mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
* Method Comparison: Improve formatting/layout of table Quick improvement to reduce the dominance of columns like `{peft,train}_config` and make numbers a bit more readable through proper decimal/thousands formatting. * Bump gradio version to accomodate required fixes
379 lines
14 KiB
Python
379 lines
14 KiB
Python
# Copyright 2025-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Gradio app to show the results"""
|
|
|
|
import os
|
|
import tempfile
|
|
|
|
import gradio as gr
|
|
import plotly.express as px
|
|
import plotly.graph_objects as go
|
|
from processing import load_df
|
|
from sanitizer import parse_and_filter
|
|
|
|
|
|
metric_preferences = {
|
|
"accelerator_memory_reserved_avg": "lower",
|
|
"accelerator_memory_max": "lower",
|
|
"accelerator_memory_reserved_99th": "lower",
|
|
"total_time": "lower",
|
|
"train_time": "lower",
|
|
"file_size": "lower",
|
|
"test_accuracy": "higher",
|
|
"train_loss": "lower",
|
|
}
|
|
|
|
|
|
def get_model_ids(task_name, df):
|
|
filtered = df[df["task_name"] == task_name]
|
|
return sorted(filtered["model_id"].unique())
|
|
|
|
|
|
def filter_data(task_name, model_id, df):
|
|
filtered = df[(df["task_name"] == task_name) & (df["model_id"] == model_id)]
|
|
return filtered
|
|
|
|
|
|
# Compute the Pareto frontier for two selected metrics.
|
|
def compute_pareto_frontier(df, metric_x, metric_y):
|
|
if df.empty:
|
|
return df
|
|
|
|
df = df.copy()
|
|
points = df[[metric_x, metric_y]].values
|
|
selected_indices = []
|
|
|
|
def dominates(a, b, metric_x, metric_y):
|
|
# Check for each metric whether b is as good or better than a
|
|
if metric_preferences[metric_x] == "higher":
|
|
cond_x = b[0] >= a[0]
|
|
better_x = b[0] > a[0]
|
|
else:
|
|
cond_x = b[0] <= a[0]
|
|
better_x = b[0] < a[0]
|
|
if metric_preferences[metric_y] == "higher":
|
|
cond_y = b[1] >= a[1]
|
|
better_y = b[1] > a[1]
|
|
else:
|
|
cond_y = b[1] <= a[1]
|
|
better_y = b[1] < a[1]
|
|
return cond_x and cond_y and (better_x or better_y)
|
|
|
|
for i, point in enumerate(points):
|
|
dominated = False
|
|
for j, other_point in enumerate(points):
|
|
if i == j:
|
|
continue
|
|
if dominates(point, other_point, metric_x, metric_y):
|
|
dominated = True
|
|
break
|
|
if not dominated:
|
|
selected_indices.append(i)
|
|
pareto_df = df.iloc[selected_indices]
|
|
return pareto_df
|
|
|
|
|
|
def generate_pareto_plot(df, metric_x, metric_y):
|
|
if df.empty:
|
|
return {}
|
|
|
|
# Compute Pareto frontier and non-frontier points.
|
|
pareto_df = compute_pareto_frontier(df, metric_x, metric_y)
|
|
non_pareto_df = df.drop(pareto_df.index)
|
|
|
|
# Create an empty figure.
|
|
fig = go.Figure()
|
|
|
|
# Draw the line connecting Pareto frontier points.
|
|
if not pareto_df.empty:
|
|
# Sort the Pareto frontier points by metric_x for a meaningful connection.
|
|
pareto_sorted = pareto_df.sort_values(by=metric_x)
|
|
line_trace = go.Scatter(
|
|
x=pareto_sorted[metric_x],
|
|
y=pareto_sorted[metric_y],
|
|
mode="lines",
|
|
line={"color": "rgba(0,0,255,0.3)", "width": 4},
|
|
name="Pareto Frontier",
|
|
)
|
|
fig.add_trace(line_trace)
|
|
|
|
# Add non-frontier points in gray with semi-transparency.
|
|
if not non_pareto_df.empty:
|
|
non_frontier_trace = go.Scatter(
|
|
x=non_pareto_df[metric_x],
|
|
y=non_pareto_df[metric_y],
|
|
mode="markers",
|
|
marker={"color": "rgba(128,128,128,0.5)", "size": 12},
|
|
hoverinfo="text",
|
|
text=non_pareto_df.apply(
|
|
lambda row: f"experiment_name: {row['experiment_name']}<br>"
|
|
f"peft_type: {row['peft_type']}<br>"
|
|
f"{metric_x}: {row[metric_x]}<br>"
|
|
f"{metric_y}: {row[metric_y]}",
|
|
axis=1,
|
|
),
|
|
showlegend=False,
|
|
)
|
|
fig.add_trace(non_frontier_trace)
|
|
|
|
# Add Pareto frontier points with legend
|
|
if not pareto_df.empty:
|
|
pareto_scatter = px.scatter(
|
|
pareto_df,
|
|
x=metric_x,
|
|
y=metric_y,
|
|
color="experiment_name",
|
|
hover_data={"experiment_name": True, "peft_type": True, metric_x: True, metric_y: True},
|
|
)
|
|
for trace in pareto_scatter.data:
|
|
trace.marker = {"size": 12}
|
|
fig.add_trace(trace)
