[Static Runtime] Handle fallback graphs that are generated as part of the TE Fuser (#72945)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72945

ghstack-source-id: 149429754

Test Plan:
```
buck run mode/opt //caffe2/benchmarks/static_runtime:static_runtime_cpptest — --gtest_filter=CpuFusion.FallbackGraph
```

Reviewed By: mikeiovine

Differential Revision: D34283840

fbshipit-source-id: 868bd340a50fe691797164524f2400d07998d304
(cherry picked from commit 80f60f2cc098e0132ececb321a35a1d3132fe676)
This commit is contained in:
Raghavan Raman
2022-02-18 10:15:48 -08:00
committed by PyTorch MergeBot
parent 87f882b056
commit 02afdd54b9
2 changed files with 96 additions and 0 deletions

View File

@ -0,0 +1,83 @@
#include <gtest/gtest.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/torch.h>
#include "test_utils.h"
using namespace torch;
using namespace torch::jit;
using namespace torch::jit::test;
TEST(CpuFusion, Simple) {
const auto simple_script = R"JIT(
def forward(self, a, b):
return (a + b).relu().tanh()
)JIT";
Module m("module");
m.define(simple_script);
StaticModuleOptions opts; // start with the defaults.
opts.enable_tensorexpr_fusion = true;
auto input1 = at::randn({2, 3});
auto input2 = at::ones({2, 3});
auto smodule = StaticModule(m, /* is_frozen */ false, opts, {input1, input2});
StaticRuntime runtime(smodule);
// Test with sample inputs
{
auto actual = runtime({input1, input2}, {});
auto expect = at::tanh(at::relu(input1 + input2));
EXPECT_TRUE(at::allclose(expect, actual.toTensor()));
}
// Test with different inputs
{
auto new_input1 = at::randn({5, 14});
auto new_input2 = at::randn({5, 14});
auto actual = runtime({new_input1, new_input2}, {});
auto expect = at::tanh(at::relu(new_input1 + new_input2));
EXPECT_TRUE(at::allclose(expect, actual.toTensor()));
}
}
TEST(CpuFusion, FallbackGraph) {
const auto simple_script = R"JIT(
def forward(self, a, b):
return (a + b).relu().tanh()
)JIT";
Module m("module");
m.define(simple_script);
StaticModuleOptions opts; // start with the defaults.
opts.enable_tensorexpr_fusion = true;
auto sample_input1 = at::randn({2, 3});
auto sample_input2 = at::ones({2, 3});
auto smodule = StaticModule(
m, /* is_frozen */ false, opts, {sample_input1, sample_input2});
StaticRuntime runtime(smodule);
// The sample inputs above were contiguous. Now, use a strided input
// to trigger running the fallback graph.
{
auto input1 = at::narrow(at::randn({2, 6}), 1, 0, 3);
auto input2 = at::ones({2, 3});
auto expect = at::tanh(at::relu(input1 + input2));
auto actual = runtime({input1, input2}, {});
EXPECT_TRUE(at::allclose(expect, actual.toTensor()));
}
// Test with strided inputs of different size.
{
auto input1 = at::narrow(at::randn({10, 30}), 1, 0, 25);
auto input2 = at::randn({10, 25});
auto expect = at::tanh(at::relu(input1 + input2));
auto actual = runtime({input1, input2}, {});
EXPECT_TRUE(at::allclose(expect, actual.toTensor()));
}
}

View File

@ -11,6 +11,7 @@
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/csrc/jit/runtime/jit_trace.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/runtime/static/ops.h>
@ -322,6 +323,17 @@ void createFusionGroups(Block* block, AliasDb* aliasDb, size_t min_size) {
inlineSmallFusionGroups(block, min_size);
}
void inlineFallbackGraphs(std::shared_ptr<Graph> graph) {
DepthFirstGraphNodeIterator it(graph);
Node* n = nullptr;
while ((n = it.next()) != nullptr) {
if (n->kind() == prim::FallbackGraph) {
SubgraphUtils::unmergeSubgraph(n);
}
}
}
void performTensorExprFusion(
std::shared_ptr<Graph> graph,
std::vector<IValue> sample_inputs) {
@ -335,6 +347,7 @@ void performTensorExprFusion(
/*min_group_size*/ 2,
/*add_composed_op*/ false,
/*fuse_to_dynamic_shapes*/ true);
inlineFallbackGraphs(traced_graph);
graph->block()->clear();
graph->block()->cloneFrom(traced_graph->block(), nullptr);
GRAPH_DUMP("Graph after fusion: ", graph);