mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
There is a failing AWQ test since torch 2.6 which is marked as xfail for torch=2.7. However, now torch 2.8 is out and the test is still failing. Therefore, the xfail now checks for torch>=2.7. As AWQ is no longer being maintained, we should expect this situation to deteriorate over time and eventually we'll have to remove it. But for the time being, it still appears to mostly work, so I suggest we leave it as is.
5274 lines
206 KiB
Python
5274 lines
206 KiB
Python
# Copyright 2023-present the HuggingFace Inc. team.
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import gc
|
|
import importlib
|
|
import itertools
|
|
import os
|
|
import re
|
|
import tempfile
|
|
import unittest
|
|
from collections import Counter, defaultdict
|
|
from copy import deepcopy
|
|
from dataclasses import dataclass
|
|
from typing import Any, Union
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from accelerate import infer_auto_device_map
|
|
from accelerate.test_utils.testing import run_command
|
|
from accelerate.utils import patch_environment
|
|
from accelerate.utils.imports import is_bf16_available
|
|
from accelerate.utils.memory import clear_device_cache
|
|
from accelerate.utils.versions import is_torch_version
|
|
from datasets import Audio, Dataset, DatasetDict, load_dataset
|
|
from packaging import version
|
|
from parameterized import parameterized
|
|
from torch.distributed import init_process_group
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
|
from torch.utils.data import DataLoader
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoTokenizer,
|
|
BitsAndBytesConfig,
|
|
DataCollatorForLanguageModeling,
|
|
Seq2SeqTrainer,
|
|
Seq2SeqTrainingArguments,
|
|
Trainer,
|
|
TrainerCallback,
|
|
TrainingArguments,
|
|
WhisperFeatureExtractor,
|
|
WhisperForConditionalGeneration,
|
|
WhisperProcessor,
|
|
WhisperTokenizer,
|
|
)
|
|
from transformers.pytorch_utils import Conv1D
|
|
|
|
from peft import (
|
|
AdaLoraConfig,
|
|
EvaConfig,
|
|
LoftQConfig,
|
|
LoraConfig,
|
|
PeftModel,
|
|
PrefixTuningConfig,
|
|
PromptEncoderConfig,
|
|
RandLoraConfig,
|
|
RoadConfig,
|
|
TaskType,
|
|
VeraConfig,
|
|
get_peft_model,
|
|
get_peft_model_state_dict,
|
|
initialize_lora_eva_weights,
|
|
inject_adapter_in_model,
|
|
prepare_model_for_kbit_training,
|
|
replace_lora_weights_loftq,
|
|
set_peft_model_state_dict,
|
|
)
|
|
from peft.import_utils import is_diffusers_available, is_xpu_available
|
|
from peft.tuners import boft
|
|
from peft.tuners.tuners_utils import BaseTunerLayer
|
|
from peft.utils import SAFETENSORS_WEIGHTS_NAME, infer_device
|
|
from peft.utils.hotswap import hotswap_adapter, prepare_model_for_compiled_hotswap
|
|
from peft.utils.loftq_utils import NFQuantizer
|
|
from peft.utils.other import fsdp_auto_wrap_policy
|
|
|
|
from .testing_utils import (
|
|
device_count,
|
|
load_dataset_english_quotes,
|
|
require_aqlm,
|
|
require_auto_awq,
|
|
require_auto_gptq,
|
|
require_bitsandbytes,
|
|
require_deterministic_for_xpu,
|
|
require_eetq,
|
|
require_hqq,
|
|
require_non_cpu,
|
|
require_non_xpu,
|
|
require_optimum,
|
|
require_torch_gpu,
|
|
require_torch_multi_accelerator,
|
|
require_torch_multi_gpu,
|
|
require_torchao,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
# Some tests with multi GPU require specific device maps to ensure that the models are loaded in two devices
|
|
DEVICE_MAP_MAP: dict[str, dict[str, int]] = {
|
|
"facebook/opt-6.7b": {
|
|
"model.decoder.embed_tokens": 0,
|
|
"model.decoder.embed_positions": 0,
|
|
"model.decoder.final_layer_norm": 0,
|
|
"model.decoder.layers.0": 0,
|
|
"model.decoder.layers.1": 0,
|
|
"model.decoder.layers.2": 0,
|
|
"model.decoder.layers.3": 0,
|
|
"model.decoder.layers.4": 0,
|
|
"model.decoder.layers.5": 0,
|
|
"model.decoder.layers.6": 0,
|
|
"model.decoder.layers.7": 0,
|
|
"model.decoder.layers.8": 0,
|
|
"model.decoder.layers.9": 0,
|
|
"model.decoder.layers.10": 0,
|
|
"model.decoder.layers.11": 0,
|
|
"model.decoder.layers.12": 0,
|
|
"model.decoder.layers.13": 0,
|
|
"model.decoder.layers.14": 0,
|
|
"model.decoder.layers.15": 0,
|
|
"model.decoder.layers.16": 1,
|
|
"model.decoder.layers.17": 1,
|
|
"model.decoder.layers.18": 1,
|
|
"model.decoder.layers.19": 1,
|
|
"model.decoder.layers.20": 1,
|
|
"model.decoder.layers.21": 1,
|
|
"model.decoder.layers.22": 1,
|
|
"model.decoder.layers.23": 1,
|
|
"model.decoder.layers.24": 1,
|
|
"model.decoder.layers.25": 1,
|
|
"model.decoder.layers.26": 1,
|
|
"model.decoder.layers.27": 1,
|
|
"model.decoder.layers.28": 1,
|
|
"model.decoder.layers.29": 1,
|
|
"model.decoder.layers.30": 1,
|
|
"model.decoder.layers.31": 1,
|
|
"lm_head": 0, # tied with embed_tokens
|
|
},
|
|
"facebook/opt-125m": {
|
|
"model.decoder.embed_tokens": 0,
|
|
"model.decoder.embed_positions": 0,
|
|
"model.decoder.final_layer_norm": 1,
|
|
"model.decoder.layers.0": 0,
|
|
"model.decoder.layers.1": 0,
|
|
"model.decoder.layers.2": 0,
|
|
"model.decoder.layers.3": 0,
|
|
"model.decoder.layers.4": 0,
|
|
"model.decoder.layers.5": 0,
|
|
"model.decoder.layers.6": 1,
|
|
"model.decoder.layers.7": 1,
|
|
"model.decoder.layers.8": 1,
|
|
"model.decoder.layers.9": 1,
|
|
"model.decoder.layers.10": 1,
|
|
"model.decoder.layers.11": 1,
|
|
"lm_head": 0,
|
|
},
|
|
"marcsun13/opt-350m-gptq-4bit": {
|
|
"model.decoder.embed_tokens": 0,
|
|
"model.decoder.embed_positions": 0,
|
|
"model.decoder.layers.0": 0,
|
|
"model.decoder.layers.1": 0,
|
|
"model.decoder.layers.2": 0,
|
|
"model.decoder.layers.3": 0,
|
|
"model.decoder.layers.4": 0,
|
|
"model.decoder.layers.5": 0,
|
|
"model.decoder.layers.6": 1,
|
|
"model.decoder.layers.7": 1,
|
|
"model.decoder.layers.8": 1,
|
|
"model.decoder.layers.9": 1,
|
|
"model.decoder.layers.10": 1,
|
|
"model.decoder.layers.11": 1,
|
|
"model.decoder.final_layer_norm": 1,
|
|
"lm_head": 0, # tied with embed_tokens
|
|
},
|
|
"google/flan-t5-base": {
|
|
"shared": 0,
|
|
"encoder": 0,
|
|
"decoder": 1,
|
|
"final_layer_norm": 1,
|
|
"decoder.embed_tokens": 0, # tied with encoder.embed_tokens
|
|
"lm_head": 0, # tied with encoder.embed_tokens
|
|
},
|
|
}
|
|
|
|
|
|
# A full testing suite that tests all the necessary features on GPU. The tests should
|
|
# rely on the example scripts to test the features.
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorSpeechSeq2SeqWithPadding:
|
|
r"""
|
|
Directly copied from:
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb
|
|
"""
|
|
|
|
processor: Any
|
|
|
|
def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
|
|
# split inputs and labels since they have to be of different lengths and need different padding methods
|
|
# first treat the audio inputs by simply returning torch tensors
|
|
input_features = [{"input_features": feature["input_features"]} for feature in features]
|
|
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
|
|
|
|
# get the tokenized label sequences
|
|
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
|
# pad the labels to max length
|
|
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
|
|
|
|
# replace padding with -100 to ignore loss correctly
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
|
|
|
# if bos token is appended in previous tokenization step,
|
|
# cut bos token here as it's append later anyways
|
|
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
|
|
labels = labels[:, 1:]
|
|
|
|
batch["labels"] = labels
|
|
|
|
return batch
|
|
|
|
|
|
@require_non_cpu
|
|
@require_bitsandbytes
|
|
class PeftBnbGPUExampleTests(unittest.TestCase):
|
|
r"""
|
|
A single GPU int8 + fp4 test suite, this will test if training fits correctly on a single GPU device (1x NVIDIA T4
|
|
16GB) using bitsandbytes.
|
|
|
|
The tests are the following:
|
|
|
|
- Seq2Seq model training based on:
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_flan_t5_large_bnb_peft.ipynb
|
|
- Causal LM model training based on:
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb
|
|
- Audio model training based on:
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb
|
|
|
|
"""
|
|
|
|
def setUp(self):
|
|
self.seq2seq_model_id = "google/flan-t5-base"
|
|
self.causal_lm_model_id = "facebook/opt-6.7b"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
self.audio_model_id = "openai/whisper-large"
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def _check_inference_finite(self, model, batch):
|
|
# try inference without Trainer class
|
|
training = model.training
|
|
model.eval()
|
|
output = model(**batch.to(model.device))
|
|
assert torch.isfinite(output.logits).all()
|
|
model.train(training)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training(self):
|
|
r"""
|
|
Test the CausalLM training on a single GPU device. This test is a converted version of
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
|
|
`opt-6.7b` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_4bit(self):
|
|
r"""
|
|
Test the CausalLM training on a single GPU device. This test is a converted version of
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
|
|
`opt-6.7b` on `english_quotes` dataset in few steps using 4bit base model. The test would simply fail if the
|
|
adapters are not set correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_4bit(self):
|
|
r"""
|
|
Test the CausalLM training on a multi-GPU device with 4bit base model. The test would simply fail if the
|
|
adapters are not set correctly.
