mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
This is necessary to add to main fast, or else all branches from main will require these changes to pass the quality checks.
1105 lines
44 KiB
Python
1105 lines
44 KiB
Python
import argparse
|
|
import gc
|
|
import hashlib
|
|
import itertools
|
|
import logging
|
|
import math
|
|
import os
|
|
import threading
|
|
import warnings
|
|
from contextlib import nullcontext
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import diffusers
|
|
import numpy as np
|
|
import psutil
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
import transformers
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import set_seed
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDPMScheduler,
|
|
DiffusionPipeline,
|
|
DPMSolverMultistepScheduler,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.utils import check_min_version
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from huggingface_hub import HfFolder, Repository, whoami
|
|
from PIL import Image
|
|
from torch.utils.data import Dataset
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
from transformers import AutoTokenizer, PretrainedConfig
|
|
|
|
from peft import get_peft_model
|
|
from peft.tuners.oft.config import OFTConfig
|
|
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.10.0.dev0")
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
UNET_TARGET_MODULES = ["to_q", "to_v", "query", "value"] # , "ff.net.0.proj"]
|
|
TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"]
|
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
|
text_encoder_config = PretrainedConfig.from_pretrained(
|
|
pretrained_model_name_or_path,
|
|
subfolder="text_encoder",
|
|
revision=revision,
|
|
)
|
|
model_class = text_encoder_config.architectures[0]
|
|
|
|
if model_class == "CLIPTextModel":
|
|
from transformers import CLIPTextModel
|
|
|
|
return CLIPTextModel
|
|
elif model_class == "RobertaSeriesModelWithTransformation":
|
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
|
|
|
return RobertaSeriesModelWithTransformation
|
|
else:
|
|
raise ValueError(f"{model_class} is not supported.")
|
|
|
|
|
|
def parse_args(input_args=None):
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_data_dir",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="A folder containing the training data of instance images.",
|
|
)
|
|
parser.add_argument(
|
|
"--class_data_dir",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="A folder containing the training data of class images.",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_prompt",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="The prompt with identifier specifying the instance",
|
|
)
|
|
parser.add_argument(
|
|
"--class_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="The prompt to specify images in the same class as provided instance images.",
|
|
)
|
|
parser.add_argument(
|
|
"--with_prior_preservation",
|
|
default=False,
|
|
action="store_true",
|
|
help="Flag to add prior preservation loss.",
|
|
)
|
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
|
parser.add_argument(
|
|
"--num_class_images",
|
|
type=int,
|
|
default=100,
|
|
help=(
|
|
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
|
" class_data_dir, additional images will be sampled with class_prompt."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--validation_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="A prompt that is used during validation to verify that the model is learning.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_validation_images",
|
|
type=int,
|
|
default=4,
|
|
help="Number of images that should be generated during validation with `validation_prompt`.",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_steps",
|
|
type=int,
|
|
default=100,
|
|
help=(
|
|
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
|
|
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="text-inversion-model",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=512,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
|
)
|
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
|
|
|
# oft args
|
|
parser.add_argument("--use_oft", action="store_true", help="Whether to use OFT for parameter efficient tuning")
|
|
parser.add_argument("--oft_r", type=int, default=8, help="OFT rank, only used if use_oft is True")
|
|
parser.add_argument("--oft_alpha", type=int, default=32, help="OFT alpha, only used if use_oft is True")
|
|
parser.add_argument("--oft_dropout", type=float, default=0.0, help="OFT dropout, only used if use_oft is True")
|
|
parser.add_argument(
|
|
"--oft_use_coft", action="store_true", help="Using constrained OFT, only used if use_oft is True"
|
|
)
|
|
parser.add_argument(
|
|
"--oft_eps",
|
|
type=float,
|
|
default=0.0,
|
|
help="The control strength of COFT. Only has an effect if `oft_use_coft` is set to True.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--oft_text_encoder_r",
|
|
type=int,
|
|
default=8,
|
|
help="OFT rank for text encoder, only used if `use_oft` and `train_text_encoder` are True",
|
|
)
|
|
parser.add_argument(
|
|
"--oft_text_encoder_alpha",
|
|
type=int,
|
|
default=32,
|
|
help="OFT alpha for text encoder, only used if `use_oft` and `train_text_encoder` are True",
|
|
)
|
|
parser.add_argument(
|
|
"--oft_text_encoder_dropout",
|
|
type=float,
|
|
default=0.0,
|
|
