Files
peft/method_comparison/app.py
githubnemo 2f9f759587 Add num_trainable_params column to gradio app (#2819)
While memory usage correlates with the number of trainable params, having this number directly
makes it easier to see that methods are using similar numbers of trainable params and outliers
can be inspected easily.
2025-10-13 14:36:58 +02:00

380 lines
14 KiB
Python

# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gradio app to show the results"""
import os
import tempfile
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
from processing import load_df
from sanitizer import parse_and_filter
metric_preferences = {
"accelerator_memory_reserved_avg": "lower",
"accelerator_memory_max": "lower",
"accelerator_memory_reserved_99th": "lower",
"total_time": "lower",
"train_time": "lower",
"file_size": "lower",
"test_accuracy": "higher",
"train_loss": "lower",
"num_trainable_params": "lower",
}
def get_model_ids(task_name, df):
filtered = df[df["task_name"] == task_name]
return sorted(filtered["model_id"].unique())
def filter_data(task_name, model_id, df):
filtered = df[(df["task_name"] == task_name) & (df["model_id"] == model_id)]
return filtered
# Compute the Pareto frontier for two selected metrics.
def compute_pareto_frontier(df, metric_x, metric_y):
if df.empty:
return df
df = df.copy()
points = df[[metric_x, metric_y]].values
selected_indices = []
def dominates(a, b, metric_x, metric_y):
# Check for each metric whether b is as good or better than a
if metric_preferences[metric_x] == "higher":
cond_x = b[0] >= a[0]
better_x = b[0] > a[0]
else:
cond_x = b[0] <= a[0]
better_x = b[0] < a[0]
if metric_preferences[metric_y] == "higher":
cond_y = b[1] >= a[1]
better_y = b[1] > a[1]
else:
cond_y = b[1] <= a[1]
better_y = b[1] < a[1]
return cond_x and cond_y and (better_x or better_y)
for i, point in enumerate(points):
dominated = False
for j, other_point in enumerate(points):
if i == j:
continue
if dominates(point, other_point, metric_x, metric_y):
dominated = True
break
if not dominated:
selected_indices.append(i)
pareto_df = df.iloc[selected_indices]
return pareto_df
def generate_pareto_plot(df, metric_x, metric_y):
if df.empty:
return {}
# Compute Pareto frontier and non-frontier points.
pareto_df = compute_pareto_frontier(df, metric_x, metric_y)
non_pareto_df = df.drop(pareto_df.index)
# Create an empty figure.
fig = go.Figure()
# Draw the line connecting Pareto frontier points.
if not pareto_df.empty:
# Sort the Pareto frontier points by metric_x for a meaningful connection.
pareto_sorted = pareto_df.sort_values(by=metric_x)
line_trace = go.Scatter(
x=pareto_sorted[metric_x],
y=pareto_sorted[metric_y],
mode="lines",
line={"color": "rgba(0,0,255,0.3)", "width": 4},
name="Pareto Frontier",
)
fig.add_trace(line_trace)
# Add non-frontier points in gray with semi-transparency.
if not non_pareto_df.empty:
non_frontier_trace = go.Scatter(
x=non_pareto_df[metric_x],
y=non_pareto_df[metric_y],
mode="markers",
marker={"color": "rgba(128,128,128,0.5)", "size": 12},
hoverinfo="text",
text=non_pareto_df.apply(
lambda row: f"experiment_name: {row['experiment_name']}<br>"
f"peft_type: {row['peft_type']}<br>"
f"{metric_x}: {row[metric_x]}<br>"
f"{metric_y}: {row[metric_y]}",
axis=1,
),
showlegend=False,
)
fig.add_trace(non_frontier_trace)
# Add Pareto frontier points with legend
if not pareto_df.empty:
pareto_scatter = px.scatter(
pareto_df,
x=metric_x,
y=metric_y,
color="experiment_name",
hover_data={"experiment_name": True, "peft_type": True, metric_x: True, metric_y: True},
)
for trace in pareto_scatter.data:
trace.marker = {"size": 12}
fig.add_trace(trace)
# Update layout with axes labels.
fig.update_layout(
title=f"Pareto Frontier for {metric_x} vs {metric_y}",
template="seaborn",
height=700,
autosize=True,
xaxis_title=metric_x,
yaxis_title=metric_y,
)
return fig
def compute_pareto_summary(filtered, pareto_df, metric_x, metric_y):
if filtered.empty:
return "No data available."
stats = filtered[[metric_x, metric_y]].agg(["min", "max", "mean"]).to_string()
total_points = len(filtered)
pareto_points = len(pareto_df)
excluded_points = total_points - pareto_points
summary_text = (
f"{stats}\n\n"
f"Total points: {total_points}\n"
f"Pareto frontier points: {pareto_points}\n"
f"Excluded points: {excluded_points}"
)
return summary_text
def export_csv(df):
if df.empty:
return None
csv_data = df.to_csv(index=False)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as tmp:
tmp.write(csv_data)
tmp_path = tmp.name
return tmp_path
def format_df(df):
return df.style.format(precision=3, thousands=",", decimal=".")
