Clean up some type annotations in android (#49944)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49944

Upgrades type annotations from Python2 to Python3

Test Plan: Sandcastle tests

Reviewed By: xush6528

Differential Revision: D25717539

fbshipit-source-id: c621e2712e87eaed08cda48eb0fb224f6b0570c9
This commit is contained in:
Richard Barnes
2021-01-07 15:36:48 -08:00
committed by Facebook GitHub Bot
parent f83d57f99e
commit 09eefec627
2 changed files with 40 additions and 80 deletions

View File

@ -20,92 +20,77 @@ class Test(torch.jit.ScriptModule):
return None
@torch.jit.script_method
def eqBool(self, input):
# type: (bool) -> bool
def eqBool(self, input: bool) -> bool:
return input
@torch.jit.script_method
def eqInt(self, input):
# type: (int) -> int
def eqInt(self, input: int) -> int:
return input
@torch.jit.script_method
def eqFloat(self, input):
# type: (float) -> float
def eqFloat(self, input: float) -> float:
return input
@torch.jit.script_method
def eqStr(self, input):
# type: (str) -> str
def eqStr(self, input: str) -> str:
return input
@torch.jit.script_method
def eqTensor(self, input):
# type: (Tensor) -> Tensor
def eqTensor(self, input: Tensor) -> Tensor:
return input
@torch.jit.script_method
def eqDictStrKeyIntValue(self, input):
# type: (Dict[str, int]) -> Dict[str, int]
def eqDictStrKeyIntValue(self, input: Dict[str, int]) -> Dict[str, int]:
return input
@torch.jit.script_method
def eqDictIntKeyIntValue(self, input):
# type: (Dict[int, int]) -> Dict[int, int]
def eqDictIntKeyIntValue(self, input: Dict[int, int]) -> Dict[int, int]:
return input
@torch.jit.script_method
def eqDictFloatKeyIntValue(self, input):
# type: (Dict[float, int]) -> Dict[float, int]
def eqDictFloatKeyIntValue(self, input: Dict[float, int]) -> Dict[float, int]:
return input
@torch.jit.script_method
def listIntSumReturnTuple(self, input):
# type: (List[int]) -> Tuple[List[int], int]
def listIntSumReturnTuple(self, input: List[int]) -> Tuple[List[int], int]:
sum = 0
for x in input:
sum += x
return (input, sum)
@torch.jit.script_method
def listBoolConjunction(self, input):
# type: (List[bool]) -> bool
def listBoolConjunction(self, input: List[bool]) -> bool:
res = True
for x in input:
res = res and x
return res
@torch.jit.script_method
def listBoolDisjunction(self, input):
# type: (List[bool]) -> bool
def listBoolDisjunction(self, input: List[bool]) -> bool:
res = False
for x in input:
res = res or x
return res
@torch.jit.script_method
def tupleIntSumReturnTuple(self, input):
# type: (Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], int]
def tupleIntSumReturnTuple(self, input: Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], int]:
sum = 0
for x in input:
sum += x
return (input, sum)
@torch.jit.script_method
def optionalIntIsNone(self, input):
# type: (Optional[int]) -> bool
def optionalIntIsNone(self, input: Optional[int]) -> bool:
return input is None
@torch.jit.script_method
def intEq0None(self, input):
# type: (int) -> Optional[int]
def intEq0None(self, input: int) -> Optional[int]:
if input == 0:
return None
return input
@torch.jit.script_method
def str3Concat(self, input):
# type: (str) -> str
def str3Concat(self, input: str) -> str:
return input + input + input
@torch.jit.script_method
@ -113,8 +98,7 @@ class Test(torch.jit.ScriptModule):
return torch.tensor([int(input.item())])[0]
@torch.jit.script_method
def testAliasWithOffset(self):
# type: () -> List[Tensor]
def testAliasWithOffset(self) -> List[Tensor]:
x = torch.tensor([100, 200])
a = [x[0], x[1]]
return a
@ -128,8 +112,7 @@ class Test(torch.jit.ScriptModule):
return x
@torch.jit.script_method
def conv2d(self, x, w, toChannelsLast):
# type: (Tensor, Tensor, bool) -> Tensor
def conv2d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
r = torch.nn.functional.conv2d(x, w)
if (toChannelsLast):
r = r.contiguous(memory_format=torch.channels_last)
@ -138,18 +121,15 @@ class Test(torch.jit.ScriptModule):
return r
@torch.jit.script_method
def contiguous(self, x):
# type: (Tensor) -> Tensor
def contiguous(self, x: Tensor) -> Tensor:
return x.contiguous()
@torch.jit.script_method
def contiguousChannelsLast(self, x):
# type: (Tensor) -> Tensor
def contiguousChannelsLast(self, x: Tensor) -> Tensor:
return x.contiguous(memory_format=torch.channels_last)
@torch.jit.script_method
def contiguousChannelsLast3d(self, x):
# type: (Tensor) -> Tensor
def contiguousChannelsLast3d(self, x: Tensor) -> Tensor:
return x.contiguous(memory_format=torch.channels_last_3d)
scriptAndSave(Test(), "test.pt")