhs.entryRef_) {}
|
DictIterator(const DictIterator& rhs): entryRef_(rhs.entryRef_) {}
|
||||||
DictIterator(DictIterator&& rhs) noexcept: entryRef_(std::move(rhs.entryRef_)) {}
|
DictIterator(DictIterator&& rhs) noexcept: entryRef_(std::move(rhs.entryRef_)) {}
|
||||||
DictIterator& operator=(const DictIterator& rhs) {
|
DictIterator& operator=(const DictIterator& rhs) = default;
|
||||||
entryRef_ = rhs.entryRef_;
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
DictIterator& operator=(DictIterator&& rhs) noexcept {
|
DictIterator& operator=(DictIterator&& rhs) noexcept {
|
||||||
entryRef_ = std::move(rhs.entryRef_);
|
entryRef_ = std::move(rhs.entryRef_);
|
||||||
return *this;
|
return *this;
|
||||||
|
@ -225,8 +225,7 @@ struct TORCH_API DispatchKeyExtractor final {
|
|||||||
|
|
||||||
explicit DispatchKeyExtractor(c10::utils::bitset dispatch_arg_indices_reverse)
|
explicit DispatchKeyExtractor(c10::utils::bitset dispatch_arg_indices_reverse)
|
||||||
: dispatch_arg_indices_reverse_(dispatch_arg_indices_reverse),
|
: dispatch_arg_indices_reverse_(dispatch_arg_indices_reverse),
|
||||||
nonFallthroughKeys_(DispatchKeySet::FULL),
|
nonFallthroughKeys_(DispatchKeySet::FULL) {
|
||||||
requiresBitsetPerBackend_(false) {
|
|
||||||
for (const auto i : c10::irange(nonFallthroughKeysPerBackend_.size())) {
|
for (const auto i : c10::irange(nonFallthroughKeysPerBackend_.size())) {
|
||||||
nonFallthroughKeysPerBackend_[i] = DispatchKeySet::FULL;
|
nonFallthroughKeysPerBackend_[i] = DispatchKeySet::FULL;
|
||||||
}
|
}
|
||||||
@ -252,7 +251,7 @@ struct TORCH_API DispatchKeyExtractor final {
|
|||||||
// Flag to tell us if we can use the single set of nonFallthroughKeys_ (fast
|
// Flag to tell us if we can use the single set of nonFallthroughKeys_ (fast
|
||||||
// path), or if we need to fall back to the slower path and check
|
// path), or if we need to fall back to the slower path and check
|
||||||
// nonFallthroughKeysPerBackend_
|
// nonFallthroughKeysPerBackend_
|
||||||
bool requiresBitsetPerBackend_;
|
bool requiresBitsetPerBackend_{false};
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace c10
|
} // namespace c10
|
||||||
|
@ -40,7 +40,7 @@ enum TORCH_CUDA_CPP_API TuningStatus {
|
|||||||
class TORCH_CUDA_CPP_API ResultEntry {
|
class TORCH_CUDA_CPP_API ResultEntry {
|
||||||
public:
|
public:
|
||||||
explicit ResultEntry(std::string key, double time) : key_(std::move(key)), time_(time) {}
|
explicit ResultEntry(std::string key, double time) : key_(std::move(key)), time_(time) {}
|
||||||
explicit ResultEntry(std::string key, double time, const std::string& blas_sig ) : key_(std::move(key)), time_(time), blas_sig_(blas_sig) {}
|
explicit ResultEntry(std::string key, double time, std::string blas_sig ) : key_(std::move(key)), time_(time), blas_sig_(std::move(blas_sig)) {}
|
||||||
bool operator==(const ResultEntry& other) const { return key_ == other.key_; }
|
bool operator==(const ResultEntry& other) const { return key_ == other.key_; }
|
||||||
bool operator!=(const ResultEntry& other) const { return key_ != other.key_; }
|
bool operator!=(const ResultEntry& other) const { return key_ != other.key_; }
|
||||||
operator std::string () { return key_; }
|
operator std::string () { return key_; }
|
||||||
|
@ -2,9 +2,9 @@
|
|||||||
#include <c10/core/Scalar.h>
|
#include <c10/core/Scalar.h>
|
||||||
#include <limits>
|
#include <limits>
|
||||||
|
|
||||||
namespace at {
|
|
||||||