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
@require_non_cpu
|
|
def test_4bit_adalora_causalLM(self):
|
|
r"""
|
|
Tests the 4bit training with adalora
|
|
"""
|
|
model_id = "facebook/opt-350m"
|
|
|
|
# for >3 GPUs, might need: device_map={"": "cuda:0"}
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, quantization_config=BitsAndBytesConfig(load_in_4bit=True)
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
model.gradient_checkpointing_enable()
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
peft_config = AdaLoraConfig(
|
|
init_r=6,
|
|
target_r=4,
|
|
tinit=2,
|
|
tfinal=2,
|
|
total_step=6,
|
|
deltaT=5,
|
|
beta1=0.3,
|
|
beta2=0.3,
|
|
orth_reg_weight=0.2,
|
|
lora_alpha=32,
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, peft_config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
batch = tokenizer(data["train"][:3]["quote"], return_tensors="pt", padding=True)
|
|
self._check_inference_finite(model, batch)
|
|
|
|
class OptimizerStepCallback(TrainerCallback):
|
|
def on_optimizer_step(self, args, state, control, **kwargs):
|
|
model.update_and_allocate(state.global_step)
|
|
|
|
step_callback = OptimizerStepCallback()
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=6,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.add_callback(step_callback)
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
@require_non_cpu
|
|
def test_8bit_adalora_causalLM(self):
|
|
r"""
|
|
Tests the 8bit training with adalora
|
|
"""
|
|
model_id = "facebook/opt-350m"
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True)
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
model.gradient_checkpointing_enable()
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
peft_config = AdaLoraConfig(
|
|
init_r=6,
|
|
target_r=4,
|
|
tinit=2,
|
|
tfinal=2,
|
|
total_step=6,
|
|
deltaT=5,
|
|
beta1=0.3,
|
|
beta2=0.3,
|
|
orth_reg_weight=0.2,
|
|
lora_alpha=32,
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, peft_config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
batch = tokenizer(data["train"][:3]["quote"], return_tensors="pt", padding=True)
|
|
self._check_inference_finite(model, batch)
|
|
|
|
class OptimizerStepCallback(TrainerCallback):
|
|
def on_optimizer_step(self, args, state, control, **kwargs):
|
|
model.update_and_allocate(state.global_step)
|
|
|
|
step_callback = OptimizerStepCallback()
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=6,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.add_callback(step_callback)
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
@require_torch_multi_accelerator
|
|
def test_causal_lm_training_multi_gpu(self):
|
|
r"""
|
|
Test the CausalLM training on a multi-GPU device. This test is a converted version of
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
|
|
`opt-6.7b` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map="auto",
|
|
)
|
|
print(f"device map: {model.hf_device_map}")
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_seq2seq_lm_training_single_gpu(self):
|
|
r"""
|
|
Test the Seq2SeqLM training on a single GPU device. This test is a converted version of
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
|
|
`flan-large` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
self.seq2seq_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map={"": 0},
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == {0}
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q", "v"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
@require_torch_multi_accelerator
|
|
def test_seq2seq_lm_training_multi_gpu(self):
|
|
r"""
|
|
Test the Seq2SeqLM training on a multi-GPU device. This test is a converted version of
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/Finetune_opt_bnb_peft.ipynb where we train
|
|
`flan-large` on `english_quotes` dataset in few steps. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
self.seq2seq_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map=DEVICE_MAP_MAP[self.seq2seq_model_id],
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q", "v"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir="outputs",
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
# TODO skipping to see if this leads to single GPU tests passing
|
|
@pytest.mark.skip
|
|
@pytest.mark.single_gpu_tests
|
|
def test_audio_model_training(self):
|
|
r"""
|
|
Test the audio model training on a single GPU device. This test is a converted version of
|
|
https://github.com/huggingface/peft/blob/main/examples/int8_training/peft_bnb_whisper_large_v2_training.ipynb
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
dataset_name = "ybelkada/common_voice_mr_11_0_copy"
|
|
task = "transcribe"
|
|
language = "Marathi"
|
|
common_voice = DatasetDict()
|
|
|
|
common_voice["train"] = load_dataset(dataset_name, split="train+validation")
|
|
|
|
common_voice = common_voice.remove_columns(
|
|
["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"]
|
|
)
|
|
|
|
feature_extractor = WhisperFeatureExtractor.from_pretrained(self.audio_model_id)
|
|
tokenizer = WhisperTokenizer.from_pretrained(self.audio_model_id, language=language, task=task)
|
|
processor = WhisperProcessor.from_pretrained(self.audio_model_id, language=language, task=task)
|
|
|
|
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))
|
|
|
|
def prepare_dataset(batch):
|
|
# load and resample audio data from 48 to 16kHz
|
|
audio = batch["audio"]
|
|
|
|
# compute log-Mel input features from input audio array
|
|
batch["input_features"] = feature_extractor(
|
|
audio["array"], sampling_rate=audio["sampling_rate"]
|
|
).input_features[0]
|
|
|
|
# encode target text to label ids
|
|
batch["labels"] = tokenizer(batch["sentence"]).input_ids
|
|
return batch
|
|
|
|
common_voice = common_voice.map(
|
|
prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2
|
|
)
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
|
|
|
|
model = WhisperForConditionalGeneration.from_pretrained(
|
|
self.audio_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True), device_map="auto"
|
|
)
|
|
|
|
model.config.forced_decoder_ids = None
|
|
model.config.suppress_tokens = []
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
# as Whisper model uses Conv layer in encoder, checkpointing disables grad computation
|
|
# to avoid this, make the inputs trainable
|
|
def make_inputs_require_grad(module, input, output):
|
|
output.requires_grad_(True)
|
|
|
|
model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad)
|
|
|
|
config = LoraConfig(
|
|
r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none"
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
model.print_trainable_parameters()
|
|
|
|
training_args = Seq2SeqTrainingArguments(
|
|
output_dir=tmp_dir, # change to a repo name of your choice
|
|
per_device_train_batch_size=8,
|
|
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
|
|
learning_rate=1e-3,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
fp16=True,
|
|
per_device_eval_batch_size=8,
|
|
generation_max_length=128,
|
|
logging_steps=25,
|
|
remove_unused_columns=False, # required as the PeftModel forward doesn't have the signature of the wrapped model's forward
|
|
label_names=["labels"], # same reason as above
|
|
)
|
|
|
|
trainer = Seq2SeqTrainer(
|
|
args=training_args,
|
|
model=model,
|
|
train_dataset=common_voice["train"],
|
|
data_collator=data_collator,
|
|
tokenizer=processor.feature_extractor,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_4bit_non_default_adapter_name(self):
|
|
# See PR 1294
|
|
config = LoraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
# default adapter name
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"facebook/opt-125m",
|
|
device_map="auto",
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
model = get_peft_model(model, config)
|
|
n_trainable_default, n_total_default = model.get_nb_trainable_parameters()
|
|
|
|
# other adapter name
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"facebook/opt-125m",
|
|
device_map="auto",
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
model = get_peft_model(model, config, adapter_name="other")
|
|
n_trainable_other, n_total_other = model.get_nb_trainable_parameters()
|
|
|
|
assert n_trainable_other > 0
|
|
# sanity check
|
|
assert n_trainable_default == n_trainable_other
|
|
assert n_total_default == n_total_other
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_8bit_non_default_adapter_name(self):
|
|
# See PR 1294
|
|
config = LoraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
# default adapter name
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"facebook/opt-125m",
|
|
device_map="auto",
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
model = get_peft_model(model, config)
|
|
n_trainable_default, n_total_default = model.get_nb_trainable_parameters()
|
|
|
|
# other adapter name
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"facebook/opt-125m",
|
|
device_map="auto",
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
model = get_peft_model(model, config, adapter_name="other")
|
|
n_trainable_other, n_total_other = model.get_nb_trainable_parameters()
|
|
|
|
assert n_trainable_other > 0
|
|
# sanity check
|
|
assert n_trainable_default == n_trainable_other
|
|
assert n_total_default == n_total_other
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_4bit_dora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_4bit but with DoRA
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_4bit_dora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu_4bit but with DoRA
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_8bit_dora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_4bit_dora but with 8bit
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_8bit_dora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu_4bit_dora but with 8bit
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_gpt2_dora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_4bit but with DoRA
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained("gpt2", device_map="auto")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@parameterized.expand(["4bit", "8bit"])
|
|
def test_initialize_dora_with_bnb_on_cpu(self, kbit):
