mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Make sympify'ing SymInt/etc produce their sympy expression (#130166)
There is one huge problem this fixes: today, sympify(symint) produces a float(!!) because Sympy attempts to see if you can coerce the symint to float in sympify and of course this works on SymInt. However, this also has another nontrivial effect: anywhere in Inductor where sympy expressions are passed around, it is also valid to pass around a SymInt now. I'm ambivalent about this: it's currently a mistake to be passing around a SymInt when a sympy expression is expected. But maybe this is fine? Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/130166 Approved by: https://github.com/yf225
This commit is contained in:
committed by
PyTorch MergeBot
parent
acd03ca2d9
commit
10c831567b
@ -260,6 +260,15 @@ class TestPySymInt(TestCase):
|
||||
a = create_symint(shape_env, 2)
|
||||
self.assertTrue(5 * a == 5 * 2)
|
||||
|
||||
def test_sympify_symint(self):
|
||||
shape_env = ShapeEnv()
|
||||
a = create_symint(shape_env, 2)
|
||||
self.assertIs(sympy.sympify(a), a.node.expr)
|
||||
b = create_symfloat(shape_env, 3.0)
|
||||
self.assertIs(sympy.sympify(b), b.node.expr)
|
||||
c = create_symbool(shape_env, True)
|
||||
self.assertIs(sympy.sympify(c), c.node.expr)
|
||||
|
||||
def test_roundtrip(self):
|
||||
shape_env = ShapeEnv()
|
||||
x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env)
|
||||
|
@ -507,6 +507,9 @@ class SymInt:
|
||||
def __repr__(self):
|
||||
return str(self.node)
|
||||
|
||||
def _sympy_(self):
|
||||
return self.node.expr
|
||||
|
||||
def __hash__(self) -> builtins.int:
|
||||
if self.node.is_nested_int():
|
||||
return hash(self.node.nested_int())
|
||||
@ -615,6 +618,9 @@ class SymFloat:
|
||||
def __repr__(self):
|
||||
return self.node.str()
|
||||
|
||||
def _sympy_(self):
|
||||
return self.node.expr
|
||||
|
||||
def __hash__(self):
|
||||
if self.node.is_constant():
|
||||
return hash(self.node.float_())
|
||||
@ -680,6 +686,9 @@ class SymBool:
|
||||
def __repr__(self):
|
||||
return str(self.node)
|
||||
|
||||
def _sympy_(self):
|
||||
return self.node.expr
|
||||
|
||||
def __hash__(self):
|
||||
if self.node.is_constant():
|
||||
return hash(self.node.bool_())
|
||||
|
@ -281,9 +281,7 @@ def convert_shape_to_inductor(
|
||||
trivial. But for symbolic tensors, we need to map from SymIntNode into
|
||||
sympy.Expr.
|
||||
"""
|
||||
return [
|
||||
i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst
|
||||
]
|
||||
return [sympy.sympify(i) for i in lst]
|
||||
|
||||
|
||||
def convert_shape_to_symint(
|
||||
|
Reference in New Issue
Block a user