help="OFT dropout for text encoder, only used if `use_oft` and `train_text_encoder` are True",
|
|
)
|
|
parser.add_argument(
|
|
"--oft_text_encoder_use_coft",
|
|
action="store_true",
|
|
help="Using constrained OFT on the text encoder, only used if use_oft is True",
|
|
)
|
|
parser.add_argument(
|
|
"--oft_text_encoder_eps",
|
|
type=float,
|
|
default=0.0,
|
|
help="The control strength of COFT on the text encoder. Only has an effect if `oft_text_encoder_use_coft` is set to True.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num_dataloader_workers", type=int, default=1, help="Num of workers for the training dataloader."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--no_tracemalloc",
|
|
default=False,
|
|
action="store_true",
|
|
help="Flag to stop memory allocation tracing during training. This could speed up training on Windows.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument(
|
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=1)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=500,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
|
" training using `--resume_from_checkpoint`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_checkpointing",
|
|
action="store_true",
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=5e-6,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument(
|
|
"--lr_num_cycles",
|
|
type=int,
|
|
default=1,
|
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
|
)
|
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
|
parser.add_argument(
|
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--allow_tf32",
|
|
action="store_true",
|
|
help=(
|
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="tensorboard",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--wandb_key",
|
|
type=str,
|
|
default=None,
|
|
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "),
|
|
)
|
|
parser.add_argument(
|
|
"--wandb_project_name",
|
|
type=str,
|
|
default=None,
|
|
help=("If report to option is set to wandb, project name in wandb for log tracking "),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default=None,
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--prior_generation_precision",
|
|
type=str,
|
|
default=None,
|
|
choices=["no", "fp32", "fp16", "bf16"],
|
|
help=(
|
|
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
|
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
|
),
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
parser.add_argument(
|
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
|
)
|
|
|
|
if input_args is not None:
|
|
args = parser.parse_args(input_args)
|
|
else:
|
|
args = parser.parse_args()
|
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
if args.with_prior_preservation:
|
|
if args.class_data_dir is None:
|
|
raise ValueError("You must specify a data directory for class images.")
|
|
if args.class_prompt is None:
|
|
raise ValueError("You must specify prompt for class images.")
|
|
else:
|
|
# logger is not available yet
|
|
if args.class_data_dir is not None:
|
|
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
|
if args.class_prompt is not None:
|
|
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
|
|
|
return args
|
|
|
|
|
|
# Converting Bytes to Megabytes
|
|
def b2mb(x):
|
|
return int(x / 2**20)
|
|
|
|
|
|
# This context manager is used to track the peak memory usage of the process
|
|
class TorchTracemalloc:
|
|
def __enter__(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
|
|
self.begin = torch.cuda.memory_allocated()
|
|
self.process = psutil.Process()
|
|
|
|
self.cpu_begin = self.cpu_mem_used()
|
|
self.peak_monitoring = True
|
|
peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
|
|
peak_monitor_thread.daemon = True
|
|
peak_monitor_thread.start()
|
|
return self
|
|
|
|
def cpu_mem_used(self):
|
|
"""get resident set size memory for the current process"""
|
|
return self.process.memory_info().rss
|
|
|
|
def peak_monitor_func(self):
|
|
self.cpu_peak = -1
|
|
|
|
while True:
|
|
self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak)
|
|
|
|
# can't sleep or will not catch the peak right (this comment is here on purpose)
|
|
# time.sleep(0.001) # 1msec
|
|
|
|
if not self.peak_monitoring:
|
|
break
|
|
|
|
def __exit__(self, *exc):
|
|
self.peak_monitoring = False
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
self.end = torch.cuda.memory_allocated()
|
|
self.peak = torch.cuda.max_memory_allocated()
|
|
self.used = b2mb(self.end - self.begin)
|
|
self.peaked = b2mb(self.peak - self.begin)
|
|
|
|
self.cpu_end = self.cpu_mem_used()
|
|
self.cpu_used = b2mb(self.cpu_end - self.cpu_begin)
|
|
self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin)
|
|
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
|
|
|
|
|
|
class DreamBoothDataset(Dataset):
|
|
"""
|
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
|
It pre-processes the images and the tokenizes prompts.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
instance_data_root,
|
|
instance_prompt,
|
|
tokenizer,
|
|
class_data_root=None,
|
|
class_prompt=None,
|
|
size=512,
|
|
center_crop=False,
|
|
):
|
|
self.size = size
|
|
self.center_crop = center_crop
|
|
self.tokenizer = tokenizer
|
|
|
|
self.instance_data_root = Path(instance_data_root)
|
|
if not self.instance_data_root.exists():
|
|
raise ValueError("Instance images root doesn't exists.")