|
|
# 1674
|
|
# The issue is that to initialize DoRA, we need to dequantize the weights. That only works on GPU for bnb.
|
|
# Therefore, initializing DoRA with bnb on CPU used to fail.
|
|
model_id = "facebook/opt-125m"
|
|
if kbit == "4bit":
|
|
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4")
|
|
elif kbit == "8bit":
|
|
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
|
|
else:
|
|
raise ValueError("Only 4bit and 8bit bnb allowed")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
|
model = model.cpu() # ensure that we're on CPU
|
|
# sanity check that all weights are on CPU
|
|
weights_not_cpu = [name for name, p in model.named_parameters() if p.device != torch.device("cpu")]
|
|
assert not weights_not_cpu
|
|
|
|
lora_config = LoraConfig(use_dora=True)
|
|
|
|
# should not raise
|
|
peft_model = get_peft_model(model, lora_config)
|
|
# check that the weights are still on CPU
|
|
weights_not_cpu = [name for name, p in peft_model.named_parameters() if p.device != torch.device("cpu")]
|
|
assert not weights_not_cpu
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_vera(self):
|
|
r"""
|
|
Same as test_causal_lm_training but with VeRA
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = VeraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
vera_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_4bit_vera(self):
|
|
r"""
|
|
Same as test_causal_lm_training_4bit but with VeRA
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = VeraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
vera_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_vera(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu but with VeRA
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = VeraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
vera_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_4bit_vera(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu_4bit but with VeRA
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = VeraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
vera_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_8bit_randlora(self):
|
|
r"""
|
|
Same as test_causal_lm_training but with RandLora
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = RandLoraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
randlora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("ybelkada/english_quotes_copy")
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_4bit_randlora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_4bit but with RandLora
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = RandLoraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
randlora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("ybelkada/english_quotes_copy")
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_8bit_randlora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu but with RandLoRA
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = RandLoraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
randlora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("Abirate/english_quotes")
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_4bit_randlora(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu_4bit but with RandLora
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = RandLoraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
randlora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("Abirate/english_quotes")
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_8bit_road(self):
|
|
r"""
|
|
Same as test_causal_lm_training but with RoAd
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = RoadConfig(
|
|
variant="road_1",
|
|
target_modules=["q_proj", "v_proj"],
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("ybelkada/english_quotes_copy")
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=1e-3,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_4bit_road(self):
|
|
r"""
|
|
Same as test_causal_lm_training_4bit but with RoAd
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
device_map="auto",
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = RoadConfig(
|
|
variant="road_1",
|
|
target_modules=["q_proj", "v_proj"],
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("ybelkada/english_quotes_copy")
|
|
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=1e-3,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_8bit_road(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu but with RoAd
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = RoadConfig(
|
|
variant="road_1",
|
|
target_modules=["q_proj", "v_proj"],
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("Abirate/english_quotes")
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=1e-3,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
def test_causal_lm_training_multi_gpu_4bit_road(self):
|
|
r"""
|
|
Same as test_causal_lm_training_multi_gpu_4bit but with RoAd
|
|
"""
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = RoadConfig(
|
|
variant="road_1",
|
|
target_modules=["q_proj", "v_proj"],
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset("Abirate/english_quotes")
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=1e-3,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_lora_resize_embeddings_trainable_tokens(self):
|
|
r"""
|
|
Test LoRA with trainable tokens on a resized embedding matrix
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
bnb_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_quant_type="nf4",
|
|
bnb_4bit_compute_dtype=torch.float16,
|
|
bnb_4bit_quant_storage=torch.float16,
|
|
bnb_4bit_use_double_quant=True,
|
|
)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
quantization_config=bnb_config,
|
|
device_map="auto",
|
|
)
|
|
|
|
# add 2 new tokens
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
new_tokens = ["<think>", "</think>"]
|
|
tokenizer.add_special_tokens({"additional_special_tokens": new_tokens})
|
|
trainable_token_indices = [tokenizer.vocab[token] for token in new_tokens]
|
|
|
|
cur_emb_size = model.model.decoder.embed_tokens.weight.shape[0]
|
|
model.resize_token_embeddings(max(tokenizer.vocab_size, cur_emb_size))
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
trainable_token_indices={"embed_tokens": trainable_token_indices},
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
|
|
def tokenize(samples):
|
|
# add new tokens to samples
|
|
samples = [f"<think>{row}</think>" for row in samples["quote"]]
|
|
return tokenizer(samples)
|
|
|
|
data = data.map(tokenize, batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
# higher learning rate, as embeddings are a bit slow to update
|
|
learning_rate=1e-3,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
# ensure that the new trainable tokens have been updated
|
|
embedding = model.base_model.model.model.decoder.embed_tokens
|
|
tol = 1e-4
|
|
assert not torch.allclose(
|
|
embedding.token_adapter.trainable_tokens_delta["default"],
|
|
embedding.original_module.weight[trainable_token_indices],
|
|
atol=tol,
|
|
rtol=tol,
|
|
)
|
|
|
|
# check size of the checkpoint, should be small since the embedding matrix does not need to be stored
|
|
stat = os.stat(os.path.join(tmp_dir, SAFETENSORS_WEIGHTS_NAME))
|
|
embed_params = model.base_model.model.model.decoder.embed_tokens.original_module.weight.numel()
|
|
# fp32 -> 4x
|
|
emb_file_size = 4 * embed_params
|
|
assert stat.st_size < emb_file_size
|
|
|
|
# sanity check: assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
|
|
@require_torch_gpu
|
|
@require_auto_gptq
|
|
@require_optimum
|
|
class PeftGPTQGPUTests(unittest.TestCase):
|
|
r"""
|
|
GPTQ + peft tests
|
|
"""
|
|
|
|
def setUp(self):
|
|
from transformers import GPTQConfig
|
|
|
|
self.causal_lm_model_id = "marcsun13/opt-350m-gptq-4bit"
|
|
# TODO : check if it works for Exllamav2 kernels
|
|
self.quantization_config = GPTQConfig(bits=4, use_exllama=False)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def _check_inference_finite(self, model, batch):
|
|
# try inference without Trainer class
|
|
training = model.training
|
|
model.eval()
|
|
output = model(**batch.to(model.device))
|
|
assert torch.isfinite(output.logits).all()
|
|
model.train(training)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training(self):
|
|
r"""
|
|
Test the CausalLM training on a single GPU device. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
quantization_config=self.quantization_config,
|
|
)
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_adalora_causalLM(self):
|
|
r"""
|
|
Tests the gptq training with adalora
|
|
"""
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
quantization_config=self.quantization_config,
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
peft_config = AdaLoraConfig(
|
|
init_r=6,
|
|
target_r=4,
|
|
tinit=2,
|
|
tfinal=2,
|
|
total_step=6,
|
|
deltaT=5,
|
|
beta1=0.3,
|
|
beta2=0.3,
|
|
orth_reg_weight=0.2,
|
|
lora_alpha=32,
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, peft_config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
batch = tokenizer(data["train"][:3]["quote"], return_tensors="pt", padding=True)
|
|
self._check_inference_finite(model, batch)
|
|
|
|
class OptimizerStepCallback(TrainerCallback):
|
|
def on_optimizer_step(self, args, state, control, **kwargs):
|
|
model.update_and_allocate(state.global_step)
|
|
|
|
step_callback = OptimizerStepCallback()
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=6,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.add_callback(step_callback)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_gptq_qalora(self):
|
|
"""
|
|
Test QALoRA with GPTQ quantization. The test would simply fail if the adapters are not set correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
quantization_config=self.quantization_config,
|
|
)
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_qalora=True,
|
|
qalora_group_size=32,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
@require_torch_multi_gpu
|
|
def test_causal_lm_training_multi_gpu(self):
|
|
r"""
|
|
Test the CausalLM training on a multi-GPU device. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
device_map = {
|
|
"model.decoder.embed_tokens": 0,
|
|
"lm_head": 0,
|
|
"model.decoder.embed_positions": 0,
|
|
"model.decoder.project_out": 0,
|
|
"model.decoder.project_in": 0,
|
|
"model.decoder.layers.0": 0,
|
|
"model.decoder.layers.1": 0,
|
|
"model.decoder.layers.2": 0,
|
|
"model.decoder.layers.3": 0,
|
|
"model.decoder.layers.4": 0,
|
|
"model.decoder.layers.5": 0,
|
|
"model.decoder.layers.6": 1,
|
|
"model.decoder.layers.7": 1,
|
|
"model.decoder.layers.8": 1,
|
|
"model.decoder.layers.9": 1,
|
|
"model.decoder.layers.10": 1,
|
|
"model.decoder.layers.11": 1,
|
|
"model.decoder.final_layer_norm": 1,
|
|
}
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
device_map=device_map,
|
|
quantization_config=self.quantization_config,
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
fp16=True,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_non_default_adapter_name(self):
|
|
# See issue 1346
|
|
config = LoraConfig(
|
|
r=16,
|
|
target_modules=["q_proj", "v_proj"],
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
# default adapter name
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
quantization_config=self.quantization_config,
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
model = get_peft_model(model, config)
|
|
n_trainable_default, n_total_default = model.get_nb_trainable_parameters()
|
|
|
|
# other adapter name
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
quantization_config=self.quantization_config,
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
model = get_peft_model(model, config, adapter_name="other")
|
|
n_trainable_other, n_total_other = model.get_nb_trainable_parameters()
|
|
|
|
assert n_trainable_other > 0
|
|
# sanity check
|
|
assert n_trainable_default == n_trainable_other
|
|
assert n_total_default == n_total_other
|
|
|
|
|
|
@require_non_cpu
|
|
class OffloadSaveTests(unittest.TestCase):
|
|
def setUp(self):
|
|
self.causal_lm_model_id = "gpt2"
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def test_offload_load(self):
|
|
r"""
|
|
Test the loading of a LoRA model with CPU- and disk-offloaded modules
|
|
"""
|
|
torch.manual_seed(0)
|
|
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
memory_limits = {"cpu": "0.4GIB"} # no "disk" for PeftModel.from_pretrained() compatibility
|
|
|
|
# offload around half of all transformer modules to the disk
|
|
device_map = infer_auto_device_map(model, max_memory=memory_limits)
|
|
assert "cpu" in device_map.values()
|
|
assert "disk" in device_map.values()
|
|
|
|
config = LoraConfig(task_type="CAUSAL_LM", init_lora_weights=False, target_modules=["c_attn"])
|
|
|
|
model = get_peft_model(model, config)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map="cpu")
|
|
lora_model = PeftModel.from_pretrained(model, tmp_dir).eval()
|
|
input_tokens = tokenizer.encode("Four score and seven years ago", return_tensors="pt")
|
|
output = lora_model(input_tokens)[0]
|
|
|
|
# load the model with device_map
|
|
offloaded_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map=device_map)
|
|
assert len({p.device for p in offloaded_model.parameters()}) == 2 # 'cpu' and 'meta'
|
|
offloaded_lora_model = PeftModel.from_pretrained(offloaded_model, tmp_dir, max_memory=memory_limits).eval()
|
|
offloaded_output = offloaded_lora_model(input_tokens)[0]
|
|
assert torch.allclose(output, offloaded_output, atol=1e-5)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_offload_merge(self):
|
|
r"""
|
|
Test merging, unmerging, and unloading of a model with CPU- and disk- offloaded modules.