def build_app(df):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# PEFT method comparison")
gr.Markdown(
"Find more information [on the PEFT GitHub repo](https://github.com/huggingface/peft/tree/main/method_comparison)"
)
# Hidden state to store the current filter query.
filter_state = gr.State("")
gr.Markdown("## Choose the task and base model")
with gr.Row():
task_dropdown = gr.Dropdown(
label="Select Task",
choices=sorted(df["task_name"].unique()),
value=sorted(df["task_name"].unique())[0],
)
model_dropdown = gr.Dropdown(
label="Select Model ID", choices=get_model_ids(sorted(df["task_name"].unique())[0], df)
)
# Make dataframe columns all equal in width so that they are good enough for numbers but don't
# get hugely extended by columns like `train_config`.
column_widths = ["150px" for _ in df.columns]
column2index = dict(zip(df.columns, range(len(df.columns))))
column_widths[column2index['experiment_name']] = '300px'
data_table = gr.DataFrame(
label="Results",
value=format_df(df),
interactive=False,
max_chars=100,
wrap=False,
column_widths=column_widths,
)
with gr.Row():
filter_textbox = gr.Textbox(
label="Filter DataFrame",
placeholder="Enter filter (e.g.: peft_type=='LORA')",
interactive=True,
)
apply_filter_button = gr.Button("Apply Filter")
reset_filter_button = gr.Button("Reset Filter")
gr.Markdown("## Pareto plot")
gr.Markdown(
"Select 2 criteria to plot the Pareto frontier. This will show the best PEFT methods along this axis and "
"the trade-offs with the other axis. The PEFT methods that Pareto-dominate are shown in colors. All other "
"methods are inferior with regard to these two metrics. Hover over a point to show details."
)
with gr.Row():
x_default = (
"accelerator_memory_max"
if "accelerator_memory_max" in metric_preferences
else list(metric_preferences.keys())[0]
)
y_default = (
"test_accuracy" if "test_accuracy" in metric_preferences else list(metric_preferences.keys())[1]
)
metric_x_dropdown = gr.Dropdown(
label="1st metric for Pareto plot",
choices=list(metric_preferences.keys()),
value=x_default,
)
metric_y_dropdown = gr.Dropdown(
label="2nd metric for Pareto plot",
choices=list(metric_preferences.keys()),
value=y_default,
)
pareto_plot = gr.Plot(label="Pareto Frontier Plot")
summary_box = gr.Textbox(label="Summary Statistics", lines=6)
csv_output = gr.File(label="Export Filtered Data as CSV")
def update_on_task(task_name, current_filter):
new_models = get_model_ids(task_name, df)
filtered = filter_data(task_name, new_models[0] if new_models else "", df)
if current_filter.strip():
try:
mask = parse_and_filter(filtered, current_filter)
df_queried = filtered[mask]
if not df_queried.empty:
filtered = df_queried
except Exception:
# invalid filter query
pass
return gr.update(choices=new_models, value=new_models[0] if new_models else None), format_df(filtered)
task_dropdown.change(
fn=update_on_task, inputs=[task_dropdown, filter_state], outputs=[model_dropdown, data_table]
)
def update_on_model(task_name, model_id, current_filter):
filtered = filter_data(task_name, model_id, df)
if current_filter.strip():
try:
mask = parse_and_filter(filtered, current_filter)
filtered = filtered[mask]
except Exception:
pass
return format_df(filtered)
model_dropdown.change(
fn=update_on_model, inputs=[task_dropdown, model_dropdown, filter_state], outputs=data_table
)
def update_pareto_plot_and_summary(task_name, model_id, metric_x, metric_y, current_filter):
filtered = filter_data(task_name, model_id, df)
if current_filter.strip():
try:
mask = parse_and_filter(filtered, current_filter)
filtered = filtered[mask]
except Exception as e:
return generate_pareto_plot(filtered, metric_x, metric_y), f"Filter error: {e}"
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
fig = generate_pareto_plot(filtered, metric_x, metric_y)
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
return fig, summary
for comp in [model_dropdown, metric_x_dropdown, metric_y_dropdown]:
comp.change(
fn=update_pareto_plot_and_summary,
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
outputs=[pareto_plot, summary_box],
)
def apply_filter(filter_query, task_name, model_id, metric_x, metric_y):
filtered = filter_data(task_name, model_id, df)
if filter_query.strip():
try:
mask = parse_and_filter(filtered, filter_query)
filtered = filtered[mask]
except Exception as e:
# Update the table, plot, and summary even if there is a filter error.
return (
filter_query,
filtered,
generate_pareto_plot(filtered, metric_x, metric_y),
f"Filter error: {e}",
)
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
fig = generate_pareto_plot(filtered, metric_x, metric_y)
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
return filter_query, format_df(filtered), fig, summary
apply_filter_button.click(
fn=apply_filter,
inputs=[filter_textbox, task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
outputs=[filter_state, data_table, pareto_plot, summary_box],
)
def reset_filter(task_name, model_id, metric_x, metric_y):
filtered = filter_data(task_name, model_id, df)
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
fig = generate_pareto_plot(filtered, metric_x, metric_y)
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
# Return empty strings to clear the filter state and textbox.
return "", "", format_df(filtered), fig, summary
reset_filter_button.click(
fn=reset_filter,
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
outputs=[filter_state, filter_textbox, data_table, pareto_plot, summary_box],
)
gr.Markdown("## Export data")
# Export button for CSV download.
export_button = gr.Button("Export Filtered Data")
export_button.click(
fn=lambda task, model: export_csv(filter_data(task, model, df)),
inputs=[task_dropdown, model_dropdown],
outputs=csv_output,
)
demo.load(
fn=update_pareto_plot_and_summary,
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
outputs=[pareto_plot, summary_box],
)
return demo
path = os.path.join(os.path.dirname(__file__), "MetaMathQA", "results")
df = load_df(path, task_name="MetaMathQA")
demo = build_app(df)
demo.launch()