Files
peft/tests/test_encoder_decoder_models.py
ppetrushkov ce5c2044f1 FEAT RoAd: 2D Rotary Adaptation (#2678)
Implements RoAd from https://arxiv.org/pdf/2409.00119

Supports mixed adapter batches.
2025-08-19 15:45:38 +02:00

399 lines
15 KiB
Python

# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import pytest
import torch
from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification
from peft import (
AdaLoraConfig,
BOFTConfig,
BoneConfig,
C3AConfig,
FourierFTConfig,
HRAConfig,
IA3Config,
LoraConfig,
MissConfig,
OFTConfig,
PrefixTuningConfig,
PromptEncoderConfig,
PromptTuningConfig,
RoadConfig,
ShiraConfig,
TaskType,
VBLoRAConfig,
VeraConfig,
get_peft_model,
)
from .testing_common import PeftCommonTester
from .testing_utils import set_init_weights_false
PEFT_ENCODER_DECODER_MODELS_TO_TEST = [
"ybelkada/tiny-random-T5ForConditionalGeneration-calibrated",
"hf-internal-testing/tiny-random-BartForConditionalGeneration",
]
# TODO Missing from this list are LoKr, LoHa, LN Tuning, add them
ALL_CONFIGS = [
(
AdaLoraConfig,
{
"target_modules": None,
"total_step": 1,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
BOFTConfig,
{
"target_modules": None,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
BoneConfig,
{
"target_modules": None,
"r": 2,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
MissConfig,
{
"target_modules": None,
"r": 2,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
FourierFTConfig,
{
"n_frequency": 10,
"target_modules": None,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
HRAConfig,
{
"target_modules": None,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
IA3Config,
{
"target_modules": None,
"feedforward_modules": None,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
LoraConfig,
{
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
"task_type": "SEQ_2_SEQ_LM",
},
),
(
LoraConfig,
{
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
"trainable_token_indices": [0, 1, 3],
"task_type": "SEQ_2_SEQ_LM",
},
),
(
OFTConfig,
{
"target_modules": None,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
PrefixTuningConfig,
{
"num_virtual_tokens": 10,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
PromptEncoderConfig,
{
"num_virtual_tokens": 10,
"encoder_hidden_size": 32,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
PromptTuningConfig,
{
"num_virtual_tokens": 10,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
RoadConfig,
{
"task_type": "SEQ_2_SEQ_LM",
"variant": "road_1",
"group_size": 2,
},
),
(
ShiraConfig,
{
"r": 1,
"task_type": "SEQ_2_SEQ_LM",
"target_modules": None,
"init_weights": False,
},
),
(
VBLoRAConfig,
{
"target_modules": None,
"vblora_dropout": 0.05,
"vector_length": 1,
"num_vectors": 2,
"task_type": "SEQ_2_SEQ_LM",
},
),
(
VeraConfig,
{
"r": 8,
"target_modules": None,
"vera_dropout": 0.05,
"projection_prng_key": 0xFF,
"d_initial": 0.1,
"save_projection": True,
"bias": "none",
"task_type": "SEQ_2_SEQ_LM",
},
),
(
C3AConfig,
{
"task_type": "SEQ_2_SEQ_LM",
"block_size": 1,
"target_modules": None,
},
),
]
class TestEncoderDecoderModels(PeftCommonTester):
transformers_class = AutoModelForSeq2SeqLM
def skipTest(self, reason=""):
# for backwards compatibility with unittest style test classes
pytest.skip(reason)
def prepare_inputs_for_testing(self):
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
input_dict = {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
}
return input_dict
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
self._test_model_attr(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_adapter_name(self, model_id, config_cls, config_kwargs):
self._test_adapter_name(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
self._test_prepare_for_training(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False)
def test_load_model_low_cpu_mem_usage(self):
# Using the first model with LoraConfig and an empty config_kwargs.
self._test_load_model_low_cpu_mem_usage(PEFT_ENCODER_DECODER_MODELS_TO_TEST[0], LoraConfig, {})
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_merge_layers(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate(self, model_id, config_cls, config_kwargs):
self._test_generate(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_pos_args(self, model_id, config_cls, config_kwargs):
self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_half_prec(self, model_id, config_cls, config_kwargs):
self._test_generate_half_prec(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_encoder_decoders(self, model_id, config_cls, config_kwargs):
self._test_training(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_encoder_decoders_layer_indexing(self, model_id, config_cls, config_kwargs):
self._test_training_layer_indexing(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_encoder_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_inference_safetensors(self, model_id, config_cls, config_kwargs):
self._test_inference_safetensors(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
self._test_peft_model_device_map(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_delete_adapter(self, model_id, config_cls, config_kwargs):
self._test_delete_adapter(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_unload_adapter(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_unload_adapter(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_disable_adapter(model_id, config_cls, config_kwargs)
def test_active_adapters_prompt_learning(self):
model = AutoModelForSeq2SeqLM.from_pretrained(
"hf-internal-testing/tiny-random-BartForConditionalGeneration"
).to(self.torch_device)
# any prompt learning method would work here
config = PromptEncoderConfig(task_type=TaskType.SEQ_2_SEQ_LM, num_virtual_tokens=10)
model = get_peft_model(model, config)
assert model.active_adapters == ["default"]
def test_save_shared_tensors(self):
model_id = "hf-internal-testing/tiny-random-RobertaModel"
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS,
inference_mode=False,
r=16,
lora_alpha=16,
lora_dropout=0.1,
bias="all",
)
model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11)
model = get_peft_model(model, peft_config)
with tempfile.TemporaryDirectory() as tmp_dir:
# This should work fine
model.save_pretrained(tmp_dir, safe_serialization=True)