mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
When modifying a model with `get_peft_model` that was already modified in the same way, even specifying a different config may not change the trainable parameter count, e.g. when specifying target modules that are only a subset of the previous target modules. With this patch a warning will be issued with a hint to `.unload()` when calling `get_peft_model` on an already modified model.
56 lines
2.2 KiB
Python
56 lines
2.2 KiB
Python
# Copyright 2025-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
import torch
|
|
|
|
from peft import LoraConfig, get_peft_model
|
|
|
|
|
|
class TestGetPeftModel:
|
|
RELOAD_WARNING_EXPECTED_MATCH = r"You are trying to modify a model .*"
|
|
|
|
@pytest.fixture
|
|
def lora_config_0(self):
|
|
return LoraConfig(target_modules="0")
|
|
|
|
@pytest.fixture
|
|
def base_model(self):
|
|
return torch.nn.Sequential(torch.nn.Linear(10, 2), torch.nn.Linear(2, 10))
|
|
|
|
def test_get_peft_model_warns_when_reloading_model(self, lora_config_0, base_model):
|
|
get_peft_model(base_model, lora_config_0)
|
|
|
|
with pytest.warns(UserWarning, match=self.RELOAD_WARNING_EXPECTED_MATCH):
|
|
get_peft_model(base_model, lora_config_0)
|
|
|
|
def test_get_peft_model_proposed_fix_in_warning_helps(self, lora_config_0, base_model, recwarn):
|
|
peft_model = get_peft_model(base_model, lora_config_0)
|
|
peft_model.unload()
|
|
get_peft_model(base_model, lora_config_0)
|
|
|
|
warning_checker = pytest.warns(UserWarning, match=self.RELOAD_WARNING_EXPECTED_MATCH)
|
|
|
|
for warning in recwarn:
|
|
if warning_checker.matches(warning):
|
|
pytest.fail("Warning raised even though model was unloaded.")
|
|
|
|
def test_get_peft_model_repeated_invocation(self, lora_config_0, base_model):
|
|
peft_model = get_peft_model(base_model, lora_config_0)
|
|
|
|
# use direct-addressing of the other layer to accomodate for the nested model
|
|
lora_config_1 = LoraConfig(target_modules="base_model.model.1")
|
|
|
|
with pytest.warns(UserWarning, match=self.RELOAD_WARNING_EXPECTED_MATCH):
|
|
get_peft_model(peft_model, lora_config_1)
|