[BE] [3/3] Rewrite super() calls in test (#94592)

Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94592
Approved by: https://github.com/ezyang, https://github.com/seemethere
This commit is contained in:
Xuehai Pan
2023-02-12 22:20:50 +00:00
committed by PyTorch MergeBot
parent bdd8f518d7
commit 046e88a291
190 changed files with 1026 additions and 2238 deletions

View File

@ -247,7 +247,7 @@ class TestFXExperimental(JitTestCase):
return layers
def __init__(self):
super(MyRecommendationModule, self).__init__()
super().__init__()
layers = self.create_mlp(4, 4, 4)
self.bottom_layers = torch.nn.Sequential(*layers)
layers = self.create_mlp(3, 24, 24)
@ -301,7 +301,7 @@ class TestFXExperimental(JitTestCase):
def test_partition_latency(self):
class TestModule(torch.nn.Module):
def __init__(self):
super(TestModule, self).__init__()
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
@ -420,7 +420,7 @@ class TestFXExperimental(JitTestCase):
def test_aot_based_partition(self):
class TestModule(torch.nn.Module):
def __init__(self):
super(TestModule, self).__init__()
super().__init__()
self.b = torch.rand(4)
self.c = torch.rand(4)
@ -479,7 +479,7 @@ class TestFXExperimental(JitTestCase):
def test_saturate_host(self):
class TestModule(torch.nn.Module):
def __init__(self):
super(TestModule, self).__init__()
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
@ -535,7 +535,7 @@ class TestFXExperimental(JitTestCase):
def test_conv_bn_fusion_not_running_state(self):
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
super().__init__()
self.conv = torch.nn.Conv2d(32, 64, 3, stride=2)
self.bn = torch.nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
@ -987,9 +987,6 @@ class {test_classname}(torch.nn.Module):
def test_normalize_args_preserve_meta(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.add(a, 3)
@ -1190,7 +1187,7 @@ class {test_classname}(torch.nn.Module):
def test_to_folder(self):
class Test(torch.nn.Module):
def __init__(self):
super(Test, self).__init__()
super().__init__()
self.W = torch.nn.Parameter(torch.randn(2))
self.seq = torch.nn.Sequential(torch.nn.BatchNorm1d(2, 2))
self.linear = torch.nn.Linear(2, 2)