|
|
||||||
namespace native {
|
|
||||||
|
namespace at::native {
|
||||||
|
|
||||||
template <typename scalar_t>
|
template <typename scalar_t>
|
||||||
int64_t compute_arange_size(const Scalar& start, const Scalar& end, const Scalar& step) {
|
int64_t compute_arange_size(const Scalar& start, const Scalar& end, const Scalar& step) {
|
||||||
@ -42,4 +42,4 @@ int64_t compute_arange_size(const Scalar& start, const Scalar& end, const Scalar
|
|||||||
return static_cast<int64_t>(size_d);
|
return static_cast<int64_t>(size_d);
|
||||||
}
|
}
|
||||||
|
|
||||||
}} // namespace at::native
|
} // namespace at::native
|
||||||
|
@ -756,7 +756,7 @@ static DimVector default_alldims(const Tensor& self, at::OptionalIntArrayRef dim
|
|||||||
IntArrayRef dim_unwrapped = *dim_opt;
|
IntArrayRef dim_unwrapped = *dim_opt;
|
||||||
dim.resize(dim_unwrapped.size());
|
dim.resize(dim_unwrapped.size());
|
||||||
for (const auto i : c10::irange(dim.size())) {
|
for (const auto i : c10::irange(dim.size())) {
|
||||||
dim[i] = maybe_wrap_dim(dim_unwrapped[i], self.dim(), /*wrap_scalars=*/false);
|
dim[i] = maybe_wrap_dim(dim_unwrapped[i], self.dim(), /*wrap_scalar=*/false);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
dim.resize(self.dim());
|
dim.resize(self.dim());
|
||||||
|
@ -887,7 +887,7 @@ static inline void mvlgamma_check(const Tensor& self, int64_t p) {
|
|||||||
Tensor mvlgamma(const Tensor& self, int64_t p) {
|
Tensor mvlgamma(const Tensor& self, int64_t p) {
|
||||||
mvlgamma_check(self, p);
|
mvlgamma_check(self, p);
|
||||||
auto dtype = c10::scalarTypeToTypeMeta(self.scalar_type());
|
auto dtype = c10::scalarTypeToTypeMeta(self.scalar_type());
|
||||||
if (at::isIntegralType(self.scalar_type(), /*include_bool=*/true)) {
|
if (at::isIntegralType(self.scalar_type(), /*includeBool=*/true)) {
|
||||||
// int -> float promotion
|
// int -> float promotion
|
||||||
dtype = c10::get_default_dtype();
|
dtype = c10::get_default_dtype();
|
||||||
}
|
}
|
||||||
|
@ -16,7 +16,7 @@
|
|||||||
#include <string>
|
#include <string>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
|
|
||||||
namespace at { namespace native { namespace detail {
|
namespace at::native::detail {
|
||||||
|
|
||||||
// Enum representing the FFT type
|
// Enum representing the FFT type
|
||||||
enum class CuFFTTransformType : int8_t {
|
enum class CuFFTTransformType : int8_t {
|
||||||
@ -58,7 +58,7 @@ struct CuFFTParams
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(std::is_trivial_v<CuFFTParams>, "");
|
static_assert(std::is_trivial_v<CuFFTParams> );
|
||||||
|
|
||||||
// Returns true if the transform type has complex input
|
// Returns true if the transform type has complex input
|
||||||
inline bool cufft_complex_input(CuFFTTransformType type) {
|
inline bool cufft_complex_input(CuFFTTransformType type) {
|
||||||
@ -491,4 +491,4 @@ void cufft_set_plan_cache_max_size_impl(DeviceIndex device_index, int64_t max_si
|
|||||||
int64_t cufft_get_plan_cache_size_impl(DeviceIndex device_index);
|
int64_t cufft_get_plan_cache_size_impl(DeviceIndex device_index);
|
||||||
void cufft_clear_plan_cache_impl(DeviceIndex device_index);
|
void cufft_clear_plan_cache_impl(DeviceIndex device_index);
|
||||||
|
|
||||||
}}} // namespace at::native::detail
|
} // namespace at::native::detail
|
||||||
|
@ -4,8 +4,8 @@
|
|||||||
#include <ATen/cuda/CUDAConfig.h>
|
#include <ATen/cuda/CUDAConfig.h>
|
||||||
#include <ATen/cuda/PinnedMemoryAllocator.h>