|
|
|
|
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
|
self.num_instance_images = len(self.instance_images_path)
|
|
self.instance_prompt = instance_prompt
|
|
self._length = self.num_instance_images
|
|
|
|
if class_data_root is not None:
|
|
self.class_data_root = Path(class_data_root)
|
|
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
|
self.class_images_path = list(self.class_data_root.iterdir())
|
|
self.num_class_images = len(self.class_images_path)
|
|
self._length = max(self.num_class_images, self.num_instance_images)
|
|
self.class_prompt = class_prompt
|
|
else:
|
|
self.class_data_root = None
|
|
|
|
self.image_transforms = transforms.Compose(
|
|
[
|
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
def __len__(self):
|
|
return self._length
|
|
|
|
def __getitem__(self, index):
|
|
example = {}
|
|
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
|
|
if not instance_image.mode == "RGB":
|
|
instance_image = instance_image.convert("RGB")
|
|
example["instance_images"] = self.image_transforms(instance_image)
|
|
example["instance_prompt_ids"] = self.tokenizer(
|
|
self.instance_prompt,
|
|
truncation=True,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
|
|
if self.class_data_root:
|
|
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
|
if not class_image.mode == "RGB":
|
|
class_image = class_image.convert("RGB")
|
|
example["class_images"] = self.image_transforms(class_image)
|
|
example["class_prompt_ids"] = self.tokenizer(
|
|
self.class_prompt,
|
|
truncation=True,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
|
|
return example
|
|
|
|
|
|
def collate_fn(examples, with_prior_preservation=False):
|
|
input_ids = [example["instance_prompt_ids"] for example in examples]
|
|
pixel_values = [example["instance_images"] for example in examples]
|
|
|
|
# Concat class and instance examples for prior preservation.
|
|
# We do this to avoid doing two forward passes.
|
|
if with_prior_preservation:
|
|
input_ids += [example["class_prompt_ids"] for example in examples]
|
|
pixel_values += [example["class_images"] for example in examples]
|
|
|
|
pixel_values = torch.stack(pixel_values)
|
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
|
|
|
input_ids = torch.cat(input_ids, dim=0)
|
|
|
|
batch = {
|
|
"input_ids": input_ids,
|
|
"pixel_values": pixel_values,
|
|
}
|
|
return batch
|
|
|
|
|
|
class PromptDataset(Dataset):
|
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
|
|
|
def __init__(self, prompt, num_samples):
|
|
self.prompt = prompt
|
|
self.num_samples = num_samples
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
def __getitem__(self, index):
|
|
example = {}
|
|
example["prompt"] = self.prompt
|
|
example["index"] = index
|
|
return example
|
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
|
if token is None:
|
|
token = HfFolder.get_token()
|
|
if organization is None:
|
|
username = whoami(token)["name"]
|
|
return f"{username}/{model_id}"
|
|
else:
|
|
return f"{organization}/{model_id}"
|
|
|
|
|
|
def main(args):
|
|
logging_dir = Path(args.output_dir, args.logging_dir)
|
|
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with=args.report_to,
|
|
project_dir=logging_dir,
|
|
)
|
|
if args.report_to == "wandb":
|
|
import wandb
|
|
|
|
wandb.login(key=args.wandb_key)
|
|
wandb.init(project=args.wandb_project_name)
|
|
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
|
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
|
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
|
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
|
|
raise ValueError(
|
|
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
|
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
|
)
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
if accelerator.is_local_main_process:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_warning()
|
|
diffusers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
diffusers.utils.logging.set_verbosity_error()
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Generate class images if prior preservation is enabled.
