[torchfuzz] add layout operators (#164210)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164210
Approved by: https://github.com/pianpwk
ghstack dependencies: #164034, #164209, #164211
This commit is contained in:
bobrenjc93
2025-09-30 14:02:58 -07:00
committed by PyTorch MergeBot
parent 1f3995cdc8
commit 10a005e87f
4 changed files with 435 additions and 2 deletions

View File

@ -115,6 +115,9 @@ class DefaultFuzzTemplate(FuzzTemplate):
"torch.sub",
"torch.mul",
"torch.div",
"torch.Tensor.view",
"torch.reshape",
"torch.flattentorch.squeezetorch.unsqueeze",
],
check=EagerVsFullGraphDynamicCompileCheck(),
)

View File

@ -4,6 +4,13 @@ from torchfuzz.operators.arg import ArgOperator
from torchfuzz.operators.base import Operator
from torchfuzz.operators.constant import ConstantOperator
from torchfuzz.operators.item import ItemOperator
from torchfuzz.operators.layout import (
FlattenOperator,
ReshapeOperator,
SqueezeOperator,
UnsqueezeOperator,
ViewOperator,
)
from torchfuzz.operators.registry import get_operator, list_operators, register_operator
from torchfuzz.operators.scalar_pointwise import (
ScalarAddOperator,
@ -36,6 +43,11 @@ __all__ = [
"ItemOperator",
"ConstantOperator",
"ArgOperator",
"ViewOperator",
"ReshapeOperator",
"FlattenOperator",
"SqueezeOperator",
"UnsqueezeOperator",
"get_operator",
"register_operator",
"list_operators",

