mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
Add MiSS, an evolution of Bone, from https://arxiv.org/abs/2409.15371. MiSS will replace Bone, which is now deprecated. A script to convert Bone checkpoints to MiSS checkpoints is included.
108 lines
3.9 KiB
Python
108 lines
3.9 KiB
Python
# Copyright 2025-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from typing import Literal, Optional
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
|
from trl import SFTConfig, SFTTrainer
|
|
|
|
from peft import MissConfig, get_peft_model
|
|
|
|
|
|
@dataclass
|
|
class ScriptArguments(SFTConfig):
|
|
# model configs
|
|
base_model_name_or_path: Optional[str] = field(
|
|
default=None, metadata={"help": "The name or path of the fp32/16 base model."}
|
|
)
|
|
bits: str = field(default="bf16", metadata={"help": "(`['bf16', 'fp16', fp32]`)"})
|
|
init_weights: Literal[True, "bat"] = field(
|
|
default=True,
|
|
metadata={
|
|
"help": (
|
|
"True -> MiSS efficience and balance; `bat` -> Bat, `mini` -> smaller MiSS efficience and balance"
|
|
),
|
|
},
|
|
)
|
|
miss_r: int = field(default=16)
|
|
merge_and_save: bool = field(default=False)
|
|
# dataset configs
|
|
data_path: str = field(default="imdb", metadata={"help": "Path to the training data."})
|
|
dataset_split: str = field(default="train[:1%]", metadata={"help": "(`['train', 'test', 'eval']`):"})
|
|
dataset_field: list[str] = field(default=None, metadata={"help": "Fields of dataset input and output."})
|
|
|
|
|
|
parser = HfArgumentParser(ScriptArguments)
|
|
script_args = parser.parse_args_into_dataclasses()[0]
|
|
print(script_args)
|
|
|
|
print(f"Load pre-processed residual model in {script_args.bits} bits.")
|
|
if script_args.bits in ["nf4", "fp4", "int8"]:
|
|
print("MiSS currently does not support quantization.")
|
|
|
|
elif script_args.base_model_name_or_path is not None:
|
|
print(f"No available pre-processed model, manually initialize a MiSS using {script_args.base_model_name_or_path}.")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
script_args.base_model_name_or_path,
|
|
torch_dtype=(
|
|
torch.float16
|
|
if script_args.bits == "fp16"
|
|
else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32)
|
|
),
|
|
device_map="auto",
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name_or_path)
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
miss_config = MissConfig(
|
|
r=script_args.miss_r,
|
|
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
init_weights=script_args.init_weights,
|
|
)
|
|
peft_model = get_peft_model(model, miss_config)
|
|
|
|
print(peft_model)
|
|
peft_model.print_trainable_parameters()
|
|
|
|
print(f"Training MiSS with trl on the {script_args.data_path}[{script_args.dataset_split}] dataset.")
|
|
dataset = load_dataset(script_args.data_path, split=script_args.dataset_split)
|
|
dataset = dataset.map(
|
|
lambda example: {
|
|
"text": f"### USER: {example[script_args.dataset_field[0]]}\n### ASSISTANT: {example[script_args.dataset_field[1]]}"
|
|
}
|
|
)
|
|
|
|
trainer = SFTTrainer(
|
|
model=peft_model,
|
|
args=script_args,
|
|
train_dataset=dataset,
|
|
tokenizer=tokenizer,
|
|
)
|
|
trainer.train()
|
|
trainer.save_state()
|
|
|
|
peft_model.save_pretrained(
|
|
os.path.join(script_args.output_dir, "miss_ft"),
|
|
)
|
|
|
|
if script_args.merge_and_save:
|
|
model = peft_model.merge_and_unload()
|
|
model.save_pretrained(os.path.join(script_args.output_dir, "miss_merged"))
|
|
tokenizer.save_pretrained(os.path.join(script_args.output_dir, "miss_merged"))
|