|
#include <ATen/cuda/PinnedMemoryAllocator.h>
|
||||||
|
|
||||||
namespace at {
|
|
||||||
namespace native {
|
namespace at::native {
|
||||||
|
|
||||||
static inline int cuda_int_cast(int64_t value, const char* varname) {
|
static inline int cuda_int_cast(int64_t value, const char* varname) {
|
||||||
auto result = static_cast<int>(value);
|
auto result = static_cast<int>(value);
|
||||||
@ -28,5 +28,4 @@ static inline Storage pin_memory(int64_t size) {
|
|||||||
/*resizable=*/false);
|
/*resizable=*/false);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace native
|
} // namespace at::native
|
||||||
} // namespace at
|
|
||||||
|
@ -5,7 +5,7 @@
|
|||||||
|
|
||||||
#include <c10/cuda/CUDAGuard.h>
|
#include <c10/cuda/CUDAGuard.h>
|
||||||
|
|
||||||
namespace at { namespace native {
|
namespace at::native {
|
||||||
|
|
||||||
TORCH_CUDA_CPP_API void resize_bytes_cuda(StorageImpl* storage, size_t size_bytes);
|
TORCH_CUDA_CPP_API void resize_bytes_cuda(StorageImpl* storage, size_t size_bytes);
|
||||||
|
|
||||||
@ -50,4 +50,4 @@ inline TensorImpl* resize_impl_cuda_(
|
|||||||
return self;
|
return self;
|
||||||
}
|
}
|
||||||
|
|
||||||
}}
|
}
|
||||||
|
@ -36,8 +36,8 @@
|
|||||||
// The current pytorch implementation sets gesvdj tolerance to epsilon of a C++ data type to target the best possible precision.
|
// The current pytorch implementation sets gesvdj tolerance to epsilon of a C++ data type to target the best possible precision.
|
||||||
constexpr int cusolver_gesvdj_max_sweeps = 400;
|
constexpr int cusolver_gesvdj_max_sweeps = 400;
|
||||||
|
|
||||||
namespace at {
|
|
||||||
namespace native {
|
namespace at::native {
|
||||||
|
|
||||||
void geqrf_batched_cublas(const Tensor& input, const Tensor& tau);
|
void geqrf_batched_cublas(const Tensor& input, const Tensor& tau);
|
||||||
void triangular_solve_cublas(const Tensor& A, const Tensor& B, bool left, bool upper, TransposeType transpose, bool unitriangular);
|
void triangular_solve_cublas(const Tensor& A, const Tensor& B, bool left, bool upper, TransposeType transpose, bool unitriangular);
|
||||||
@ -90,4 +90,4 @@ C10_EXPORT void registerLinalgDispatch(const LinalgDispatch&);
|
|||||||
}} // namespace cuda::detail
|
}} // namespace cuda::detail
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
}} // namespace at::native
|
} // namespace at::native
|
||||||
|
@ -6,9 +6,8 @@
|
|||||||
#include <ATen/cudnn/cudnn-wrapper.h>
|
#include <ATen/cudnn/cudnn-wrapper.h>
|
||||||
|
|
||||||
// Declares utilities used by RNN.cpp and also needed by external consumers
|
// Declares utilities used by RNN.cpp and also needed by external consumers
|
||||||
namespace at {
|
|
||||||
namespace native {
|
namespace at::native::cudnn_rnn {
|
||||||
namespace cudnn_rnn {
|
|
||||||
|
|
||||||
TORCH_CUDA_CPP_API std::tuple<Tensor, std::vector<Tensor>>
|
TORCH_CUDA_CPP_API std::tuple<Tensor, std::vector<Tensor>>
|
||||||
copy_weights_to_flat_buf_views(
|
copy_weights_to_flat_buf_views(
|
||||||
@ -27,6 +26,4 @@ copy_weights_to_flat_buf_views(
|
|||||||
bool allow_type_change = false,
|
bool allow_type_change = false,
|
||||||
bool include_bias = true);
|
bool include_bias = true);
|
||||||
|
|
||||||
} // namespace cudnn_rnn
|
} // namespace at::native::cudnn_rnn
|
||||||
} // namespace native
|
|
||||||
} // namespace at
|
|
||||||
|
@ -20,7 +20,7 @@
|
|||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
