mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
166 lines
4.5 KiB
Python
166 lines
4.5 KiB
Python
# Copyright 2024-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
from datautils import get_calib_data
|
|
from tqdm import tqdm
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
from peft import get_peft_model
|
|
from peft.tuners.lora.config import CordaConfig, LoraConfig
|
|
from peft.tuners.lora.corda import preprocess_corda
|
|
|
|
|
|
@torch.no_grad()
|
|
def run_model(model, calib_loader):
|
|
model.eval()
|
|
for batch in tqdm(calib_loader):
|
|
batch = {k: v.to(model.device) for k, v in batch.items()}
|
|
model(**batch)
|
|
|
|
|
|
def main(args):
|
|
# Setting random seed of numpy and torch
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
elif torch.xpu.is_available():
|
|
torch.xpu.manual_seed_all(args.seed)
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
# Load model
|
|
model_id = args.model_id
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, device_map="auto", dtype=torch.float16, trust_remote_code=True
|
|
)
|
|
|
|
# Collect data
|
|
calib_loader = get_calib_data(args.calib_dataset, tokenizer, model_id, args.calib_loader_size, seed=args.seed)
|
|
|
|
# Evaluate the original model
|
|
print("\n---- model before svd ---\n")
|
|
print(model)
|
|
|
|
# Perform decomposition
|
|
corda_config = CordaConfig(
|
|
corda_method="ipm" if args.first_eigen else "kpm",
|
|
)
|
|
lora_config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
|
|
r=args.r,
|
|
lora_alpha=args.r,
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(
|
|
model,
|
|
lora_config,
|
|
run_model=lambda: run_model(model, calib_loader),
|
|
)
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
# Evaluate again to check if the model is consistent
|
|
# Using `model.model` here because `get_peft_model` wraps a layer to the model
|
|
print("\n---- model after svd ---\n")
|
|
print(model)
|
|
|
|
# Save as hugging face model
|
|
if args.save_model:
|
|
assert args.save_path is not None
|
|
save_path = args.save_path
|
|
|
|
# Save CorDA modules
|
|
model.peft_config["default"].init_lora_weights = True
|
|
model.save_pretrained(os.path.join(save_path, "corda_init"))
|
|
|
|
# Save residual model
|
|
model = model.unload()
|
|
model.save_pretrained(save_path)
|
|
|
|
# Save tokenizer
|
|
tokenizer.save_pretrained(save_path)
|
|
print(f"Done building CorDA huggingface model in {save_path}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model_id",
|
|
type=str,
|
|
default="meta-llama/Llama-2-7b-hf",
|
|
help="Pretrained model ID",
|
|
)
|
|
parser.add_argument(
|
|
"--calib_loader_size",
|
|
type=int,
|
|
default=256,
|
|
help="number of samples used for covariance matrices",
|
|
)
|
|
parser.add_argument(
|
|
"--calib_dataset",
|
|
type=str,
|
|
default="wikitext2",
|
|
choices=[
|
|
"wikitext2",
|
|
"c4",
|
|
"ptb",
|
|
"traivia_qa",
|
|
"nqopen",
|
|
"MetaMATH",
|
|
"codefeedback",
|
|
"WizLMinstruct",
|
|
"alpaca",
|
|
],
|
|
help="calibration dataset",
|
|
)
|
|
parser.add_argument(
|
|
"--eval_mmlu",
|
|
action="store_true",
|
|
help="evaluate mmlu",
|
|
)
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=233,
|
|
help="random seed",
|
|
)
|
|
parser.add_argument(
|
|
"--r",
|
|
type=int,
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--first_eigen",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--save_model",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--save_path",
|
|
type=str,
|
|
default=None,
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|