|
|
"""
|
|
torch.manual_seed(0)
|
|
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
|
|
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
memory_limits = {0: "0.2GIB", "cpu": "0.2GIB"} # no "disk" for PeftModel.from_pretrained() compatibility
|
|
# offloads around half of all transformer modules
|
|
device_map = infer_auto_device_map(model, max_memory=memory_limits)
|
|
assert 0 in device_map.values()
|
|
assert "cpu" in device_map.values()
|
|
assert "disk" in device_map.values()
|
|
|
|
config = LoraConfig(task_type="CAUSAL_LM", init_lora_weights=False, target_modules=["c_attn"])
|
|
|
|
model = get_peft_model(model, config)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
# load the model with device_map
|
|
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map=device_map).eval()
|
|
assert len({p.device for p in model.parameters()}) == 2
|
|
|
|
model = PeftModel.from_pretrained(model, tmp_dir, max_memory=memory_limits)
|
|
|
|
input_tokens = tokenizer.encode("Four score and seven years ago", return_tensors="pt")
|
|
model.eval()
|
|
|
|
# test peft model adapter merge
|
|
pre_merge_olayer = model(input_tokens)[0]
|
|
model.merge_adapter()
|
|
post_merge_olayer = model(input_tokens)[0]
|
|
assert torch.allclose(post_merge_olayer, pre_merge_olayer)
|
|
|
|
# test peft model adapter unmerge
|
|
model.unmerge_adapter()
|
|
post_unmerge_olayer = model(input_tokens)[0]
|
|
assert torch.allclose(post_unmerge_olayer, pre_merge_olayer)
|
|
|
|
# test LoRA merge and unload
|
|
model = model.merge_and_unload()
|
|
post_unload_merge_olayer = model(input_tokens)[0]
|
|
assert torch.allclose(post_unload_merge_olayer, pre_merge_olayer)
|
|
|
|
|
|
@pytest.mark.skipif(not (torch.cuda.is_available() or is_xpu_available()), reason="test requires a GPU or XPU")
|
|
@pytest.mark.single_gpu_tests
|
|
class TestPiSSA:
|
|
r"""
|
|
Tests for PiSSA to ensure that it reduces the quantization error compared to normal LoRA quantization.
|
|
"""
|
|
|
|
# The error factor indicates by how much the quantization error should be decreased when using PiSSA compared to
|
|
# quantization without PiSSA. Thus 1.03 means that the error should be decreased by 3% at least. This is a very
|
|
# conservative value to prevent flakiness, in practice most gains are > 1.5
|
|
error_factor = 1.03
|
|
|
|
def quantize_model(self, model, num_bits=4, device="cuda"):
|
|
# Quantize the `weight.data` of the linear layer in the model to `num_bits` and store it with full precision.
|
|
quantizer = NFQuantizer(num_bits=num_bits, device=device, method="normal", block_size=64)
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, (torch.nn.Linear, Conv1D)) and "lm_head" not in name:
|
|
quantized_weight, max_abs, shape = quantizer.quantize_block(module.weight.data.to(device))
|
|
module.weight.data = quantizer.dequantize_block(quantized_weight, max_abs, shape)
|
|
return model
|
|
|
|
def nuclear_norm(self, base_model, quantized_model):
|
|
# Calculate the nuclear norm (sum of singular values) of the error matrices between the `quantized_model` and the `base_model`.
|
|
error_list = []
|
|
for name, module in base_model.named_modules():
|
|
if isinstance(module, (torch.nn.Linear, Conv1D)) and "lm_head" not in name:
|
|
quant_module = quantized_model.get_submodule(name)
|
|
error_list.append(torch.linalg.svdvals(module.weight.data - quant_module.weight.data).sum())
|
|
return torch.Tensor(error_list).sum()
|
|
|
|
def get_errors(
|
|
self,
|
|
tmp_path,
|
|
bits=4,
|
|
device="cuda",
|
|
model_id="hf-internal-testing/tiny-random-BloomForCausalLM",
|
|
):
|
|
# Comparing the quantized LoRA model to the base model, vs the PiSSA quantized model to the base model.
|
|
# We expect the PiSSA quantized model to have less error than the normal LoRA quantized model.
|
|
|
|
cls = AutoModelForSeq2SeqLM if "t5" in str(model_id) else AutoModelForCausalLM
|
|
base_model = cls.from_pretrained(model_id).eval().to(device)
|
|
task_type = TaskType.SEQ_2_SEQ_LM if base_model.config.is_encoder_decoder else TaskType.CAUSAL_LM
|
|
|
|
# logits from the normal quantized LoRA model
|
|
target_modules = "all-linear" if task_type != TaskType.SEQ_2_SEQ_LM else ["o", "k", "wi", "q", "v"]
|
|
lora_config = LoraConfig(task_type=task_type, target_modules=target_modules)
|
|
|
|
qlora_model = self.quantize_model(cls.from_pretrained(model_id).eval().to(device), bits, device)
|
|
qlora_model = get_peft_model(
|
|
qlora_model,
|
|
lora_config,
|
|
)
|
|
qlora_model = qlora_model.merge_and_unload()
|
|
qlora_error = self.nuclear_norm(base_model, qlora_model)
|
|
del qlora_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# logits from quantized LoRA model using PiSSA
|
|
lora_config = LoraConfig(
|
|
task_type=task_type,
|
|
init_lora_weights="pissa",
|
|
target_modules=target_modules,
|
|
)
|
|
pissa_model = cls.from_pretrained(model_id).eval().to(device)
|
|
pissa_model = get_peft_model(pissa_model, lora_config)
|
|
|
|
# save LoRA weights, they should be initialized such that they minimize the quantization error
|
|
pissa_model.base_model.peft_config["default"].init_lora_weights = True
|
|
pissa_model.save_pretrained(tmp_path / "pissa_model")
|
|
|
|
pissa_model = pissa_model.unload()
|
|
pissa_model.save_pretrained(tmp_path / "residual_model")
|
|
|
|
del pissa_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# now load quantized model and apply PiSSA-initialized weights on top
|
|
qpissa_model = self.quantize_model(
|
|
cls.from_pretrained(tmp_path / "residual_model").eval().to(device), bits, device
|
|
)
|
|
qpissa_model = PeftModel.from_pretrained(qpissa_model, tmp_path / "pissa_model")
|
|
qpissa_model = qpissa_model.merge_and_unload()
|
|
qpissa_error = self.nuclear_norm(base_model, qpissa_model)
|
|
del qpissa_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
assert qlora_error > 0.0
|
|
assert qpissa_error > 0.0
|
|
|
|
# next, check that PiSSA quantization errors are smaller than LoRA errors by a certain margin
|
|
assert qpissa_error < (qlora_error / self.error_factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_pissa_4bit(self, device, tmp_path):