namespace at { namespace native {
|
namespace at::native {
|
||||||
|
|
||||||
// Mapping ScalarType to ideep tensor data_type
|
// Mapping ScalarType to ideep tensor data_type
|
||||||
TORCH_API ideep::tensor::data_type get_mkldnn_dtype(ScalarType type);
|
TORCH_API ideep::tensor::data_type get_mkldnn_dtype(ScalarType type);
|
||||||
@ -62,6 +62,6 @@ TORCH_API ideep::tensor itensor_from_tensor(const Tensor& tensor, bool from_cons
|
|||||||
// Set MKLDNN verbose level
|
// Set MKLDNN verbose level
|
||||||
TORCH_API int set_verbose(int level);
|
TORCH_API int set_verbose(int level);
|
||||||
|
|
||||||
}}
|
}
|
||||||
|
|
||||||
#endif // AT_MKLDNN_ENABLED
|
#endif // AT_MKLDNN_ENABLED
|
||||||
|
@ -131,7 +131,7 @@ struct PostOpParam {
|
|||||||
|
|
||||||
class Attr {
|
class Attr {
|
||||||
public:
|
public:
|
||||||
Attr() : q_scale_(1.f), q_zero_point_(0) {}
|
Attr() : q_scale_(1.f) {}
|
||||||
Attr(float q_scale, int64_t zp = 0) : q_scale_(q_scale), q_zero_point_(zp) {}
|
Attr(float q_scale, int64_t zp = 0) : q_scale_(q_scale), q_zero_point_(zp) {}
|
||||||
|
|
||||||
/***** eltwise *****/
|
/***** eltwise *****/
|
||||||
|
@ -51,8 +51,8 @@ struct TORCH_API QTensorImpl : public c10::TensorImpl {
|
|||||||
auto impl = c10::make_intrusive<QTensorImpl>(
|
auto impl = c10::make_intrusive<QTensorImpl>(
|
||||||
Storage(storage()), key_set(), data_type_, quantizer_);
|
Storage(storage()), key_set(), data_type_, quantizer_);
|
||||||
copy_tensor_metadata(
|
copy_tensor_metadata(
|
||||||
/*src_impl=*/this,
|
/*src_q_impl=*/this,
|
||||||
/*dest_impl=*/impl.get(),
|
/*dest_q_impl=*/impl.get(),
|
||||||
/*version_counter=*/version_counter,
|
/*version_counter=*/version_counter,
|
||||||
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
||||||
impl->refresh_numel();
|
impl->refresh_numel();
|
||||||
@ -72,8 +72,8 @@ struct TORCH_API QTensorImpl : public c10::TensorImpl {
|
|||||||
auto impl = c10::make_intrusive<QTensorImpl>(
|
auto impl = c10::make_intrusive<QTensorImpl>(
|
||||||
Storage(storage()), key_set(), data_type_, quantizer_);
|
Storage(storage()), key_set(), data_type_, quantizer_);
|
||||||
copy_tensor_metadata(
|
copy_tensor_metadata(
|
||||||
/*src_impl=*/this,
|
/*src_q_impl=*/this,
|
||||||
/*dest_impl=*/impl.get(),
|
/*dest_q_impl=*/impl.get(),
|
||||||
/*version_counter=*/std::move(version_counter),
|
/*version_counter=*/std::move(version_counter),
|
||||||
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
||||||
impl->refresh_numel();
|
impl->refresh_numel();
|
||||||
@ -91,8 +91,8 @@ struct TORCH_API QTensorImpl : public c10::TensorImpl {
|
|||||||
AT_ASSERT(has_compatible_shallow_copy_type(impl->key_set()));
|
AT_ASSERT(has_compatible_shallow_copy_type(impl->key_set()));
|
||||||
auto q_impl = static_cast<const QTensorImpl*>(impl.get());
|
auto q_impl = static_cast<const QTensorImpl*>(impl.get());
|
||||||
copy_tensor_metadata(
|
copy_tensor_metadata(
|
||||||
/*src_impl=*/q_impl,
|
/*src_q_impl=*/q_impl,
|
||||||
/*dest_impl=*/this,
|
/*dest_q_impl=*/this,
|
||||||
/*version_counter=*/version_counter(),
|
/*version_counter=*/version_counter(),
|
||||||
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
|
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
|
||||||
refresh_numel();
|
refresh_numel();
|
||||||
|
@ -86,7 +86,7 @@ struct WelfordHelper {
|
|||||||
std::vector<Welford<T>> welford_stk;
|
std::vector<Welford<T>> welford_stk;
|
||||||
uint64_t depth; // depth of welford_stk.