View File

@ -0,0 +1,402 @@
"""Tensor layout operator implementations."""
import random
from typing import Optional
from torchfuzz.operators.base import Operator
from torchfuzz.tensor_fuzzer import fuzz_tensor_size, Spec, TensorSpec
class LayoutOperatorBase(Operator):
"""Base class for tensor layout operations."""
def can_produce(self, output_spec: Spec) -> bool:
"""All layout operations can only produce tensor outputs."""
return isinstance(output_spec, TensorSpec)
class ViewOperator(LayoutOperatorBase):
"""Operator for tensor.view() operation."""
def __init__(self):
"""Initialize ViewOperator."""
super().__init__("view")
@property
def torch_op_name(self) -> Optional[str]:
"""Return the torch operation name."""
return "torch.Tensor.view"
def can_produce(self, output_spec: Spec) -> bool:
"""ViewOperator can produce tensor outputs but not scalars due to element count constraints."""
if not isinstance(output_spec, TensorSpec):
return False
# Don't produce scalars since we can't guarantee input has exactly 1 element
return len(output_spec.size) > 0
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
"""Generate input spec for view operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("ViewOperator can only produce TensorSpec outputs")
# Calculate total number of elements in output
output_numel = 1
for dim in output_spec.size:
output_numel *= dim
# Generate a compatible input shape with exactly the same number of elements
input_size = fuzz_tensor_size()
# Always ensure exact element count match
if output_numel == 0:
# For zero-sized output, create zero-sized input
input_size = tuple(list(input_size)[:-1] + [0])
else:
# Calculate input shape that gives exactly output_numel elements
# Try to use the fuzzed shape structure but adjust to match element count
if len(input_size) > 1:
# Keep all dims except last, adjust last to make total = output_numel
prefix_numel = 1
for dim in input_size[:-1]:
prefix_numel *= dim
if prefix_numel > 0 and output_numel % prefix_numel == 0:
last_dim = output_numel // prefix_numel
input_size = tuple(list(input_size)[:-1] + [last_dim])
else:
# Fallback: create a simple shape with exact element count
input_size = (output_numel,)
else:
# For single-dim input, just use the exact element count
input_size = (output_numel,)
# Create input tensor spec with contiguous stride for view compatibility
# .view() requires compatible memory layout, so use contiguous stride
input_stride = tuple()
if input_size:
# Calculate contiguous stride
stride = [1]
for i in range(len(input_size) - 1, 0, -1):
stride.insert(0, stride[0] * input_size[i])
input_stride = tuple(stride)
return [
TensorSpec(size=input_size, stride=input_stride, dtype=output_spec.dtype)
]
def codegen(
self, output_name: str, input_names: list[str], output_spec: Spec
) -> str:
"""Generate code for view operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("ViewOperator can only produce TensorSpec outputs")
shape_str = str(list(output_spec.size))
# Ensure tensor is contiguous before view to avoid stride compatibility issues
return f"{output_name} = {input_names[0]}.contiguous().view({shape_str})"
class ReshapeOperator(LayoutOperatorBase):
"""Operator for torch.reshape() operation."""
def __init__(self):
"""Initialize ReshapeOperator."""
super().__init__("reshape")
@property
def torch_op_name(self) -> Optional[str]:
"""Return the torch operation name."""
return "torch.reshape"
def can_produce(self, output_spec: Spec) -> bool:
"""ReshapeOperator can produce tensor outputs but not scalars due to element count constraints."""
if not isinstance(output_spec, TensorSpec):
return False
# Don't produce scalars since we can't guarantee input has exactly 1 element
return len(output_spec.size) > 0
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
"""Generate input spec for reshape operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("ReshapeOperator can only produce TensorSpec outputs")
# Calculate total number of elements in output
output_numel = 1
for dim in output_spec.size:
output_numel *= dim
# Generate a compatible input shape with exactly the same number of elements
input_size = fuzz_tensor_size()
# Always ensure exact element count match
if output_numel == 0:
# For zero-sized output, create zero-sized input
input_size = tuple(list(input_size)[:-1] + [0])
else:
# Calculate input shape that gives exactly output_numel elements
# Try to use the fuzzed shape structure but adjust to match element count
if len(input_size) > 1:
# Keep all dims except last, adjust last to make total = output_numel
prefix_numel = 1
for dim in input_size[:-1]:
prefix_numel *= dim
if prefix_numel > 0 and output_numel % prefix_numel == 0:
last_dim = output_numel // prefix_numel
input_size = tuple(list(input_size)[:-1] + [last_dim])
else:
# Fallback: create a simple shape with exact element count
input_size = (output_numel,)
else:
# For single-dim input, just use the exact element count
input_size = (output_numel,)
# Create input tensor spec with compatible stride
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
input_stride = fuzz_valid_stride(input_size)
return [
TensorSpec(size=input_size, stride=input_stride, dtype=output_spec.dtype)
]
def codegen(
self, output_name: str, input_names: list[str], output_spec: Spec
) -> str:
"""Generate code for reshape operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("ReshapeOperator can only produce TensorSpec outputs")
shape_str = str(list(output_spec.size))
return f"{output_name} = torch.reshape({input_names[0]}, {shape_str})"
class FlattenOperator(LayoutOperatorBase):
"""Operator for torch.flatten() operation."""
def __init__(self):
"""Initialize FlattenOperator."""
super().__init__("flatten")
@property
def torch_op_name(self) -> Optional[str]:
"""Return the torch operation name."""
return "torch.flatten"
def can_produce(self, output_spec: Spec) -> bool:
"""Flatten can only produce 1D tensors when using torch.flatten() without start_dim."""
if not isinstance(output_spec, TensorSpec):
return False
# Since we always use torch.flatten() without start_dim, we can only produce 1D tensors
return len(output_spec.size) == 1
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
"""Generate input spec for flatten operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("FlattenOperator can only produce TensorSpec outputs")
# Calculate total number of elements in output
output_numel = 1
for dim in output_spec.size:
output_numel *= dim
# Generate a multi-dimensional input that can be flattened
if len(output_spec.size) == 1:
# For 1D output, generate any multi-dimensional input
input_size = fuzz_tensor_size()
# Ensure input has multiple dimensions
if len(input_size) < 2:
input_size = (2, 2) # Default multi-dim shape
else:
# For 2D output, generate input with more dimensions
input_size = fuzz_tensor_size()
if len(input_size) < 3:
input_size = (2, 2, 2) # Default 3D shape
# Adjust input size to match output element count
input_numel = 1
for dim in input_size:
input_numel *= dim
if input_numel != output_numel:
# Handle zero-sized tensors specially
if output_numel == 0:
# For zero-sized output, create zero-sized input
input_size = tuple(list(input_size)[:-1] + [0])
elif len(input_size) > 0 and output_numel > 0:
# Calculate input shape that gives exactly output_numel elements
prefix_numel = 1
for dim in input_size[:-1]:
prefix_numel *= dim
if prefix_numel > 0:
last_dim = output_numel // prefix_numel
# Ensure we get exactly output_numel elements
if last_dim * prefix_numel == output_numel:
input_size = tuple(list(input_size)[:-1] + [last_dim])
else:
# Fallback: create a simple shape with exact element count
input_size = (output_numel,)
else:
input_size = (output_numel,)
# Create input tensor spec
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
input_stride = fuzz_valid_stride(tuple(input_size))
return [
TensorSpec(
size=tuple(input_size), stride=input_stride, dtype=output_spec.dtype
)
]
def codegen(
self, output_name: str, input_names: list[str], output_spec: Spec
) -> str:
"""Generate code for flatten operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("FlattenOperator can only produce TensorSpec outputs")
# Always flatten all dimensions to avoid shape calculation errors
# This ensures the output matches the expected output_spec shape
return f"{output_name} = torch.flatten({input_names[0]})"
class SqueezeOperator(LayoutOperatorBase):
"""Operator for torch.squeeze() operation."""
def __init__(self):
"""Initialize SqueezeOperator."""
super().__init__("squeeze")
@property
def torch_op_name(self) -> Optional[str]:
"""Return the torch operation name."""
return "torch.squeeze"
def can_produce(self, output_spec: Spec) -> bool:
"""SqueezeOperator can only produce tensors WITHOUT singleton dimensions."""
if not isinstance(output_spec, TensorSpec):
return False
# Don't produce outputs with singleton dimensions since squeeze() removes ALL of them
return 1 not in output_spec.size
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
"""Generate input spec for squeeze operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("SqueezeOperator can only produce TensorSpec outputs")
# Add exactly one singleton dimension to the output shape to create input
input_size = list(output_spec.size)
# Insert exactly one singleton dimension at a random position
pos = random.randint(0, len(input_size))
input_size.insert(pos, 1)
# Create input tensor spec
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
input_stride = fuzz_valid_stride(tuple(input_size))
return [
TensorSpec(
size=tuple(input_size), stride=input_stride, dtype=output_spec.dtype
)
]
def codegen(
self, output_name: str, input_names: list[str], output_spec: Spec
) -> str:
"""Generate code for squeeze operation."""
# Always use squeeze() without dim specification to be safe
# Since we control input generation to add exactly one singleton dimension,
# and we preserve existing singleton dimensions in the output,
# this should work correctly
return f"{output_name} = torch.squeeze({input_names[0]})"
class UnsqueezeOperator(LayoutOperatorBase):
"""Operator for torch.unsqueeze() operation."""
def __init__(self):
"""Initialize UnsqueezeOperator."""
super().__init__("unsqueeze")
@property
def torch_op_name(self) -> Optional[str]:
"""Return the torch operation name."""
return "torch.unsqueeze"
def can_produce(self, output_spec: Spec) -> bool:
"""Unsqueeze produces tensors with at least one singleton dimension."""
if not isinstance(output_spec, TensorSpec):
return False
# Check if there's at least one singleton dimension
return 1 in output_spec.size
def fuzz_inputs_specs(self, output_spec: Spec) -> list[Spec]:
"""Generate input spec for unsqueeze operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("UnsqueezeOperator can only produce TensorSpec outputs")
# For unsqueeze: output = input.shape[:dim] + (1,) + input.shape[dim:]
# So to get input from output, we need to remove exactly one singleton dimension
# Find a singleton dimension to remove (prefer last one for consistency)
input_size = list(output_spec.size)
singleton_idx = None
for i in range(len(input_size) - 1, -1, -1):
if input_size[i] == 1:
singleton_idx = i
break
if singleton_idx is not None:
# Remove the singleton dimension to create input shape
input_size.pop(singleton_idx)
else:
# This shouldn't happen given our can_produce constraint
raise ValueError(
"UnsqueezeOperator requires output to have at least one singleton dimension"
)
# Handle empty input (scalar case)
if not input_size:
input_size = tuple() # Scalar tensor
else:
input_size = tuple(input_size)
# Create input tensor spec
from torchfuzz.tensor_fuzzer import fuzz_valid_stride
if input_size:
input_stride = fuzz_valid_stride(input_size)
else:
input_stride = tuple() # Scalar has empty stride
return [
TensorSpec(size=input_size, stride=input_stride, dtype=output_spec.dtype)
]
def codegen(
self, output_name: str, input_names: list[str], output_spec: Spec
) -> str:
"""Generate code for unsqueeze operation."""
if not isinstance(output_spec, TensorSpec):
raise ValueError("UnsqueezeOperator can only produce TensorSpec outputs")
# Find the last singleton dimension position (matching fuzz_inputs_specs logic)
# This should be the same singleton dimension that we removed in fuzz_inputs_specs
last_singleton_idx = None
for i in range(len(output_spec.size) - 1, -1, -1):
if output_spec.size[i] == 1:
last_singleton_idx = i
break
if last_singleton_idx is not None:
dim = last_singleton_idx
else:
# Fallback: add at the end (shouldn't happen given our can_produce constraint)
dim = len(output_spec.size) - 1
return f"{output_name} = torch.unsqueeze({input_names[0]}, dim={dim})"

