Files
peft/examples/corda_finetuning/preprocess.py
Shantanu Gupta 1a1f97263d CHORE Replace deprecated torch_dtype with dtype (#2837)
Note: Diffusers is left as is for now, might need an update later.
2025-10-16 14:59:09 +02:00

166 lines
4.5 KiB
Python

# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import numpy as np
import torch
from datautils import get_calib_data
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import get_peft_model
from peft.tuners.lora.config import CordaConfig, LoraConfig
from peft.tuners.lora.corda import preprocess_corda
@torch.no_grad()
def run_model(model, calib_loader):
model.eval()
for batch in tqdm(calib_loader):
batch = {k: v.to(model.device) for k, v in batch.items()}
model(**batch)
def main(args):
# Setting random seed of numpy and torch
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
elif torch.xpu.is_available():
torch.xpu.manual_seed_all(args.seed)
torch.use_deterministic_algorithms(True)
# Load model
model_id = args.model_id
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="auto", dtype=torch.float16, trust_remote_code=True
)
# Collect data
calib_loader = get_calib_data(args.calib_dataset, tokenizer, model_id, args.calib_loader_size, seed=args.seed)
# Evaluate the original model
print("\n---- model before svd ---\n")
print(model)
# Perform decomposition
corda_config = CordaConfig(
corda_method="ipm" if args.first_eigen else "kpm",
)
lora_config = LoraConfig(
init_lora_weights="corda",
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
r=args.r,
lora_alpha=args.r,
corda_config=corda_config,
)
preprocess_corda(
model,
lora_config,
run_model=lambda: run_model(model, calib_loader),
)
model = get_peft_model(model, lora_config)
# Evaluate again to check if the model is consistent
# Using `model.model` here because `get_peft_model` wraps a layer to the model
print("\n---- model after svd ---\n")
print(model)
# Save as hugging face model
if args.save_model:
assert args.save_path is not None
save_path = args.save_path
# Save CorDA modules
model.peft_config["default"].init_lora_weights = True
model.save_pretrained(os.path.join(save_path, "corda_init"))
# Save residual model
model = model.unload()
model.save_pretrained(save_path)
# Save tokenizer
tokenizer.save_pretrained(save_path)
print(f"Done building CorDA huggingface model in {save_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
type=str,
default="meta-llama/Llama-2-7b-hf",
help="Pretrained model ID",
)
parser.add_argument(
"--calib_loader_size",
type=int,
default=256,
help="number of samples used for covariance matrices",
)
parser.add_argument(
"--calib_dataset",
type=str,
default="wikitext2",
choices=[
"wikitext2",
"c4",
"ptb",
"traivia_qa",
"nqopen",
"MetaMATH",
"codefeedback",
"WizLMinstruct",
"alpaca",
],
help="calibration dataset",
)
parser.add_argument(
"--eval_mmlu",
action="store_true",
help="evaluate mmlu",
)
parser.add_argument(
"--seed",
type=int,
default=233,
help="random seed",
)
parser.add_argument(
"--r",
type=int,
default=None,
)
parser.add_argument(
"--first_eigen",
action="store_true",
)
parser.add_argument(
"--save_model",
action="store_true",
)
parser.add_argument(
"--save_path",
type=str,
default=None,
)
args = parser.parse_args()
main(args)