mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
683 lines
29 KiB
Python
683 lines
29 KiB
Python
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import platform
|
|
import tempfile
|
|
from unittest.mock import Mock, call, patch
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
DataCollatorForLanguageModeling,
|
|
Trainer,
|
|
TrainingArguments,
|
|
)
|
|
|
|
from peft import (
|
|
AdaLoraConfig,
|
|
BOFTConfig,
|
|
BoneConfig,
|
|
C3AConfig,
|
|
CPTConfig,
|
|
FourierFTConfig,
|
|
HRAConfig,
|
|
IA3Config,
|
|
LoraConfig,
|
|
OFTConfig,
|
|
PrefixTuningConfig,
|
|
PromptEncoderConfig,
|
|
PromptTuningConfig,
|
|
PromptTuningInit,
|
|
ShiraConfig,
|
|
VBLoRAConfig,
|
|
VeraConfig,
|
|
get_peft_model,
|
|
)
|
|
|
|
from .testing_common import PeftCommonTester
|
|
from .testing_utils import device_count, load_dataset_english_quotes, set_init_weights_false
|
|
|
|
|
|
PEFT_DECODER_MODELS_TO_TEST = [
|
|
"hf-internal-testing/tiny-random-OPTForCausalLM",
|
|
"hf-internal-testing/tiny-random-GPT2LMHeadModel",
|
|
"hf-internal-testing/tiny-random-BloomForCausalLM",
|
|
"hf-internal-testing/tiny-random-gpt_neo",
|
|
"hf-internal-testing/tiny-random-GPTJForCausalLM",
|
|
"hf-internal-testing/tiny-random-GPTBigCodeForCausalLM",
|
|
"trl-internal-testing/tiny-random-LlamaForCausalLM",
|
|
"peft-internal-testing/tiny-dummy-qwen2",
|
|
"hf-internal-testing/tiny-random-Gemma3ForCausalLM",
|
|
]
|
|
|
|
SMALL_GRID_MODELS = [
|
|
"hf-internal-testing/tiny-random-gpt2",
|
|
"hf-internal-testing/tiny-random-OPTForCausalLM",
|
|
"hf-internal-testing/tiny-random-MistralForCausalLM",
|
|
"peft-internal-testing/tiny-dummy-qwen2",
|
|
"trl-internal-testing/tiny-random-LlamaForCausalLM",
|
|
]
|
|
|
|
|
|
# TODO Missing from this list are LoKr, LoHa, LN Tuning, add them
|
|
ALL_CONFIGS = [
|
|
(
|
|
AdaLoraConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
"total_step": 1,
|
|
},
|
|
),
|
|
(
|
|
BOFTConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
(
|
|
BoneConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
"r": 2,
|
|
},
|
|
),
|
|
(
|
|
CPTConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing
|
|
"cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
|
|
"cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
|
|
},
|
|
),
|
|
(
|
|
FourierFTConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"n_frequency": 10,
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
(
|
|
HRAConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
(
|
|
IA3Config,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
"feedforward_modules": None,
|
|
},
|
|
),
|
|
(
|
|
LoraConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": None,
|
|
"lora_dropout": 0.05,
|
|
"bias": "none",
|
|
},
|
|
),
|
|
# LoRA + trainable tokens
|
|
(
|
|
LoraConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": None,
|
|
"lora_dropout": 0.05,
|
|
"bias": "none",
|
|
"trainable_token_indices": [0, 1, 3],
|
|
},
|
|
),
|
|
(
|
|
OFTConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
(
|
|
PrefixTuningConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"num_virtual_tokens": 10,
|
|
},
|
|
),
|
|
(
|
|
PromptEncoderConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"num_virtual_tokens": 10,
|
|
"encoder_hidden_size": 32,
|
|
},
|
|
),
|
|
(
|
|
PromptTuningConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"num_virtual_tokens": 10,
|
|
},
|
|
),
|
|
(
|
|
ShiraConfig,
|
|
{
|
|
"r": 1,
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
"init_weights": False,
|
|
},
|
|
),
|
|
(
|
|
VBLoRAConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": None,
|
|
"vblora_dropout": 0.05,
|
|
"vector_length": 1,
|
|
"num_vectors": 2,
|
|
},
|
|
),
|
|
(
|
|
VeraConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"r": 8,
|
|
"target_modules": None,
|
|
"vera_dropout": 0.05,
|
|
"projection_prng_key": 0xFF,
|
|
"d_initial": 0.1,
|
|
"save_projection": True,
|
|
"bias": "none",
|
|
},
|
|
),
|
|
(
|
|
C3AConfig,
|
|
{
|
|
"task_type": "CAUSAL_LM",
|
|
"block_size": 1, # Some test cases contain shapes of prime numbers where `block_size` must be 1
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
]
|
|
|
|
|
|