|
|
# In this test, we compare the logits of the base model, the quantized LoRA model, and the quantized model
|
|
# using PiSSA. When quantizing, we expect a certain level of error. However, we expect the PiSSA quantized
|
|
# model to have less error than the normal LoRA quantized model. Note that when using normal LoRA, the
|
|
# quantization error is simply the error from quantization without LoRA, as LoRA is a no-op before training.
|
|
# We still apply LoRA for the test for consistency.
|
|
|
|
self.get_errors(bits=4, device=device, tmp_path=tmp_path)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_pissa_8bit(self, device, tmp_path):
|
|
# Same test as test_bloomz_pissa_4bit but with 8 bits.
|
|
self.get_errors(bits=8, device=device, tmp_path=tmp_path)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_t5_pissa_4bit(self, device, tmp_path):
|
|
self.get_errors(bits=4, device=device, model_id="t5-small", tmp_path=tmp_path)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_t5_pissa_8bit(self, device, tmp_path):
|
|
self.get_errors(bits=8, device=device, model_id="t5-small", tmp_path=tmp_path)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_gpt2_pissa_4bit(self, device, tmp_path):
|
|
# see 2104
|
|
self.get_errors(bits=4, device=device, model_id="gpt2", tmp_path=tmp_path)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_gpt2_pissa_8bit(self, device, tmp_path):
|
|
# see 2104
|
|
self.get_errors(bits=8, device=device, model_id="gpt2", tmp_path=tmp_path)
|
|
|
|
@require_bitsandbytes
|
|
def test_lora_pissa_conversion_same_output_after_loading_with_quantization(self, tmp_path):
|
|
# A copy of the test `test_lora_pissa_conversion_same_output_after_loading` in peft/tests/test_initialization.py,
|
|
# that would fail if bitsandbytes quantization is used because Quant(W_res) + AB !=Quant(W) + \Delta(AB).
|
|
import bitsandbytes as bnb
|
|
|
|
torch.manual_seed(0)
|
|
data = torch.rand(10, 1000).to(torch_device)
|
|
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# choose a large weight so that averages are close to expected values
|
|
self.linear = torch.nn.Linear(1000, 1000)
|
|
self.embed = torch.nn.Embedding(1000, 1000)
|
|
self.conv2d = torch.nn.Conv2d(100, 100, 3)
|
|
|
|
def forward(self, x):
|
|
x_int = (100 * x).int()
|
|
x_4d = x.flatten().reshape(1, 100, 10, 10)
|
|
return self.linear(x), self.embed(x_int), self.conv2d(x_4d)
|
|
|
|
model = MyModule().to(torch_device)
|
|
output_base = model(data)[0]
|
|
|
|
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model = peft_model.unload()
|
|
torch.save(peft_model.state_dict(), tmp_path / "residual-model")
|
|
del peft_model
|
|
|
|
# create 4bit base model
|
|
base_model = deepcopy(model)
|
|
base_model.load_state_dict(torch.load(tmp_path / "residual-model"))
|
|
# sanity check: the base model weights were indeed changed
|
|
tol = 1e-06
|
|
assert not torch.allclose(model.linear.weight, base_model.linear.weight, atol=tol, rtol=tol)
|
|
# quantize the linear layer
|
|
linear4bit = bnb.nn.Linear4bit(base_model.linear.in_features, base_model.linear.out_features)
|
|
linear4bit.load_state_dict(base_model.linear.state_dict())
|
|
linear4bit.to(0)
|
|
base_model.linear = linear4bit
|
|
peft_model = PeftModel.from_pretrained(deepcopy(base_model), tmp_path / "init-model")
|
|
output_quantized_pissa = peft_model(data)[0]
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_quantized_pissa, atol=tol, rtol=tol)
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_finetuned_pissa = peft_model(data)[0]
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_quantized_pissa, output_finetuned_pissa, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "pissa-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(base_model), tmp_path / "pissa-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_finetuned_pissa, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
# This check is expected to fail when using bnb
|
|
assert not torch.allclose(output_finetuned_pissa, output_converted, atol=tol, rtol=tol)
|
|
|
|
|
|
@pytest.mark.skipif(not (torch.cuda.is_available() or is_xpu_available()), reason="test requires a GPU or XPU")
|
|
@pytest.mark.single_gpu_tests
|
|
class TestOLoRA:
|
|
r"""
|
|
Tests for OLoRA to ensure that it reduces the quantization error compared to normal LoRA quantization.
|
|
"""
|
|
|
|
# The error factor indicates by how much the quantization error should be decreased when using OLoRA compared to
|
|
# quantization without OLoRA. Thus 1.03 means that the error should be decreased by 3% at least. This is a very
|
|
# conservative value to prevent flakiness, in practice most gains are > 1.5
|
|
error_factor = 1.2
|
|
|
|
def quantize_model(self, model, num_bits=4, device="cuda"):
|
|
# Quantize the `weight.data` of the linear layer in the model to `num_bits` and store it with full precision.
|
|
quantizer = NFQuantizer(num_bits=num_bits, device=device, method="normal", block_size=64)
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, torch.nn.Linear) and "lm_head" not in name:
|
|
quantized_weight, max_abs, shape = quantizer.quantize_block(module.weight.data.to(device))
|
|
module.weight.data = quantizer.dequantize_block(quantized_weight, max_abs, shape)
|
|
return model
|
|
|
|
def nuclear_norm(self, base_model, quantized_model):
|
|
# Calculate the nuclear norm (sum of singular values) of the error matrices between the `quantized_model` and the `base_model`.
|
|
error_list = []
|
|
for name, module in base_model.named_modules():
|
|
if isinstance(module, torch.nn.Linear) and "lm_head" not in name:
|
|
quant_module = quantized_model.get_submodule(name)
|
|
error_list.append(torch.linalg.svdvals(module.weight.data - quant_module.weight.data).sum())
|
|
return torch.Tensor(error_list).sum()
|
|
|
|
def get_errors(
|
|
self,
|
|
tmp_path,
|
|
bits=4,
|
|
device="cuda",
|
|
model_id="hf-internal-testing/tiny-random-BloomForCausalLM",
|
|
):
|
|
# Comparing the quantized LoRA model to the base model, vs the OLoRA quantized model to the base model.
|
|
# We expect the OLoRA quantized model to have less error than the normal LoRA quantized model.
|
|
|
|
cls = AutoModelForSeq2SeqLM if "t5" in str(model_id) else AutoModelForCausalLM
|
|
base_model = cls.from_pretrained(model_id).eval().to(device)
|
|
task_type = TaskType.SEQ_2_SEQ_LM if base_model.config.is_encoder_decoder else TaskType.CAUSAL_LM
|
|
|
|
# logits from the normal quantized LoRA model
|
|
target_modules = "all-linear" if task_type != TaskType.SEQ_2_SEQ_LM else ["o", "k", "wi", "q", "v"]
|
|
lora_config = LoraConfig(task_type=task_type, target_modules=target_modules)
|
|
|
|
qlora_model = self.quantize_model(cls.from_pretrained(model_id).eval().to(device), bits, device)
|
|
qlora_model = get_peft_model(
|
|
qlora_model,
|
|
lora_config,
|
|
)
|
|
qlora_model = qlora_model.merge_and_unload()
|
|
qlora_error = self.nuclear_norm(base_model, qlora_model)
|
|
del qlora_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# logits from quantized LoRA model using OLoRA
|
|
lora_config = LoraConfig(
|
|
task_type=task_type,
|
|
init_lora_weights="olora",
|
|
target_modules=target_modules,
|
|
)
|
|
olora_model = cls.from_pretrained(model_id).eval().to(device)
|
|
olora_model = get_peft_model(olora_model, lora_config)
|
|
|
|
# save LoRA weights, they should be initialized such that they minimize the quantization error
|
|
olora_model.base_model.peft_config["default"].init_lora_weights = True
|
|
olora_model.save_pretrained(tmp_path / "olora_model")
|
|
|
|
olora_model = olora_model.unload()
|
|
olora_model.save_pretrained(tmp_path / "residual_model")
|
|
|
|
del olora_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# now load quantized model and apply OLoRA-initialized weights on top
|
|
qolora_model = self.quantize_model(
|
|
cls.from_pretrained(tmp_path / "residual_model").eval().to(device), bits, device
|
|
)
|
|
qolora_model = PeftModel.from_pretrained(qolora_model, tmp_path / "olora_model")
|
|
qolora_model = qolora_model.merge_and_unload()
|
|
qolora_error = self.nuclear_norm(base_model, qolora_model)
|
|
del qolora_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
assert qlora_error > 0.0
|
|
assert qolora_error > 0.0
|
|
|
|
# next, check that OLoRA quantization errors are smaller than LoRA errors by a certain margin
|
|
assert qolora_error < (qlora_error / self.error_factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_olora_4bit(self, device, tmp_path):
|
|
# In this test, we compare the logits of the base model, the quantized LoRA model, and the quantized model
|
|
# using OLoRA. When quantizing, we expect a certain level of error. However, we expect the OLoRA quantized
|
|
# model to have less error than the normal LoRA quantized model. Note that when using normal LoRA, the
|
|
# quantization error is simply the error from quantization without LoRA, as LoRA is a no-op before training.
|
|
# We still apply LoRA for the test for consistency.
|
|
|
|
self.get_errors(bits=4, device=device, tmp_path=tmp_path)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_olora_8bit(self, device, tmp_path):