View File

@ -6,6 +6,13 @@ from torchfuzz.operators.arg import ArgOperator
from torchfuzz.operators.base import Operator
from torchfuzz.operators.constant import ConstantOperator
from torchfuzz.operators.item import ItemOperator
from torchfuzz.operators.layout import (
FlattenOperator,
ReshapeOperator,
SqueezeOperator,
UnsqueezeOperator,
ViewOperator,
)
from torchfuzz.operators.masked_select import MaskedSelectOperator
from torchfuzz.operators.nonzero import NonzeroOperator
from torchfuzz.operators.scalar_pointwise import (
@ -45,14 +52,23 @@ class OperatorRegistry:
self.register(ScalarSubOperator())
self.register(ScalarDivOperator())
self.register(ItemOperator())
# Leaf Input operators
self.register(ConstantOperator())
self.register(ArgOperator())
# Data-dependent operators
# # Data-dependent operators
self.register(NonzeroOperator())
self.register(MaskedSelectOperator())
self.register(ItemOperator())
self.register(UniqueOperator())
# Tensor layout operators
self.register(ViewOperator())
self.register(ReshapeOperator())
self.register(FlattenOperator())
self.register(SqueezeOperator())
self.register(UnsqueezeOperator())
def register(self, operator: Operator):
"""Register an operator in the registry."""
self._operators[operator.name] = operator