|
|
|
|
# Update layout with axes labels.
|
|
fig.update_layout(
|
|
title=f"Pareto Frontier for {metric_x} vs {metric_y}",
|
|
template="seaborn",
|
|
height=700,
|
|
autosize=True,
|
|
xaxis_title=metric_x,
|
|
yaxis_title=metric_y,
|
|
)
|
|
|
|
return fig
|
|
|
|
|
|
def compute_pareto_summary(filtered, pareto_df, metric_x, metric_y):
|
|
if filtered.empty:
|
|
return "No data available."
|
|
|
|
stats = filtered[[metric_x, metric_y]].agg(["min", "max", "mean"]).to_string()
|
|
total_points = len(filtered)
|
|
pareto_points = len(pareto_df)
|
|
excluded_points = total_points - pareto_points
|
|
summary_text = (
|
|
f"{stats}\n\n"
|
|
f"Total points: {total_points}\n"
|
|
f"Pareto frontier points: {pareto_points}\n"
|
|
f"Excluded points: {excluded_points}"
|
|
)
|
|
return summary_text
|
|
|
|
|
|
def export_csv(df):
|
|
if df.empty:
|
|
return None
|
|
csv_data = df.to_csv(index=False)
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as tmp:
|
|
tmp.write(csv_data)
|
|
tmp_path = tmp.name
|
|
return tmp_path
|
|
|
|
|
|
def format_df(df):
|
|
return df.style.format(precision=3, thousands=",", decimal=".")
|
|
|
|
|
|
def build_app(df):
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
gr.Markdown("# PEFT method comparison")
|
|
gr.Markdown(
|
|
"Find more information [on the PEFT GitHub repo](https://github.com/huggingface/peft/tree/main/method_comparison)"
|
|
)
|
|
|
|
# Hidden state to store the current filter query.
|
|
filter_state = gr.State("")
|
|
|
|
gr.Markdown("## Choose the task and base model")
|
|
with gr.Row():
|
|
task_dropdown = gr.Dropdown(
|
|
label="Select Task",
|
|
choices=sorted(df["task_name"].unique()),
|
|
value=sorted(df["task_name"].unique())[0],
|
|
)
|
|
model_dropdown = gr.Dropdown(
|
|
label="Select Model ID", choices=get_model_ids(sorted(df["task_name"].unique())[0], df)
|
|
)
|
|
|
|
# Make dataframe columns all equal in width so that they are good enough for numbers but don't
|
|
# get hugely extended by columns like `train_config`.
|
|
column_widths = ["150px" for _ in df.columns]
|
|
column2index = dict(zip(df.columns, range(len(df.columns))))
|
|
column_widths[column2index['experiment_name']] = '300px'
|
|
|
|
data_table = gr.DataFrame(
|
|
label="Results",
|
|
value=format_df(df),
|
|
interactive=False,
|
|
max_chars=100,
|
|
wrap=False,
|
|
column_widths=column_widths,
|
|
)
|
|
|
|
with gr.Row():
|
|
filter_textbox = gr.Textbox(
|
|
label="Filter DataFrame",
|
|
placeholder="Enter filter (e.g.: peft_type=='LORA')",
|
|
interactive=True,
|
|
)
|
|
apply_filter_button = gr.Button("Apply Filter")
|
|
reset_filter_button = gr.Button("Reset Filter")
|
|
|
|
gr.Markdown("## Pareto plot")
|
|
gr.Markdown(
|
|
"Select 2 criteria to plot the Pareto frontier. This will show the best PEFT methods along this axis and "
|
|
"the trade-offs with the other axis. The PEFT methods that Pareto-dominate are shown in colors. All other "
|
|
"methods are inferior with regard to these two metrics. Hover over a point to show details."