|
uint64_t depth; // depth of welford_stk.
|
||||||
uint64_t num_chunks; // number of chunks stored in welford_stk.
|
uint64_t num_chunks; // number of chunks stored in welford_stk.
|
||||||
WelfordHelper() {}
|
WelfordHelper() = default;
|
||||||
WelfordHelper(uint64_t N) {
|
WelfordHelper(uint64_t N) {
|
||||||
uint64_t m = (N + kChunkSize - 1) / kChunkSize; //div up
|
uint64_t m = (N + kChunkSize - 1) / kChunkSize; //div up
|
||||||
depth = m > 0 ? ceil(log2(m)) : 0;
|
depth = m > 0 ? ceil(log2(m)) : 0;
|
||||||
|
@ -1152,16 +1152,13 @@ std::vector<std::shared_ptr<Result>> PythonTracer::getEvents(
|
|||||||
// Assuming python_tracer::PythonMemoryTracerBase is defined elsewhere
|
// Assuming python_tracer::PythonMemoryTracerBase is defined elsewhere
|
||||||
class PythonMemoryTracer final : public python_tracer::PythonMemoryTracerBase {
|
class PythonMemoryTracer final : public python_tracer::PythonMemoryTracerBase {
|
||||||
public:
|
public:
|
||||||
explicit PythonMemoryTracer();
|
explicit PythonMemoryTracer() = default;
|
||||||
~PythonMemoryTracer() override;
|
~PythonMemoryTracer() override = default;
|
||||||
void start() override;
|
void start() override;
|
||||||
void stop() override;
|
void stop() override;
|
||||||
void export_memory_history(const std::string path) override;
|
void export_memory_history(const std::string path) override;
|
||||||
};
|
};
|
||||||
|
|
||||||
PythonMemoryTracer::PythonMemoryTracer() {}
|
|
||||||
PythonMemoryTracer::~PythonMemoryTracer() {}
|
|
||||||
|
|
||||||
static void toggle_memory_tracing(bool enable) {
|
static void toggle_memory_tracing(bool enable) {
|
||||||
PyGILState_STATE gil_state = PyGILState_Ensure();
|
PyGILState_STATE gil_state = PyGILState_Ensure();
|
||||||
THPObjectPtr torch_cuda_memory_module(
|
THPObjectPtr torch_cuda_memory_module(
|
||||||
@ -1182,9 +1179,9 @@ static void toggle_memory_tracing(bool enable) {
|
|||||||
PyTuple_SetItem(args, 3, THPUtils_packInt64(100000)); // max_entries
|
PyTuple_SetItem(args, 3, THPUtils_packInt64(100000)); // max_entries
|
||||||
PyTuple_SetItem(args, 4, Py_None); // device (None)
|
PyTuple_SetItem(args, 4, Py_None); // device (None)
|
||||||
PyTuple_SetItem(args, 5, PyBool_FromLong(0)); // clear_history (False)
|
PyTuple_SetItem(args, 5, PyBool_FromLong(0)); // clear_history (False)
|
||||||
PyObject* result = PyObject_Call(snapshot_func.get(), args, NULL);
|
PyObject* result = PyObject_Call(snapshot_func.get(), args, nullptr);
|
||||||
Py_DECREF(args);
|
Py_DECREF(args);
|
||||||
if (result == NULL) {
|
if (result == nullptr) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
PyGILState_Release(gil_state);
|
PyGILState_Release(gil_state);
|
||||||
@ -1209,9 +1206,9 @@ void PythonMemoryTracer::export_memory_history(const std::string path) {
|
|||||||
PyObject* py_filename = PyUnicode_FromString(path.c_str());
|
PyObject* py_filename = PyUnicode_FromString(path.c_str());
|
||||||
// Call the function with arguments (e.g., a file path)
|
// Call the function with arguments (e.g., a file path)
|
||||||
PyObject* args = PyTuple_Pack(1, py_filename);
|
PyObject* args = PyTuple_Pack(1, py_filename);
|
||||||
PyObject* result = PyObject_Call(snapshot_func.get(), args, NULL);
|