def _skip_if_not_conv1d_supported(model_id, config_cls):
|
|
if "GPT2LMHeadModel" in model_id and config_cls in [
|
|
BOFTConfig,
|
|
BoneConfig,
|
|
HRAConfig,
|
|
OFTConfig,
|
|
ShiraConfig,
|
|
C3AConfig,
|
|
]:
|
|
pytest.skip("Skipping BOFT/HRA/OFT/Bone/SHiRA/C3A for GPT2LMHeadModel")
|
|
|
|
|
|
def _skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls):
|
|
if "GPT2LMHeadModel" in model_id and config_cls in [
|
|
AdaLoraConfig,
|
|
BOFTConfig,
|
|
HRAConfig,
|
|
OFTConfig,
|
|
BoneConfig,
|
|
C3AConfig,
|
|
]:
|
|
pytest.skip("Skipping AdaLora/BOFT/HRA/OFT/Bone for GPT2LMHeadModel")
|
|
|
|
|
|
class TestDecoderModels(PeftCommonTester):
|
|
transformers_class = AutoModelForCausalLM
|
|
|
|
def skipTest(self, reason=""):
|
|
# for backwards compatibility with unittest style test classes
|
|
pytest.skip(reason)
|
|
|
|
def prepare_inputs_for_testing(self):
|
|
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
|
|
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_model_attr(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_adapter_name(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_adapter_name(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_prompt_tuning_text_prepare_for_training(self, model_id, config_cls, config_kwargs):
|
|
if config_cls != PromptTuningConfig:
|
|
pytest.skip(f"This test does not apply to {config_cls}")
|
|
config_kwargs = config_kwargs.copy()
|
|
config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT
|
|
config_kwargs["prompt_tuning_init_text"] = "This is a test prompt."
|
|
config_kwargs["tokenizer_name_or_path"] = model_id
|
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
|
|
|
|
def test_prompt_tuning_text_tokenizer_kwargs(self):
|
|
# Allow users to pass additional arguments to Tokenizer.from_pretrained
|
|
# Fix for #1032
|
|
mock = Mock()
|
|
orig_from_pretrained = AutoTokenizer.from_pretrained
|
|
|
|
def mock_autotokenizer_from_pretrained(*args, **kwargs):
|
|
mock(*args, **kwargs)
|
|
return orig_from_pretrained(config.tokenizer_name_or_path)
|
|
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
config = PromptTuningConfig(
|
|
base_model_name_or_path=model_id,
|
|
tokenizer_name_or_path=model_id,
|
|
num_virtual_tokens=10,
|
|
prompt_tuning_init=PromptTuningInit.TEXT,
|
|
task_type="CAUSAL_LM",
|
|
prompt_tuning_init_text="This is a test prompt.",
|
|
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
|
|
)
|
|
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
|
|
with patch("transformers.AutoTokenizer.from_pretrained", mock_autotokenizer_from_pretrained):
|
|
_ = get_peft_model(model, config)
|
|
expected_call = call(model_id, trust_remote_code=True, foo="bar")
|
|
assert mock.call_args == expected_call
|
|
|
|
def test_prompt_tuning_config_invalid_args(self):
|
|
# Raise an error when tokenizer_kwargs is used with prompt_tuning_init!='TEXT', because this argument has no
|
|
# function in that case
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
with pytest.raises(ValueError, match="tokenizer_kwargs only valid when using prompt_tuning_init='TEXT'."):
|
|
PromptTuningConfig(
|
|
base_model_name_or_path=model_id,
|
|
tokenizer_name_or_path=model_id,
|
|
num_virtual_tokens=10,
|
|
task_type="CAUSAL_LM",
|
|
prompt_tuning_init_text="This is a test prompt.",
|
|
prompt_tuning_init=PromptTuningInit.RANDOM, # <= should not be used together with tokenizer_kwargs
|
|
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
|
|
)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_save_pretrained_selected_adapters(
|
|
model_id, config_cls, config_kwargs.copy(), safe_serialization=False
|
|
)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_merge_layers(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_merge_layers(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_merge_layers_multi(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_merge_layers_multi(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_merge_layers_nan(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_merge_layers_nan(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
|
|
if config_cls != LoraConfig:
|
|
pytest.skip("Mixed adapter batches not supported for this config.")
