mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-11 22:34:53 +08:00
PEP585 update - torch/nn torch/optim torch/package torch/profiler torch/serialization torch/sparse torch/xpu (#145175)
See #145101 for details. Pull Request resolved: https://github.com/pytorch/pytorch/pull/145175 Approved by: https://github.com/bobrenjc93
This commit is contained in:
committed by
PyTorch MergeBot
parent
803017f3cb
commit
0afd335174
@ -1,5 +1,5 @@
|
||||
# mypy: allow-untyped-defs
|
||||
from typing import cast, List, Optional, Union
|
||||
from typing import cast, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
@ -157,10 +157,10 @@ class Adagrad(Optimizer):
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
params_with_grad: List[Tensor] = []
|
||||
grads: List[Tensor] = []
|
||||
state_sums: List[Tensor] = []
|
||||
state_steps: List[Tensor] = []
|
||||
params_with_grad: list[Tensor] = []
|
||||
grads: list[Tensor] = []
|
||||
state_sums: list[Tensor] = []
|
||||
state_steps: list[Tensor] = []
|
||||
|
||||
has_sparse_grad, has_complex = self._init_group(
|
||||
group, params_with_grad, grads, state_sums, state_steps
|
||||
@ -240,10 +240,10 @@ Adagrad.__doc__ = (
|
||||
|
||||
|
||||
def adagrad(
|
||||
params: List[Tensor],
|
||||
grads: List[Tensor],
|
||||
state_sums: List[Tensor],
|
||||
state_steps: List[Tensor],
|
||||
params: list[Tensor],
|
||||
grads: list[Tensor],
|
||||
state_sums: list[Tensor],
|
||||
state_steps: list[Tensor],
|
||||
fused: Optional[bool] = None,
|
||||
grad_scale: Optional[Tensor] = None,
|
||||
found_inf: Optional[Tensor] = None,
|
||||
@ -319,10 +319,10 @@ def _make_sparse(grad, grad_indices, values):
|
||||
|
||||
|
||||
def _single_tensor_adagrad(
|
||||
params: List[Tensor],
|
||||
grads: List[Tensor],
|
||||
state_sums: List[Tensor],
|
||||
state_steps: List[Tensor],
|
||||
params: list[Tensor],
|
||||
grads: list[Tensor],
|
||||
state_sums: list[Tensor],
|
||||
state_steps: list[Tensor],
|
||||
grad_scale: Optional[Tensor],
|
||||
found_inf: Optional[Tensor],
|
||||
*,
|
||||
@ -380,10 +380,10 @@ def _single_tensor_adagrad(
|
||||
|
||||
|
||||
def _multi_tensor_adagrad(
|
||||
params: List[Tensor],
|
||||
grads: List[Tensor],
|
||||
state_sums: List[Tensor],
|
||||
state_steps: List[Tensor],
|
||||
params: list[Tensor],
|
||||
grads: list[Tensor],
|
||||
state_sums: list[Tensor],
|
||||
state_steps: list[Tensor],
|
||||
grad_scale: Optional[Tensor],
|
||||
found_inf: Optional[Tensor],
|
||||
*,
|
||||
@ -412,10 +412,10 @@ def _multi_tensor_adagrad(
|
||||
device_state_sums_,
|
||||
device_state_steps_,
|
||||
), _ in grouped_tensorlists.values():
|
||||
device_params = cast(List[Tensor], device_params_)
|
||||
device_grads = cast(List[Tensor], device_grads_)
|
||||
device_state_sums = cast(List[Tensor], device_state_sums_)
|
||||
device_state_steps = cast(List[Tensor], device_state_steps_)
|
||||
device_params = cast(list[Tensor], device_params_)
|
||||
device_grads = cast(list[Tensor], device_grads_)
|
||||
device_state_sums = cast(list[Tensor], device_state_sums_)
|
||||
device_state_steps = cast(list[Tensor], device_state_steps_)
|
||||
|
||||
device_has_sparse_grad = has_sparse_grad and any(
|
||||
grad.is_sparse for grad in device_grads
|
||||
@ -487,10 +487,10 @@ def _multi_tensor_adagrad(
|
||||
|
||||
|
||||
def _fused_adagrad(
|
||||
params: List[Tensor],
|
||||
grads: List[Tensor],
|
||||
state_sums: List[Tensor],
|
||||
state_steps: List[Tensor],
|
||||
params: list[Tensor],
|
||||
grads: list[Tensor],
|
||||
state_sums: list[Tensor],
|
||||
state_steps: list[Tensor],
|
||||
grad_scale: Optional[Tensor],
|
||||
found_inf: Optional[Tensor],
|
||||
*,
|
||||
@ -530,10 +530,10 @@ def _fused_adagrad(
|
||||
),
|
||||
_,
|
||||
) in grouped_tensors.items():
|
||||
device_params = cast(List[Tensor], device_params_)
|
||||
device_grads = cast(List[Tensor], device_grads_)
|
||||
device_state_sums = cast(List[Tensor], device_state_sums_)
|
||||
device_state_steps = cast(List[Tensor], device_state_steps_)
|
||||
device_params = cast(list[Tensor], device_params_)
|
||||
device_grads = cast(list[Tensor], device_grads_)
|
||||
device_state_sums = cast(list[Tensor], device_state_sums_)
|
||||
device_state_steps = cast(list[Tensor], device_state_steps_)
|
||||
|
||||
device_grad_scale, device_found_inf = None, None
|
||||
if grad_scale is not None and grad_scale_dict is not None:
|
||||
|
||||
Reference in New Issue
Block a user