|
|
if args.with_prior_preservation:
|
|
class_images_dir = Path(args.class_data_dir)
|
|
if not class_images_dir.exists():
|
|
class_images_dir.mkdir(parents=True)
|
|
cur_class_images = len(list(class_images_dir.iterdir()))
|
|
|
|
if cur_class_images < args.num_class_images:
|
|
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
|
if args.prior_generation_precision == "fp32":
|
|
torch_dtype = torch.float32
|
|
elif args.prior_generation_precision == "fp16":
|
|
torch_dtype = torch.float16
|
|
elif args.prior_generation_precision == "bf16":
|
|
torch_dtype = torch.bfloat16
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
torch_dtype=torch_dtype,
|
|
safety_checker=None,
|
|
revision=args.revision,
|
|
)
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
num_new_images = args.num_class_images - cur_class_images
|
|
logger.info(f"Number of class images to sample: {num_new_images}.")
|
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
|
|
|
sample_dataloader = accelerator.prepare(sample_dataloader)
|
|
pipeline.to(accelerator.device)
|
|
|
|
for example in tqdm(
|
|
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
|
):
|
|
images = pipeline(example["prompt"]).images
|
|
|
|
for i, image in enumerate(images):
|
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
|
image.save(image_filename)
|
|
|
|
del pipeline
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.push_to_hub:
|
|
if args.hub_model_id is None:
|
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
|
else:
|
|
repo_name = args.hub_model_id
|
|
repo = Repository(args.output_dir, clone_from=repo_name) # noqa: F841
|
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
|
if "step_*" not in gitignore:
|
|
gitignore.write("step_*\n")
|
|
if "epoch_*" not in gitignore:
|
|
gitignore.write("epoch_*\n")
|
|
elif args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
# Load the tokenizer
|
|
if args.tokenizer_name:
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
|
elif args.pretrained_model_name_or_path:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="tokenizer",
|
|
revision=args.revision,
|
|
use_fast=False,
|
|
)
|
|
|
|
# import correct text encoder class
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
|
|
|
# Load scheduler and models
|
|
noise_scheduler = DDPMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
num_train_timesteps=1000,
|
|
) # DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
|
text_encoder = text_encoder_cls.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
|
)
|
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
|
|
unet = UNet2DConditionModel.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
|
)
|
|
|
|
if args.use_oft:
|
|
config = OFTConfig(
|
|
r=args.oft_r,
|
|
alpha=args.oft_alpha,
|
|
target_modules=UNET_TARGET_MODULES,
|
|
module_dropout=args.oft_dropout,
|
|
init_weights=True,
|
|
coft=args.oft_use_coft,
|
|
eps=args.oft_eps,
|
|
)
|
|
unet = get_peft_model(unet, config)
|
|
unet.print_trainable_parameters()
|
|
print(unet)
|
|
|
|
vae.requires_grad_(False)
|
|
if not args.train_text_encoder:
|
|
text_encoder.requires_grad_(False)
|
|
elif args.train_text_encoder and args.use_oft:
|
|
config = OFTConfig(
|
|
r=args.oft_text_encoder_r,
|
|
alpha=args.oft_text_encoder_alpha,
|
|
target_modules=TEXT_ENCODER_TARGET_MODULES,
|
|
module_dropout=args.oft_text_encoder_dropout,
|
|
init_weights=True,
|
|
coft=args.oft_text_encoder_use_coft,
|
|
eps=args.oft_text_encoder_eps,
|
|
)
|
|
text_encoder = get_peft_model(text_encoder, config)
|
|
text_encoder.print_trainable_parameters()
|
|
print(text_encoder)
|
|
|
|
if args.enable_xformers_memory_efficient_attention:
|
|
if is_xformers_available():
|
|
unet.enable_xformers_memory_efficient_attention()
|
|
else:
|
|
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
# below fails when using oft so commenting it out
|
|
if args.train_text_encoder and not args.use_oft:
|
|
text_encoder.gradient_checkpointing_enable()
|
|
|
|
# Enable TF32 for faster training on Ampere GPUs,
|
|
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
|
if args.allow_tf32:
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
if args.scale_lr:
|
|
args.learning_rate = (
|
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
|
)
|
|
|
|
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
|
if args.use_8bit_adam:
|
|
try:
|
|
import bitsandbytes as bnb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