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
|
|
if config_cls != LoraConfig:
|
|
pytest.skip("Mixed adapter batches not supported for this config.")
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_generate(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_pos_args(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_generate_pos_args(model_id, config_cls, config_kwargs.copy(), raises_err=False)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_merge_layers_fp16(self, model_id, config_cls, config_kwargs):
|
|
self._test_merge_layers_fp16(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_half_prec(self, model_id, config_cls, config_kwargs):
|
|
self._test_generate_half_prec(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
|
|
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_decoders(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_training(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_decoders_layer_indexing(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_layer_indexing(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_inference_safetensors(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_inference_safetensors(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
|
|
self._test_peft_model_device_map(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_delete_adapter(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_delete_adapter(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_unload_adapter(self, model_id, config_cls, config_kwargs):
|
|
_skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls)
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_unload_adapter(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_disable_adapter(model_id, config_cls, config_kwargs.copy())
|
|
|
|
def test_generate_adalora_no_dropout(self):
|
|
# test for issue #730
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
config_kwargs = {
|
|
"target_modules": None,
|
|
"task_type": "CAUSAL_LM",
|
|
"lora_dropout": 0.0,
|
|
"total_step": 1,
|
|
}
|
|
self._test_generate(model_id, AdaLoraConfig, config_kwargs.copy())
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_passing_input_embeds_works(self, model_id, config_cls, config_kwargs):
|
|
_skip_if_not_conv1d_supported(model_id, config_cls)
|
|
if (platform.system() == "Darwin") and (config_cls == PrefixTuningConfig):
|
|
# the error is:
|
|
# > RuntimeError: unsupported operation: more than one element of the written-to tensor refers to a single
|
|
# > memory location. Please clone() the tensor before performing the operation.
|
|
# in transformers sdpa_mask_older_torch. As we (currently) cannot upgrade PyTorch on MacOS GH runners, we're
|
|
# stuck with this error.
|
|
# TODO: remove if torch can be upgraded on MacOS or if MacOS CI is removed
|
|
pytest.skip("Prefix tuning fails on MacOS in this case, not worth fixing")
|
|
self._test_passing_input_embeds_works("", model_id, config_cls, config_kwargs.copy())
|
|
|
|
def test_lora_layer_replication(self):
|
|
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
|
|
config_kwargs = {
|
|
"target_modules": ["down_proj", "up_proj"],
|
|
"task_type": "CAUSAL_LM",
|
|
"lora_dropout": 0.0,
|
|
"layer_replication": [[0, 1], [0, 2], [1, 2]],
|
|
}
|
|
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
|
|
config = LoraConfig(base_model_name_or_path=model_id, **config_kwargs)
|
|
|
|
assert len(model.model.layers), "Expected 2 layers in original model." == 2
|
|
model = get_peft_model(model, config)
|
|
layers = model.base_model.model.model.layers
|
|
assert len(layers) == 4, "Expected 4 layers in adapted model."