|
|
# Same test as test_bloomz_olora_4bit but with 8 bits.
|
|
self.get_errors(bits=8, device=device, tmp_path=tmp_path)
|
|
|
|
@pytest.mark.parametrize("bits", [4, 8])
|
|
def test_olora_with_quantized_model(self, bits):
|
|
import bitsandbytes as bnb
|
|
|
|
# issue 1999
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
if bits == 4:
|
|
bnb_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_quant_type="nf4",
|
|
bnb_4bit_compute_dtype=torch.float16,
|
|
bnb_4bit_quant_storage=torch.float16,
|
|
bnb_4bit_use_double_quant=True,
|
|
)
|
|
elif bits == 8:
|
|
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
|
|
else:
|
|
raise ValueError("bits must be 4 or 8")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
|
model = prepare_model_for_kbit_training(model)
|
|
config = LoraConfig(init_lora_weights="olora")
|
|
model = get_peft_model(model, config)
|
|
|
|
# check that the correct type is used for the weights
|
|
base_layer = model.base_model.model.model.decoder.layers[0].self_attn.v_proj.base_layer.weight
|
|
if bits == 4:
|
|
assert isinstance(base_layer, bnb.nn.modules.Params4bit)
|
|
else:
|
|
assert isinstance(base_layer, bnb.nn.modules.Int8Params)
|
|
|
|
inputs = torch.arange(10).unsqueeze(0).to(model.device)
|
|
logits = model(inputs).logits # does not raise
|
|
assert torch.isfinite(logits).all()
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not (torch.cuda.is_available() or is_xpu_available()), reason="test requires a hardware accelerator"
|
|
)
|
|
@require_bitsandbytes
|
|
class TestLoftQ:
|
|
r"""
|
|
Tests for LoftQ to ensure that it reduces the quantization error compared to normal LoRA quantization.
|
|
"""
|
|
|
|
# The error factor indicates by how much the quantization error should be decreased when using LoftQ compared to
|
|
# quantization without LoftQ. Thus 1.03 means that the error should be decreased by 3% at least. This is a very
|
|
# conservative value to prevent flakiness, in practice most gains are > 1.5
|
|
device = infer_device()
|
|
error_factor = 1.005 if device in ("xpu", "cpu") else 1.03
|
|
|
|
def get_input(self, model_id, device):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer("All I want is", padding=True, return_tensors="pt")
|
|
inputs = inputs.to(self.device)
|
|
return inputs
|
|
|
|
def get_base_model(self, model_id, device, **kwargs):
|
|
cls = AutoModelForSeq2SeqLM if "t5" in str(model_id) else AutoModelForCausalLM
|
|
model = cls.from_pretrained(model_id, **kwargs).eval()
|
|
model = model.to(self.device)
|
|
return model
|
|
|
|
def get_logits(self, model, inputs):
|
|
if model.config.is_encoder_decoder:
|
|
input_ids = inputs["input_ids"]
|
|
return model(input_ids=input_ids, decoder_input_ids=input_ids).logits
|
|
return model(**inputs).logits
|
|
|
|
def get_errors(
|
|
self,
|
|
tmp_path,
|
|
bits=4,
|
|
loftq_iter=1,
|
|
device="cuda",
|
|
model_id="hf-internal-testing/tiny-random-BloomForCausalLM",
|
|
use_dora=False,
|
|
):
|
|
# Helper function that returns the quantization errors (MAE and MSE) when comparing the quantized LoRA model
|
|
# to the base model, vs the LoftQ quantized model to the base model. We expect the LoftQ quantized model to
|
|
# have less error than the normal LoRA quantized model. Since we compare logits, the observed error is
|
|
# already somewhat dampened because of the softmax.
|
|
torch.manual_seed(0)
|
|
model = self.get_base_model(model_id, device)
|
|
task_type = TaskType.SEQ_2_SEQ_LM if model.config.is_encoder_decoder else TaskType.CAUSAL_LM
|
|
inputs = self.get_input(model_id, device)
|
|
# the base logits are the reference, we try to match those as closely as possible
|
|
logits_base = self.get_logits(model, inputs)
|
|
# clean up
|
|
del model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# logits from the normal quantized LoRA model
|
|
target_modules = "all-linear" if task_type != TaskType.SEQ_2_SEQ_LM else ["o", "k", "wi", "q", "v"]
|
|
lora_config = LoraConfig(task_type=task_type, use_dora=use_dora, target_modules=target_modules)
|
|
kwargs = {}
|
|
if bits == 4:
|
|
kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4")
|
|
elif bits == 8:
|
|
kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
|
else:
|
|
raise ValueError("bits must be 4 or 8")
|
|
|
|
quantized_model = get_peft_model(
|
|
self.get_base_model(model_id, device=None, **kwargs),
|
|
lora_config,
|
|
)
|
|
torch.manual_seed(0)
|
|
logits_quantized = self.get_logits(quantized_model, inputs)
|
|
del quantized_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# logits from quantized LoRA model using LoftQ
|
|
loftq_config = LoftQConfig(loftq_bits=bits, loftq_iter=loftq_iter)
|
|
lora_config = LoraConfig(
|
|
task_type=task_type,
|
|
init_lora_weights="loftq",
|
|
loftq_config=loftq_config,
|
|
use_dora=use_dora,
|
|
target_modules=target_modules,
|
|
)
|
|
model = self.get_base_model(model_id, device)
|
|
if device != "cpu":
|
|
model = model.to(torch_device)
|
|
loftq_model = get_peft_model(model, lora_config)
|
|
if device != "cpu":
|
|
loftq_model = loftq_model.to(torch_device)
|
|
|
|
# save LoRA weights, they should be initialized such that they minimize the quantization error
|
|
loftq_model.base_model.peft_config["default"].init_lora_weights = True
|
|
loftq_model.save_pretrained(tmp_path / "loftq_model")
|
|
|
|
loftq_model = loftq_model.unload()
|
|
loftq_model.save_pretrained(tmp_path / "base_model")
|
|
|
|
del loftq_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# now load quantized model and apply LoftQ-initialized weights on top
|
|
base_model = self.get_base_model(tmp_path / "base_model", device=None, **kwargs, torch_dtype=torch.float32)
|
|
loftq_model = PeftModel.from_pretrained(base_model, tmp_path / "loftq_model", is_trainable=True)
|
|
|
|
# TODO sanity check: model is quantized
|
|
|
|
torch.manual_seed(0)
|
|
logits_loftq = self.get_logits(loftq_model, inputs)
|
|
del loftq_model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
mae_quantized = torch.abs(logits_base - logits_quantized).mean()
|
|
mse_quantized = torch.pow(logits_base - logits_quantized, 2).mean()
|
|
mae_loftq = torch.abs(logits_base - logits_loftq).mean()
|
|
mse_loftq = torch.pow(logits_base - logits_loftq, 2).mean()
|
|
return mae_quantized, mse_quantized, mae_loftq, mse_loftq
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_loftq_4bit(self, device, tmp_path):
|
|
# In this test, we compare the logits of the base model, the quantized LoRA model, and the quantized model
|
|
# using LoftQ. When quantizing, we expect a certain level of error. However, we expect the LoftQ quantized
|
|
# model to have less error than the normal LoRA quantized model. Note that when using normal LoRA, the
|
|
# quantization error is simply the error from quantization without LoRA, as LoRA is a no-op before training.
|
|
# We still apply LoRA for the test for consistency.
|
|
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(bits=4, device=device, tmp_path=tmp_path)
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
assert mse_loftq < (mse_quantized / self.error_factor)
|
|
assert mae_loftq < (mae_quantized / self.error_factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_loftq_4bit_iter_5(self, device, tmp_path):
|
|
# Same test as the previous one but with 5 iterations. We should expect the error to be even smaller with more
|
|
# iterations, but in practice the difference is not that large, at least not for this small base model.
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(
|
|
bits=4, loftq_iter=5, device=device, tmp_path=tmp_path
|
|
)
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
assert mse_loftq < (mse_quantized / self.error_factor)
|
|
assert mae_loftq < (mae_quantized / self.error_factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_loftq_8bit(self, device, tmp_path):
|
|
# Same test as test_bloomz_loftq_4bit but with 8 bits.
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(bits=8, device=device, tmp_path=tmp_path)
|
|
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
assert mse_loftq < (mse_quantized / self.error_factor)
|
|
assert mae_loftq < (mae_quantized / self.error_factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_loftq_8bit_iter_5(self, device, tmp_path):
|
|
# Same test as test_bloomz_loftq_4bit_iter_5 but with 8 bits.
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(
|
|
bits=8, loftq_iter=5, device=device, tmp_path=tmp_path
|
|
)
|
|
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
assert mse_loftq < (mse_quantized / self.error_factor)
|
|
assert mae_loftq < (mae_quantized / self.error_factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_t5_loftq_4bit(self, device, tmp_path):
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(
|
|
bits=4, device=device, model_id="t5-small", tmp_path=tmp_path
|
|
)
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
assert mse_loftq < (mse_quantized / self.error_factor)
|
|
assert mae_loftq < (mae_quantized / self.error_factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_t5_loftq_8bit(self, device, tmp_path):
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(
|
|
bits=8, device=device, model_id="t5-small", tmp_path=tmp_path
|
|
)
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
assert mse_loftq < (mse_quantized / self.error_factor)
|
|
assert mae_loftq < (mae_quantized / self.error_factor)
|
|
|
|
@pytest.mark.xfail # failing for now, but having DoRA pass is only a nice-to-have, not a must, so we're good
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_loftq_4bit_dora(self, device, tmp_path):
|
|
# same as test_bloomz_loftq_4bit but with DoRA
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(
|
|
bits=4, device=device, use_dora=True, tmp_path=tmp_path
|
|
)
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
factor = 3
|
|
assert mae_loftq < (mae_quantized / factor)
|
|
assert mse_loftq < (mse_quantized / factor)
|
|
|
|
@pytest.mark.parametrize("device", [torch_device, "cpu"])
|
|
def test_bloomz_loftq_8bit_dora(self, device, tmp_path):
|
|
# same as test_bloomz_loftq_8bit but with DoRA
|
|
mae_quantized, mse_quantized, mae_loftq, mse_loftq = self.get_errors(
|
|
bits=8, device=device, use_dora=True, tmp_path=tmp_path
|
|
)
|
|
|
|
# first, sanity check that all errors are > 0.0
|
|
assert mae_quantized > 0.0
|
|
assert mse_quantized > 0.0
|
|
assert mae_loftq > 0.0
|
|
assert mse_loftq > 0.0
|
|
|
|
# next, check that LoftQ quantization errors are smaller than LoRA errors by a certain margin
|
|
assert mae_loftq < (mae_quantized / self.error_factor)
|
|
assert mse_loftq < (mse_quantized / self.error_factor)
|
|
|
|
def test_replace_lora_weights_with_loftq_using_callable(self):
|
|
"""
|
|
Test replacing LoRa weights with LoFTQ using a callable.
