mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
399 lines
15 KiB
Python
399 lines
15 KiB
Python
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification
|
|
|
|
from peft import (
|
|
AdaLoraConfig,
|
|
BOFTConfig,
|
|
BoneConfig,
|
|
C3AConfig,
|
|
FourierFTConfig,
|
|
HRAConfig,
|
|
IA3Config,
|
|
LoraConfig,
|
|
MissConfig,
|
|
OFTConfig,
|
|
PrefixTuningConfig,
|
|
PromptEncoderConfig,
|
|
PromptTuningConfig,
|
|
RoadConfig,
|
|
ShiraConfig,
|
|
TaskType,
|
|
VBLoRAConfig,
|
|
VeraConfig,
|
|
get_peft_model,
|
|
)
|
|
|
|
from .testing_common import PeftCommonTester
|
|
from .testing_utils import set_init_weights_false
|
|
|
|
|
|
PEFT_ENCODER_DECODER_MODELS_TO_TEST = [
|
|
"ybelkada/tiny-random-T5ForConditionalGeneration-calibrated",
|
|
"hf-internal-testing/tiny-random-BartForConditionalGeneration",
|
|
]
|
|
|
|
# TODO Missing from this list are LoKr, LoHa, LN Tuning, add them
|
|
ALL_CONFIGS = [
|
|
(
|
|
AdaLoraConfig,
|
|
{
|
|
"target_modules": None,
|
|
"total_step": 1,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
BOFTConfig,
|
|
{
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
BoneConfig,
|
|
{
|
|
"target_modules": None,
|
|
"r": 2,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
MissConfig,
|
|
{
|
|
"target_modules": None,
|
|
"r": 2,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
FourierFTConfig,
|
|
{
|
|
"n_frequency": 10,
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
HRAConfig,
|
|
{
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
IA3Config,
|
|
{
|
|
"target_modules": None,
|
|
"feedforward_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
LoraConfig,
|
|
{
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": None,
|
|
"lora_dropout": 0.05,
|
|
"bias": "none",
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
LoraConfig,
|
|
{
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": None,
|
|
"lora_dropout": 0.05,
|
|
"bias": "none",
|
|
"trainable_token_indices": [0, 1, 3],
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
OFTConfig,
|
|
{
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
PrefixTuningConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
PromptEncoderConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"encoder_hidden_size": 32,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
PromptTuningConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
RoadConfig,
|
|
{
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"variant": "road_1",
|
|
"group_size": 2,
|
|
},
|
|
),
|
|
(
|
|
ShiraConfig,
|
|
{
|
|
"r": 1,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"target_modules": None,
|
|
"init_weights": False,
|
|
},
|
|
),
|
|
(
|
|
VBLoRAConfig,
|
|
{
|
|
"target_modules": None,
|
|
"vblora_dropout": 0.05,
|
|
"vector_length": 1,
|
|
"num_vectors": 2,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
VeraConfig,
|
|
{
|
|
"r": 8,
|
|
"target_modules": None,
|
|
"vera_dropout": 0.05,
|
|
"projection_prng_key": 0xFF,
|
|
"d_initial": 0.1,
|
|
"save_projection": True,
|
|
"bias": "none",
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
C3AConfig,
|
|
{
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"block_size": 1,
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
]
|
|
|
|
|
|
class TestEncoderDecoderModels(PeftCommonTester):
|
|
transformers_class = AutoModelForSeq2SeqLM
|
|
|
|
def skipTest(self, reason=""):
|
|
# for backwards compatibility with unittest style test classes
|
|
pytest.skip(reason)
|
|
|
|
def prepare_inputs_for_testing(self):
|
|
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
|
|
decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
|
|
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
|
|
|
|
input_dict = {
|
|
"input_ids": input_ids,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
|
|
return input_dict
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
|
|
self._test_model_attr(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_adapter_name(self, model_id, config_cls, config_kwargs):
|
|
self._test_adapter_name(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
|
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False)
|
|
|
|
def test_load_model_low_cpu_mem_usage(self):
|
|
# Using the first model with LoraConfig and an empty config_kwargs.
|
|
self._test_load_model_low_cpu_mem_usage(PEFT_ENCODER_DECODER_MODELS_TO_TEST[0], LoraConfig, {})
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
|
|
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_merge_layers(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_merge_layers(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate(self, model_id, config_cls, config_kwargs):
|
|
self._test_generate(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_pos_args(self, model_id, config_cls, config_kwargs):
|
|
self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_half_prec(self, model_id, config_cls, config_kwargs):
|
|
self._test_generate_half_prec(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
|
|
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_encoder_decoders(self, model_id, config_cls, config_kwargs):
|
|
self._test_training(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_encoder_decoders_layer_indexing(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_layer_indexing(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_encoder_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_inference_safetensors(self, model_id, config_cls, config_kwargs):
|
|
self._test_inference_safetensors(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
|
|
self._test_peft_model_device_map(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_delete_adapter(self, model_id, config_cls, config_kwargs):
|
|
self._test_delete_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
|
|
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
|
|
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_unload_adapter(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_unload_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_disable_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
def test_active_adapters_prompt_learning(self):
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
"hf-internal-testing/tiny-random-BartForConditionalGeneration"
|
|
).to(self.torch_device)
|
|
# any prompt learning method would work here
|
|
config = PromptEncoderConfig(task_type=TaskType.SEQ_2_SEQ_LM, num_virtual_tokens=10)
|
|
model = get_peft_model(model, config)
|
|
assert model.active_adapters == ["default"]
|
|
|
|
def test_save_shared_tensors(self):
|
|
model_id = "hf-internal-testing/tiny-random-RobertaModel"
|
|
peft_config = LoraConfig(
|
|
task_type=TaskType.TOKEN_CLS,
|
|
inference_mode=False,
|
|
r=16,
|
|
lora_alpha=16,
|
|
lora_dropout=0.1,
|
|
bias="all",
|
|
)
|
|
model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11)
|
|
model = get_peft_model(model, peft_config)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# This should work fine
|
|
model.save_pretrained(tmp_dir, safe_serialization=True)
|