|
|
assert (
|
|
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
|
|
== layers[1].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
|
|
and layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
|
|
== layers[3].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
|
|
), "Expected layers 0-1 and 2-3 to share weights"
|
|
assert (
|
|
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
|
|
!= layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
|
|
), "Expected layers 0 and 2 to have different weights"
|
|
assert (
|
|
layers[0].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
|
|
!= layers[1].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
|
|
and layers[2].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
|
|
!= layers[3].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
|
|
), "Expected all LoRA adapters to have distinct weights"
|
|
assert len([n for n, _ in model.named_parameters() if ".lora_A." in n]) == 8, (
|
|
"Expected 8 LoRA adapters since we are adding one each for up and down."
|
|
)
|
|
self._test_prepare_for_training(model_id, LoraConfig, config_kwargs.copy())
|
|
self._test_generate(model_id, LoraConfig, config_kwargs.copy())
|
|
|
|
def test_prompt_learning_with_grouped_query_attention(self):
|
|
# See 1901, fixes a bug with handling GQA
|
|
model_id = "peft-internal-testing/tiny-dummy-qwen2"
|
|
base_model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
|
|
model = get_peft_model(base_model, peft_config)
|
|
x = torch.tensor([[1, 2, 3]])
|
|
# does not raise
|
|
model(x)
|
|
|
|
def test_prefix_tuning_mistral(self):
|
|
# See issue 869, 1962
|
|
model_id = "hf-internal-testing/tiny-random-MistralForCausalLM"
|
|
base_model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
|
|
model = get_peft_model(base_model, peft_config)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
def process(samples):
|
|
tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
|
|
return tokenized
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(process, batched=True)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
num_train_epochs=1,
|
|
max_steps=5,
|
|
per_device_train_batch_size=4,
|
|
output_dir=tmp_dirname,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
trainer.train()
|
|
|
|
@pytest.mark.parametrize("model_id", SMALL_GRID_MODELS)
|
|
@pytest.mark.parametrize(
|
|
"config_cls,config_kwargs",
|
|
[
|
|
(
|
|
PromptTuningConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"task_type": "CAUSAL_LM",
|
|
},
|
|
),
|
|
(
|
|
PrefixTuningConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"task_type": "CAUSAL_LM",
|
|
},
|
|
),
|
|
(
|
|
PromptEncoderConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"encoder_hidden_size": 32,
|
|
"task_type": "CAUSAL_LM",
|
|
},
|
|
),
|
|
(
|
|
CPTConfig,
|
|
{
|
|
"cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing
|
|
"cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
|
|
"cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
def test_prompt_learning_with_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
|
|
# See issue 869
|
|
# Test prompt learning methods with gradient checkpointing in a semi realistic setting.
|
|
# Prefix tuning does not work if the model uses the new caching implementation. In that case, a helpful error
|
|
# should be raised.
|
|
|
|
# skip if multi GPU, since this results in DataParallel usage by Trainer, which fails with "CUDA device
|
|
# assertion", breaking subsequent tests
|
|
if device_count > 1:
|
|
pytest.skip("Skip on multi-GPU setups")
|
|
peft_config = config_cls(base_model_name_or_path=model_id, **config_kwargs)
|
|
base_model = self.transformers_class.from_pretrained(model_id)
|
|
base_model.gradient_checkpointing_enable()
|
|
|
|
try:
|
|
model = get_peft_model(base_model, peft_config)
|
|
except ValueError as exc:
|
|
# Some methods will raise a helpful error. After this, exit the test, as training would fail.
|
|
assert config_cls == PrefixTuningConfig
|
|
assert "Prefix tuning does not work with gradient checkpointing" in str(exc)
|
|
return
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
def process(samples):
|
|
tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
|
|
return tokenized
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(process, batched=True)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
num_train_epochs=1,
|
|
max_steps=3,
|
|
per_device_train_batch_size=4,
|
|
output_dir=tmp_dirname,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
trainer.train()
|