|
|
|
|
Using the replace_lora_weights_loftq function, we replace the LoRa weights of a bnb-quantized model with LoRA
|
|
weights initialized by LoftQ on the fly. We use a callable to decide whether to replace the weights or not.
|
|
This callable checks, for each weight, if replacing it would actually result in logits that are closer to the
|
|
original logits of the non-quantized model.
|
|
|
|
"""
|
|
torch.manual_seed(0)
|
|
model_id = "bigscience/bloomz-560m"
|
|
device = torch_device
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer("The dog was", padding=True, return_tensors="pt").to(device)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
|
|
logits_base = model(**inputs).logits
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
# load in 4bit
|
|
bnb_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_use_double_quant=True,
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
|
|
model = get_peft_model(model, LoraConfig(task_type="CAUSAL_LM", target_modules="all-linear"))
|
|
logits_lora = model(**inputs).logits
|
|
|
|
current_mse = float("inf")
|
|
logs = []
|
|
|
|
def my_callback(model, module_name):
|
|
"""Callable to replace weights with LoFTQ if the mse is lower than the current best one."""
|
|
nonlocal current_mse
|
|
|
|
logits = model(**inputs).logits
|
|
mse = ((logits_base - logits) ** 2).mean()
|
|
if mse < current_mse:
|
|
current_mse = mse
|
|
logs.append(True)
|
|
return True
|
|
logs.append(False)
|
|
return False
|
|
|
|
replace_lora_weights_loftq(model, model_path=tmp_dir, callback=my_callback)
|
|
logits_loftq = model(**inputs).logits
|
|
|
|
mae_lora = (logits_base - logits_lora).abs().mean()
|
|
mae_loftq = (logits_base - logits_loftq).abs().mean()
|
|
mse_lora = ((logits_base - logits_lora) ** 2).mean()
|
|
mse_loftq = ((logits_base - logits_loftq) ** 2).mean()
|
|
|
|
# check that the error was reduced by a certain margin
|
|
assert mae_loftq * 1.5 < mae_lora
|
|
assert mse_loftq * 2.5 < mse_lora
|
|
|
|
# check that the callback has returned some True and some False values
|
|
assert any(logs)
|
|
assert not all(logs)
|
|
|
|
del model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def test_replace_lora_weights_with_local_model(self):
|
|
# see issue 2020
|
|
torch.manual_seed(0)
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
device = torch_device
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# save base model locally
|
|
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
|
|
model.save_pretrained(tmp_dir)
|
|
del model
|
|
|
|
# load in 4bit
|
|
bnb_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_use_double_quant=True,
|
|
)
|
|
|
|
# load the base model from local directory
|
|
model = AutoModelForCausalLM.from_pretrained(tmp_dir, quantization_config=bnb_config)
|
|
model = get_peft_model(model, LoraConfig())
|
|
|
|
# passing the local path directly works
|
|
replace_lora_weights_loftq(model, model_path=tmp_dir)
|
|
del model
|
|
|
|
# load the base model from local directory
|
|
model = AutoModelForCausalLM.from_pretrained(tmp_dir, quantization_config=bnb_config)
|
|
model = get_peft_model(model, LoraConfig())
|
|
|
|
# when not passing, ensure that users are made aware of the `model_path` argument
|
|
with pytest.raises(ValueError, match="model_path"):
|
|
replace_lora_weights_loftq(model)
|
|
|
|
del model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def test_config_no_loftq_init(self):
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="`loftq_config` specified but will be ignored when `init_lora_weights` is not 'loftq'.",
|
|
):
|
|
LoraConfig(loftq_config=LoftQConfig())
|
|
|
|
def test_config_no_loftq_config(self):
|
|
with pytest.raises(ValueError, match="`loftq_config` must be specified when `init_lora_weights` is 'loftq'."):
|
|
LoraConfig(init_lora_weights="loftq")
|
|
|
|
|
|
@require_bitsandbytes
|
|
@require_non_cpu
|
|
class MultiprocessTester(unittest.TestCase):
|
|
def test_notebook_launcher(self):
|
|
script_path = os.path.join("scripts", "launch_notebook_mp.py")
|
|
cmd = ["python", script_path]
|
|
with patch_environment(omp_num_threads=1):
|
|
run_command(cmd, env=os.environ.copy())
|
|
|
|
|
|
@require_non_cpu
|
|
class MixedPrecisionTests(unittest.TestCase):
|
|
def setUp(self):
|
|
self.causal_lm_model_id = "facebook/opt-125m"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
self.config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
data = load_dataset_english_quotes()
|
|
self.data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
gc.collect()
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_model_using_float16_with_amp_raises(self):
|
|
# This test shows the issue with using a model in fp16 and then trying to use it with mixed precision training,
|
|
# which should not use fp16.
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=False)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
output_dir=tmp_dir,
|
|
max_steps=3,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
with pytest.raises(ValueError, match="Attempting to unscale FP16 gradients."):
|
|
trainer.train()
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_model_using_float16_autocast_dtype(self):
|
|
# Here we use autocast_adapter_dtype=True (the default) to automatically promote the adapter weights to float32.
|
|
# No exception should be raised.
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=True)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
output_dir=tmp_dir,
|
|
max_steps=3,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.train() # does not raise
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_model_using_float16_explicit_cast(self):
|
|
# Same test as above but containing the fix to make it work
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=False)
|
|
|
|
# here we manually promote the adapter weights to float32
|
|
for param in model.parameters():
|
|
if param.requires_grad:
|
|
param.data = param.data.float()
|
|
|
|
dtype_counts_before = Counter(p.dtype for p in model.parameters())
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=True)
|
|
dtype_counts_after = Counter(p.dtype for p in model.parameters())
|
|
assert dtype_counts_before == dtype_counts_after
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
max_steps=3,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.train() # does not raise
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_load_model_using_float16_with_amp_raises(self):
|
|
# Same as previous tests, but loading the adapter with PeftModel.from_pretrained instead
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=False)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, torch_dtype=torch.float16)
|
|
model = PeftModel.from_pretrained(model, tmp_dir, autocast_adapter_dtype=False, is_trainable=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
output_dir=tmp_dir,
|
|
max_steps=3,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
with pytest.raises(ValueError, match="Attempting to unscale FP16 gradients."):
|
|
trainer.train()
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_load_model_using_float16_autocast_dtype(self):
|
|
# Same as previous tests, but loading the adapter with PeftModel.from_pretrained instead
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
# Below, we purposefully set autocast_adapter_dtype=False so that the saved adapter uses float16. We still want
|
|
# the loaded adapter to use float32 when we load it with autocast_adapter_dtype=True.
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=False)
|
|
# sanity check: this should have float16 adapter weights:
|
|
assert (
|
|
model.base_model.model.model.decoder.layers[0].self_attn.v_proj.lora_A["default"].weight.dtype
|
|
== torch.float16
|
|
)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, torch_dtype=torch.float16)
|
|
model = PeftModel.from_pretrained(model, tmp_dir, autocast_adapter_dtype=True, is_trainable=True)
|
|
# sanity check: this should NOT have float16 adapter weights:
|
|
assert (
|
|
model.base_model.model.model.decoder.layers[0].self_attn.v_proj.lora_A["default"].weight.dtype
|
|
== torch.float32
|
|
)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
output_dir=tmp_dir,
|
|
max_steps=3,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.train() # does not raise
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_load_adapter_using_float16_autocast_dtype(self):
