feature: adding the ability to restore shapes after loading a traced model (#90744)

Adds the ability to store inputs used in tracing models when calling torch.jit.save and restore the input shapes using torch.jit.load if the appropriate variables are set.

Fixes [89185](https://github.com/pytorch/pytorch/issues/89185)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90744
Approved by: https://github.com/davidberard98
This commit is contained in:
Maxwell Nuyens
2023-02-10 17:12:52 +00:00
committed by PyTorch MergeBot
parent c7c7238976
commit 0d0ebcdfe5
14 changed files with 358 additions and 119 deletions

View File

@ -33,6 +33,7 @@
#include <torch/csrc/jit/frontend/parser.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/graph_utils.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
@ -436,91 +437,6 @@ struct VISIBILITY_HIDDEN ModuleSelf : public Self {
std::shared_ptr<ConcreteModuleType> concreteType_;
};
static TypePtr getTensorType(const at::Tensor& t, bool complete) {
auto r = TensorType::create(t);
if (!complete) {
r = r->dimensionedOnly();
}
return r;
}
static TypePtr inferShapeAndTypeForInput(
TypePtr input_type,
Stack::const_iterator& s_iter,
const Stack::const_iterator& s_iter_end,
bool complete) {
if (auto tuple_type = input_type->cast<TupleType>()) {
std::vector<TypePtr> types;
for (const auto& sub_type : tuple_type->containedTypes()) {
TORCH_INTERNAL_ASSERT(s_iter != s_iter_end);
types.emplace_back(
inferShapeAndTypeForInput(sub_type, s_iter, s_iter_end, complete));
}
return TupleType::create(types);
} else if (auto list_type = input_type->cast<ListType>()) {
const TypePtr& sub_type = list_type->getElementType();
auto elem_type =
inferShapeAndTypeForInput(sub_type, s_iter, s_iter_end, complete);
return ListType::create(elem_type);
} else if (auto tensor_type = input_type->cast<TensorType>()) {
auto type = getTensorType(s_iter->toTensor(), complete);
s_iter++;
return type;
} else if (auto optional_type = input_type->cast<OptionalType>()) {
const TypePtr& sub_type = optional_type->getElementType();
auto elem_type =
inferShapeAndTypeForInput(sub_type, s_iter, s_iter_end, complete);
return OptionalType::create(elem_type);
} else {
// Primitive type, keep as is.
s_iter++;
return input_type;
}
}
static void setInputTensorTypes(
Graph& g,
const Stack& stack,
bool complete,
const std::vector<int>& param_count_list = {}) {
at::ArrayRef<Value*> input_values = g.inputs();
auto s_iter = stack.begin();
size_t list_idx = 0;
if (!param_count_list.empty()) {
TORCH_INTERNAL_ASSERT(
input_values.size() == param_count_list.size(),
" input_values:",
input_values.size(),
" vs param_count_list:",
param_count_list.size());
}
for (auto v : input_values) {
// Leave packed param types alone. This is needed for downstream passes
// (like alias analysis) to work properly. This will be unpacked later
// in unpackQuantizedWeights.
if (auto named_type = v->type()->cast<c10::NamedType>()) {
if (auto qualname = named_type->name()) {
if (getCustomClass(qualname->qualifiedName())) {
if (param_count_list.empty()) {
AT_ASSERT(s_iter != stack.end());
s_iter++;
} else {
if (param_count_list[list_idx] > 0) {
AT_ASSERT(s_iter != stack.end());
}
s_iter += param_count_list[list_idx];
}
list_idx++;
continue;
}
}
}
v->setType(
inferShapeAndTypeForInput(v->type(), s_iter, stack.end(), complete));
list_idx++;
}
}
static std::shared_ptr<Graph> _propagate_shapes(
Graph& graph,
std::vector<at::Tensor> inputs,
@ -1190,7 +1106,8 @@ void initJitScriptBindings(PyObject* module) {
const py::function& var_name_lookup_fn,
bool strict,
bool force_outplace,
const std::vector<std::string>& argument_names) {
const std::vector<std::string>& argument_names,