|
|
)
|
|
|
|
with gr.Row():
|
|
x_default = (
|
|
"accelerator_memory_max"
|
|
if "accelerator_memory_max" in metric_preferences
|
|
else list(metric_preferences.keys())[0]
|
|
)
|
|
y_default = (
|
|
"test_accuracy" if "test_accuracy" in metric_preferences else list(metric_preferences.keys())[1]
|
|
)
|
|
metric_x_dropdown = gr.Dropdown(
|
|
label="1st metric for Pareto plot",
|
|
choices=list(metric_preferences.keys()),
|
|
value=x_default,
|
|
)
|
|
metric_y_dropdown = gr.Dropdown(
|
|
label="2nd metric for Pareto plot",
|
|
choices=list(metric_preferences.keys()),
|
|
value=y_default,
|
|
)
|
|
|
|
pareto_plot = gr.Plot(label="Pareto Frontier Plot")
|
|
summary_box = gr.Textbox(label="Summary Statistics", lines=6)
|
|
csv_output = gr.File(label="Export Filtered Data as CSV")
|
|
|
|
def update_on_task(task_name, current_filter):
|
|
new_models = get_model_ids(task_name, df)
|
|
filtered = filter_data(task_name, new_models[0] if new_models else "", df)
|
|
if current_filter.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, current_filter)
|
|
df_queried = filtered[mask]
|
|
if not df_queried.empty:
|
|
filtered = df_queried
|
|
except Exception:
|
|
# invalid filter query
|
|
pass
|
|
return gr.update(choices=new_models, value=new_models[0] if new_models else None), format_df(filtered)
|
|
|
|
task_dropdown.change(
|
|
fn=update_on_task, inputs=[task_dropdown, filter_state], outputs=[model_dropdown, data_table]
|
|
)
|
|
|
|
def update_on_model(task_name, model_id, current_filter):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
if current_filter.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, current_filter)
|
|
filtered = filtered[mask]
|
|
except Exception:
|
|
pass
|
|
return format_df(filtered)
|
|
|
|
model_dropdown.change(
|
|
fn=update_on_model, inputs=[task_dropdown, model_dropdown, filter_state], outputs=data_table
|
|
)
|
|
|
|
def update_pareto_plot_and_summary(task_name, model_id, metric_x, metric_y, current_filter):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
if current_filter.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, current_filter)
|
|
filtered = filtered[mask]
|
|
except Exception as e:
|
|
return generate_pareto_plot(filtered, metric_x, metric_y), f"Filter error: {e}"
|
|
|
|
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
|
|
fig = generate_pareto_plot(filtered, metric_x, metric_y)
|
|
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
|
|
return fig, summary
|
|
|
|
for comp in [model_dropdown, metric_x_dropdown, metric_y_dropdown]:
|
|
comp.change(
|
|
fn=update_pareto_plot_and_summary,
|
|
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
|
|
outputs=[pareto_plot, summary_box],
|
|
)
|
|
|
|
def apply_filter(filter_query, task_name, model_id, metric_x, metric_y):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
if filter_query.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, filter_query)
|
|
filtered = filtered[mask]
|
|
except Exception as e:
|
|
# Update the table, plot, and summary even if there is a filter error.
|
|
return (
|
|
filter_query,
|
|
filtered,
|
|
generate_pareto_plot(filtered, metric_x, metric_y),
|
|
f"Filter error: {e}",
|
|
)
|
|
|
|
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
|
|
fig = generate_pareto_plot(filtered, metric_x, metric_y)
|
|
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
|
|
return filter_query, format_df(filtered), fig, summary
|
|
|
|
apply_filter_button.click(
|
|
fn=apply_filter,
|
|
inputs=[filter_textbox, task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
|
|
outputs=[filter_state, data_table, pareto_plot, summary_box],
|
|
)
|
|
|
|
def reset_filter(task_name, model_id, metric_x, metric_y):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
|
|
fig = generate_pareto_plot(filtered, metric_x, metric_y)
|
|
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
|
|
# Return empty strings to clear the filter state and textbox.
|
|
return "", "", format_df(filtered), fig, summary
|
|
|
|
reset_filter_button.click(
|
|
fn=reset_filter,
|
|
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
|
|
outputs=[filter_state, filter_textbox, data_table, pareto_plot, summary_box],
|
|
)
|
|
|
|
gr.Markdown("## Export data")
|
|
# Export button for CSV download.
|
|
export_button = gr.Button("Export Filtered Data")
|
|
export_button.click(
|
|
fn=lambda task, model: export_csv(filter_data(task, model, df)),
|
|
inputs=[task_dropdown, model_dropdown],
|
|
outputs=csv_output,
|
|
)
|
|
|
|
demo.load(
|
|
fn=update_pareto_plot_and_summary,
|
|
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
|
|
outputs=[pareto_plot, summary_box],
|
|
)
|
|
|
|
return demo
|
|
|
|
|
|
path = os.path.join(os.path.dirname(__file__), "MetaMathQA", "results")
|
|
df = load_df(path, task_name="MetaMathQA")
|
|
demo = build_app(df)
|
|
demo.launch()
|