mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Revert D15435461: [pytorch][PR] PyTorch ThroughputBenchmark
Differential Revision: D15435461 Original commit changeset: db08829dc3f4 fbshipit-source-id: 72a0eac1658b2d3f885bc9a21c49fcc23030ae3e
This commit is contained in:
committed by
Facebook Github Bot
parent
d96ce9b9fe
commit
08060e898b
@ -1,79 +0,0 @@
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import torch
|
||||
from torch.utils import ThroughputBenchmark
|
||||
from torch.testing import assert_allclose
|
||||
|
||||
from common_utils import run_tests, TestCase
|
||||
|
||||
class TwoLayerNet(torch.jit.ScriptModule):
|
||||
def __init__(self, D_in, H, D_out):
|
||||
super(TwoLayerNet, self).__init__()
|
||||
self.linear1 = torch.nn.Linear(D_in, H)
|
||||
self.linear2 = torch.nn.Linear(2 * H, D_out)
|
||||
|
||||
@torch.jit.script_method
|
||||
def forward(self, x1, x2):
|
||||
h1_relu = self.linear1(x1).clamp(min=0)
|
||||
h2_relu = self.linear1(x2).clamp(min=0)
|
||||
cat = torch.cat((h1_relu, h2_relu), 1)
|
||||
y_pred = self.linear2(cat)
|
||||
return y_pred
|
||||
|
||||
class TwoLayerNetModule(torch.nn.Module):
|
||||
def __init__(self, D_in, H, D_out):
|
||||
super(TwoLayerNetModule, self).__init__()
|
||||
self.linear1 = torch.nn.Linear(D_in, H)
|
||||
self.linear2 = torch.nn.Linear(2 * H, D_out)
|
||||
|
||||
def forward(self, x1, x2):
|
||||
h1_relu = self.linear1(x1).clamp(min=0)
|
||||
h2_relu = self.linear1(x2).clamp(min=0)
|
||||
cat = torch.cat((h1_relu, h2_relu), 1)
|
||||
y_pred = self.linear2(cat)
|
||||
return y_pred
|
||||
|
||||
class TestThroughputBenchmark(TestCase):
|
||||
def linear_test(self, Module):
|
||||
D_in = 10
|
||||
H = 5
|
||||
D_out = 15
|
||||
B = 8
|
||||
NUM_INPUTS = 2
|
||||
|
||||
module = Module(D_in, H, D_out)
|
||||
|
||||
inputs = []
|
||||
|
||||
for i in range(NUM_INPUTS):
|
||||
inputs.append([torch.randn(B, D_in), torch.randn(B, D_in)])
|
||||
bench = ThroughputBenchmark(module)
|
||||
|
||||
for input in inputs:
|
||||
# can do both args and kwargs here
|
||||
bench.add_input(input[0], x2=input[1])
|
||||
|
||||
for i in range(NUM_INPUTS):
|
||||
# or just unpack the list of inputs
|
||||
module_result = module(*inputs[i])
|
||||
bench_result = bench.run_once(*inputs[i])
|
||||
assert_allclose(bench_result, module_result)
|
||||
|
||||
stats = bench.benchmark(
|
||||
num_calling_threads=4,
|
||||
num_warmup_iters=100,
|
||||
num_iters=1000,
|
||||
)
|
||||
|
||||
print("Avg latency (ms): {}".format(stats.latency_avg_ms))
|
||||
print("Number of iterations: {}".format(stats.num_iters))
|
||||
|
||||
|
||||
def test_script_module(self):
|
||||
self.linear_test(TwoLayerNet)
|
||||
|
||||
def test_module(self):
|
||||
self.linear_test(TwoLayerNetModule)
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_tests()
|
Reference in New Issue
Block a user