bool store_inputs) {
// prereq: Module's buffers and parameters are unique
// this was ensured in python before calling this function
auto typed_inputs = toTraceableStack(input_tuple);
@ -1208,6 +1125,9 @@ void initJitScriptBindings(PyObject* module) {
auto fn = self._ivalue()->compilation_unit()->create_function(
method_name, graph);
self.type()->addMethod(fn);
if (store_inputs) {
self.store_traced_inputs(name, typed_inputs);
}
didFinishEmitModule(self);
},
py::arg("name"),
@ -1216,7 +1136,8 @@ void initJitScriptBindings(PyObject* module) {
py::arg("var_name_lookup_fn"),
py::arg("strict"),
py::arg("force_outplace"),
py::arg("argument_names") = std::vector<std::string>())
py::arg("argument_names") = std::vector<std::string>(),
py::arg("store_inputs"))
.def(
"_create_method_from_trace_with_dict",
[](Module& self,
@ -1226,7 +1147,8 @@ void initJitScriptBindings(PyObject* module) {
const py::function& var_name_lookup_fn,
bool strict,
bool force_outplace,
const std::vector<std::string>& argument_names) {
const std::vector<std::string>& argument_names,
bool store_inputs) {
// prereq: Module's buffers and parameters are unique
// this was ensured in python before calling this function
auto typed_inputs = toTraceableStack(input_dict);
@ -1244,6 +1166,9 @@ void initJitScriptBindings(PyObject* module) {
const auto method_name = QualifiedName(*self.type()->name(), name);
auto fn = self._ivalue()->compilation_unit()->create_function(
method_name, graph);
if (store_inputs) {
self.store_traced_inputs(name, typed_inputs);
}
self.type()->addMethod(fn);
didFinishEmitModule(self);
},
@ -1253,7 +1178,8 @@ void initJitScriptBindings(PyObject* module) {
py::arg("var_name_lookup_fn"),
py::arg("strict"),
py::arg("force_outplace"),
py::arg("argument_names") = std::vector<std::string>())
py::arg("argument_names") = std::vector<std::string>(),
py::arg("store_inputs"))
.def(
"_get_forward_hooks",
[](const Module& m) {
@ -1272,6 +1198,11 @@ void initJitScriptBindings(PyObject* module) {
}
return funcs;
})
.def(
"_retrieve_traced_inputs",
[](const Module& m) {
return ScriptDict(m.retrieve_traced_inputs());
})
.def_property_readonly(
"code",
[](Module& self) {
@ -1864,7 +1795,8 @@ void initJitScriptBindings(PyObject* module) {
[](std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
py::object map_location,
const py::dict& extra_files) {
const py::dict& extra_files,
bool restore_shapes = false) {
c10::optional<at::Device> optional_device;
if (!map_location.is_none()) {
AT_ASSERT(THPDevice_Check(map_location.ptr()));
@ -1873,7 +1805,12 @@ void initJitScriptBindings(PyObject* module) {
}
ExtraFilesMap extra_files_map = extra_files_from_python(extra_files);
auto ret = import_ir_module(
std::move(cu), filename, optional_device, extra_files_map);
std::move(cu),
filename,
optional_device,
extra_files_map,
/*load_debug_files*/ true,
restore_shapes);
extra_files_to_python(extra_files_map, extra_files);
return ret;
});
@ -1903,7 +1840,8 @@ void initJitScriptBindings(PyObject* module) {
[](std::shared_ptr<CompilationUnit> cu,
const std::string& buffer,
py::object map_location,
const py::dict& extra_files) {
const py::dict& extra_files,
bool restore_shapes = false) {
std::istringstream in(buffer);
c10::optional<at::Device> optional_device;
if (!map_location.is_none()) {
@ -1913,7 +1851,12 @@ void initJitScriptBindings(PyObject* module) {
}
ExtraFilesMap extra_files_map = extra_files_from_python(extra_files);
auto ret = import_ir_module(
std::move(cu), in, optional_device, extra_files_map);
std::move(cu),
in,
optional_device,
extra_files_map,
/*load_debug_files*/ true,
restore_shapes);
extra_files_to_python(extra_files_map, extra_files);
return ret;
});