PyObject* result = PyObject_Call(snapshot_func.get(), args, nullptr);
|
||||||
Py_DECREF(args);
|
Py_DECREF(args);
|
||||||
if (result == NULL) {
|
if (result == nullptr) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
PyGILState_Release(gil_state);
|
PyGILState_Release(gil_state);
|
||||||
|
@ -31,7 +31,7 @@ dnnl::engine& Engine::getEngine() {
|
|||||||
static dnnl::graph::allocator alloc{
|
static dnnl::graph::allocator alloc{
|
||||||
pytorch_default_allocator, pytorch_default_deallocator};
|
pytorch_default_allocator, pytorch_default_deallocator};
|
||||||
static dnnl::engine cpu_engine = dnnl::graph::make_engine_with_allocator(
|
static dnnl::engine cpu_engine = dnnl::graph::make_engine_with_allocator(
|
||||||
dnnl::engine::kind::cpu, /* device_id = */ 0, alloc);
|
dnnl::engine::kind::cpu, /* index = */ 0, alloc);
|
||||||
return cpu_engine;
|
return cpu_engine;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -18,9 +18,7 @@
|
|||||||
TORCH_DECLARE_bool(torch_jit_enable_expanded_stacks);
|
TORCH_DECLARE_bool(torch_jit_enable_expanded_stacks);
|
||||||
TORCH_DECLARE_bool(torch_jit_expanded_stacks_mangled);
|
TORCH_DECLARE_bool(torch_jit_expanded_stacks_mangled);
|
||||||
|
|
||||||
namespace torch::jit {
|
namespace torch::jit::interpreter {
|
||||||
|
|
||||||
namespace interpreter {
|
|
||||||
|
|
||||||
template <class Ttarget, class Tsource>
|
template <class Ttarget, class Tsource>
|
||||||
Ttarget safe_narrow_cast(Tsource v) {
|
Ttarget safe_narrow_cast(Tsource v) {
|
||||||
@ -64,7 +62,7 @@ struct NodeSourceInfo {
|
|||||||
const char* func_name_{nullptr};
|
const char* func_name_{nullptr};
|
||||||
const char* file_name_{nullptr};
|
const char* file_name_{nullptr};
|
||||||
size_t line_{0};
|
size_t line_{0};
|
||||||
NodeSourceInfo() {}
|
NodeSourceInfo() = default;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct CodeImpl {
|
struct CodeImpl {
|
||||||
@ -1060,5 +1058,4 @@ struct MobileCodeImpl : CodeImpl {
|
|||||||
bool emit_promoted_ops_;
|
bool emit_promoted_ops_;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace interpreter
|
} // namespace torch::jit::interpreter
|
||||||
} // namespace torch::jit
|
|
||||||
|
@ -17,12 +17,12 @@
|
|||||||
class Socket {
|
class Socket {
|
||||||
public:
|
public:
|
||||||
int socket_fd;
|
int socket_fd;
|
||||||
|
Socket(const Socket& other) = delete;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
Socket() {
|
Socket() {
|
||||||
SYSCHECK_ERR_RETURN_NEG1(socket_fd = socket(AF_UNIX, SOCK_STREAM, 0));
|
SYSCHECK_ERR_RETURN_NEG1(socket_fd = socket(AF_UNIX, SOCK_STREAM, 0));
|
||||||
}
|
}
|
||||||
Socket(const Socket& other) = delete;
|
|
||||||
Socket(Socket&& other) noexcept : socket_fd(other.socket_fd) {
|
Socket(Socket&& other) noexcept : socket_fd(other.socket_fd) {
|
||||||
other.socket_fd = -1;
|
other.socket_fd = -1;
|
||||||
};
|
};
|
||||||
@ -122,7 +122,7 @@ class ManagerServerSocket : public Socket {
|
|||||||
SYSCHECK_ERR_RETURN_NEG1(unlink(socket_path.c_str()));
|
SYSCHECK_ERR_RETURN_NEG1(unlink(socket_path.c_str()));
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual ~ManagerServerSocket() {
|
~ManagerServerSocket() override {
|
||||||
unlink(socket_path.c_str());
|
unlink(socket_path.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user