|
)
|
|
|
|
optimizer_class = bnb.optim.AdamW8bit
|
|
else:
|
|
optimizer_class = torch.optim.AdamW
|
|
|
|
# Optimizer creation
|
|
params_to_optimize = (
|
|
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
|
|
)
|
|
optimizer = optimizer_class(
|
|
params_to_optimize,
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
# Dataset and DataLoaders creation:
|
|
train_dataset = DreamBoothDataset(
|
|
instance_data_root=args.instance_data_dir,
|
|
instance_prompt=args.instance_prompt,
|
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
|
class_prompt=args.class_prompt,
|
|
tokenizer=tokenizer,
|
|
size=args.resolution,
|
|
center_crop=args.center_crop,
|
|
)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset,
|
|
batch_size=args.train_batch_size,
|
|
shuffle=True,
|
|
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
|
num_workers=args.num_dataloader_workers,
|
|
)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
|
num_cycles=args.lr_num_cycles,
|
|
power=args.lr_power,
|
|
)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
if args.train_text_encoder:
|
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
else:
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
unet, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
|
# as these models are only used for inference, keeping weights in full precision is not required.
|
|
weight_dtype = torch.float32
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
|
|
# Move vae and text_encoder to device and cast to weight_dtype
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
if not args.train_text_encoder:
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if accelerator.is_main_process:
|
|
accelerator.init_trackers("dreambooth", config=vars(args))
|
|
|
|
# Train!
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
global_step = 0
|
|
first_epoch = 0
|
|
|
|
# Potentially load in the weights and states from a previous save
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint != "latest":
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the mos recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
path = dirs[-1]
|
|
accelerator.print(f"Resuming from checkpoint {path}")
|
|
accelerator.load_state(os.path.join(args.output_dir, path))
|
|
global_step = int(path.split("-")[1])
|
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps
|
|
first_epoch = resume_global_step // num_update_steps_per_epoch
|
|
resume_step = resume_global_step % num_update_steps_per_epoch
|
|
|
|
# Only show the progress bar once on each machine.
|
|
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
|
progress_bar.set_description("Steps")
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs):
|
|
unet.train()
|
|
if args.train_text_encoder:
|
|
text_encoder.train()
|
|
with TorchTracemalloc() if not args.no_tracemalloc else nullcontext() as tracemalloc:
|
|
for step, batch in enumerate(train_dataloader):
|
|
# Skip steps until we reach the resumed step
|
|
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
|
if step % args.gradient_accumulation_steps == 0:
|
|
progress_bar.update(1)
|
|
if args.report_to == "wandb":
|
|
accelerator.print(progress_bar)
|
|
continue
|
|
|
|
with accelerator.accumulate(unet):
|
|
# Convert images to latent space
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
|
latents = latents * 0.18215
|
|
|
|
# Sample noise that we'll add to the latents
|
|
noise = torch.randn_like(latents)
|
|
bsz = latents.shape[0]
|
|
# Sample a random timestep for each image
|
|
timesteps = torch.randint(
|
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
|
|
)
|
|
timesteps = timesteps.long()
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
|
|
# Get the text embedding for conditioning
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
|
|
|
# Predict the noise residual
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
# Get the target for loss depending on the prediction type
|
|
if noise_scheduler.config.prediction_type == "epsilon":
|
|
target = noise
|
|
elif noise_scheduler.config.prediction_type == "v_prediction":
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
|
else:
|
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
|
|
|
if args.with_prior_preservation:
|
|
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
|
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
|
target, target_prior = torch.chunk(target, 2, dim=0)
|
|
|
|
# Compute instance loss
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
|
|
|
# Compute prior loss
|
|
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
|
|
|
# Add the prior loss to the instance loss.
|
|
loss = loss + args.prior_loss_weight * prior_loss
|
|
else:
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
|
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients:
|
|
params_to_clip = (
|
|
itertools.chain(unet.parameters(), text_encoder.parameters())
|
|
if args.train_text_encoder
|
|
else unet.parameters()
|
|
)
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
if args.report_to == "wandb":
|
|
accelerator.print(progress_bar)
|
|
global_step += 1
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if (
|
|
args.validation_prompt is not None
|
|
and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0
|
|
):
|
|
logger.info(
|
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
|
f" {args.validation_prompt}."
|
|
)
|
|
# create pipeline
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
safety_checker=None,
|
|
revision=args.revision,
|
|
)
|
|
# set `keep_fp32_wrapper` to True because we do not want to remove
|
|
# mixed precision hooks while we are still training
|
|
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True)
|
|
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True)
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
|
pipeline = pipeline.to(accelerator.device)
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
# run inference
|
|
if args.seed is not None:
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
|
else:
|
|
generator = None
|
|
images = []
|
|
for _ in range(args.num_validation_images):
|
|
image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
|
|
images.append(image)
|
|
|
|
for tracker in accelerator.trackers:
|
|
if tracker.name == "tensorboard":
|
|
np_images = np.stack([np.asarray(img) for img in images])
|
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
|
if tracker.name == "wandb":
|
|
import wandb
|
|
|
|
tracker.log(
|
|
{
|
|
"validation": [
|
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
|
for i, image in enumerate(images)
|
|
]
|
|
}
|
|
)
|
|
|
|
del pipeline
|
|
torch.cuda.empty_cache()
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
|
|
|
|
if not args.no_tracemalloc:
|
|
accelerator.print(f"GPU Memory before entering the train : {b2mb(tracemalloc.begin)}")
|
|
accelerator.print(f"GPU Memory consumed at the end of the train (end-begin): {tracemalloc.used}")
|
|
accelerator.print(f"GPU Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}")
|
|
accelerator.print(
|
|
f"GPU Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}"
|
|
)
|
|
|
|
accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}")
|
|
accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}")
|
|
accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}")
|
|
accelerator.print(
|
|
f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}"
|
|
)
|
|
|
|
# Create the pipeline using using the trained modules and save it.
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
if args.use_oft:
|
|
unwarpped_unet = accelerator.unwrap_model(unet)
|
|
unwarpped_unet.save_pretrained(
|
|
os.path.join(args.output_dir, "unet"), state_dict=accelerator.get_state_dict(unet)
|
|
)
|
|
if args.train_text_encoder:
|
|
unwarpped_text_encoder = accelerator.unwrap_model(text_encoder)
|
|
unwarpped_text_encoder.save_pretrained(
|
|
os.path.join(args.output_dir, "text_encoder"),
|
|
state_dict=accelerator.get_state_dict(text_encoder),
|
|
)
|
|
else:
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
unet=accelerator.unwrap_model(unet),
|
|
text_encoder=accelerator.unwrap_model(text_encoder),
|
|
revision=args.revision,
|
|
)
|
|
pipeline.save_pretrained(args.output_dir)
|
|
|
|
if args.push_to_hub:
|
|
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|