|
|
# Here we test the load_adapter method with autocast_adapter_dtype. We show that autocasting is prevented when
|
|
# calling load_model(..., autocast_adapter_dtype=False) and that it is enabled when calling
|
|
# load_model(..., autocast_adapter_dtype=True) (the default).
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
# Below, we purposefully set autocast_adapter_dtype=False so that the saved adapter uses float16. We still want
|
|
# the loaded adapter to use float32 when we load it with autocast_adapter_dtype=True.
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=False)
|
|
# sanity check: this should have float16 adapter weights:
|
|
assert (
|
|
model.base_model.model.model.decoder.layers[0].self_attn.v_proj.lora_A["default"].weight.dtype
|
|
== torch.float16
|
|
)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, torch_dtype=torch.float16)
|
|
# the default adapter is now in float16
|
|
model = get_peft_model(model, self.config, autocast_adapter_dtype=False)
|
|
# sanity check: this should NOT have float16 adapter weights:
|
|
assert (
|
|
model.base_model.model.model.decoder.layers[0].self_attn.v_proj.lora_A["default"].weight.dtype
|
|
== torch.float16
|
|
)
|
|
|
|
# now load the first adapter in float16 using the adapter name "loaded16"
|
|
model.load_adapter(tmp_dir, "loaded16", autocast_adapter_dtype=False)
|
|
assert (
|
|
model.base_model.model.model.decoder.layers[0].self_attn.v_proj.lora_A["loaded16"].weight.dtype
|
|
== torch.float16
|
|
)
|
|
|
|
# now load the first adapter in float32 using the adapter name "loaded32"
|
|
model.load_adapter(tmp_dir, "loaded32", autocast_adapter_dtype=True)
|
|
assert (
|
|
model.base_model.model.model.decoder.layers[0].self_attn.v_proj.lora_A["loaded32"].weight.dtype
|
|
== torch.float32
|
|
)
|
|
|
|
# training with the default adapter, which is in float16, should raise
|
|
model.set_adapter("default")
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
output_dir=tmp_dir,
|
|
max_steps=3,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
with pytest.raises(ValueError, match="Attempting to unscale FP16 gradients."):
|
|
trainer.train()
|
|
|
|
# training the model with the adapter "loaded16", which is in float16, should also raise
|
|
model.set_adapter("loaded16")
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
output_dir=tmp_dir,
|
|
max_steps=3,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
with pytest.raises(ValueError, match="Attempting to unscale FP16 gradients."):
|
|
trainer.train()
|
|
|
|
# training the model with the adapter "loaded32", which is in float32, should not raise
|
|
model.set_adapter("loaded32")
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=self.data["train"],
|
|
args=TrainingArguments(
|
|
fp16=True, # <= this is required for the error to be raised
|
|
output_dir=tmp_dir,
|
|
max_steps=3,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.train() # does not raise
|
|
|
|
|
|
@require_non_xpu
|
|
@require_torch_gpu
|
|
@require_aqlm
|
|
@unittest.skipUnless(
|
|
version.parse(importlib.metadata.version("transformers")) >= version.parse("4.38.0"),
|
|
"test requires `transformers>=4.38.0`",
|
|
)
|
|
class PeftAqlmGPUTests(unittest.TestCase):
|
|
r"""
|
|
AQLM + peft tests
|
|
"""
|
|
|
|
def setUp(self):
|
|
self.causal_lm_model_id = "BlackSamorez/TinyLlama-1_1B-Chat-v1_0-AQLM-2Bit-1x16-hf"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def _check_inference_finite(self, model, batch):
|
|
# try inference without Trainer class
|
|
training = model.training
|
|
model.eval()
|
|
output = model(**batch.to(model.device))
|
|
assert torch.isfinite(output.logits).all()
|
|
model.train(training)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_aqlm(self):
|
|
r"""
|
|
Test the CausalLM training on a single GPU device. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map="cuda",
|
|
torch_dtype="auto",
|
|
)
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
fp16=True,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
|
|
@require_non_xpu
|
|
@require_torch_gpu
|
|
@require_hqq
|
|
@unittest.skipUnless(
|
|
version.parse(importlib.metadata.version("transformers")) >= version.parse("4.36.1"),
|
|
"test requires `transformers>=4.36.1`",
|
|
)
|
|
class PeftHqqGPUTests(unittest.TestCase):
|
|
r"""
|
|
HQQ + peft tests
|
|
"""
|
|
|
|
def setUp(self):
|
|
self.causal_lm_model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
@parameterized.expand([False, True])
|
|
def test_causal_lm_training_hqq(self, use_dora):
|
|
r"""
|
|
Test the CausalLM training on a single GPU device. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
|
|
from transformers import HqqConfig
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
device = "cuda"
|
|
compute_dtype = torch.float16
|
|
|
|
quant_config = HqqConfig(nbits=4, group_size=64)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=device,
|
|
torch_dtype=compute_dtype,
|
|
quantization_config=quant_config,
|
|
)
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=use_dora,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
fp16=True,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_hqq_lora_model_outputs(self):
|
|
# check that the outputs generated by HQQ with LoRA are similar to those without HQQ
|
|
from transformers import HqqConfig
|
|
|
|
device = "cuda"
|
|
compute_dtype = torch.float16
|
|
min_correlation = 0.96
|
|
|
|
# first load the model without HQQ
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=device,
|
|
torch_dtype=compute_dtype,
|
|
)
|
|
config = LoraConfig(
|
|
target_modules=["q_proj", "v_proj"],
|
|
task_type="CAUSAL_LM",
|
|
init_lora_weights=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, config).eval()
|
|
inputs = self.tokenizer("The meaning of unit tests is", return_tensors="pt").to(model.device)
|
|
|
|
with torch.inference_mode():
|
|
output_normal = model(**inputs).logits
|
|
assert torch.isfinite(output_normal).all()
|
|
|
|
del model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
# now load with HQQ
|
|
quant_config = HqqConfig(nbits=4, group_size=64)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=device,
|
|
torch_dtype=compute_dtype,
|
|
quantization_config=quant_config,
|
|
)
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, config).eval()
|
|
with torch.inference_mode():
|
|
output_hqq = model(**inputs).logits
|
|
|
|
# check that outputs of HQQ are highly correlated; there are outliers, so don't check for equality
|
|
cc_matrix = torch.corrcoef(torch.stack((output_normal.float().flatten(), output_hqq.float().flatten())))
|
|
assert cc_matrix.min() > min_correlation
|
|
|
|
# check that outputs are the same after merging
|
|
cc_matrix = torch.corrcoef(torch.stack((output_normal.float().flatten(), output_hqq.float().flatten())))
|
|
assert cc_matrix.min() > min_correlation
|
|
|
|
# check outputs are the same after unmerging
|
|
model.unmerge_adapter()
|
|
with torch.inference_mode():
|
|
output_unmerged = model(**inputs).logits
|
|
cc_matrix = torch.corrcoef(torch.stack((output_normal.float().flatten(), output_unmerged.float().flatten())))
|
|
assert cc_matrix.min() > min_correlation
|
|
|
|
# check that the results are the same after saving and loading
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
del model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
quant_config = HqqConfig(nbits=4, group_size=64)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=device,
|
|
torch_dtype=compute_dtype,
|
|
quantization_config=quant_config,
|
|
)
|
|
model = PeftModel.from_pretrained(model, tmp_dir)
|
|
with torch.inference_mode():
|
|
output_loaded = model(**inputs).logits
|
|
|
|
# for loading, we expect high precision, so check for equality and not just correlation
|
|
atol, rtol = 1e-6, 1e-6
|
|
assert torch.allclose(output_hqq, output_loaded, atol=atol, rtol=rtol)
|
|
|
|
# check that outputs are the same after merge_and_unload
|
|
model = model.merge_and_unload()
|
|
with torch.inference_mode():
|
|
output_merged_unloaded = model(**inputs).logits
|
|
cc_matrix = torch.corrcoef(
|
|
torch.stack((output_normal.float().flatten(), output_merged_unloaded.float().flatten()))
|
|
)
|
|
assert cc_matrix.min() > min_correlation
|
|
|
|
|
|
@require_non_cpu
|
|
@require_auto_awq
|
|
class PeftAwqGPUTests(unittest.TestCase):
|
|
r"""
|
|
Awq + peft tests
|
|
|
|
Note that AWQ is no longer being maintained:
|
|
|
|
https://github.com/casper-hansen/AutoAWQ/blob/88e4c76b20755db275574e6a03c83c84ba3bece5/README.md
|
|
|
|
It is therefore expected that more tests will start failing in the future. If this happens, remove AWQ support from
|
|
PEFT.
|
|
"""
|
|
|
|
def setUp(self):
|
|
self.causal_lm_model_id = "peft-internal-testing/opt-125m-awq"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free accelerator memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def _check_inference_finite(self, model, batch):
|
|
# try inference without Trainer class
|
|
training = model.training
|
|
model.eval()
|
|
output = model(**batch.to(model.device))
|
|
assert torch.isfinite(output.logits).all()
|
|
model.train(training)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_awq(self):
|
|
r"""
|
|
Test the CausalLM training on a single accelerator. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map="auto",
|
|
)
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
# TODO: deal correctly with this case in transformers
|
|
model._is_quantized_training_enabled = True
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
fp16=True,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
# TODO remove marker if/once issue is resolved, most likely requiring a fix in AutoAWQ:
|
|
# https://github.com/casper-hansen/AutoAWQ/issues/754
|
|
@pytest.mark.xfail(
|
|
condition=is_torch_version(">=", "2.7.0"),
|
|
reason="Multi-GPU test currently not working with AutoAWQ and PyTorch 2.7+",
|
|
strict=True,
|
|
)
|
|
@require_torch_multi_accelerator
|
|
def test_causal_lm_training_multi_accelerator(self):
|
|
r"""
|
|
Test the CausalLM training on a multi-accelerator device. The test would simply fail if the adapters are not
|
|
set correctly.
|
|
"""
|
|
device_map = {
|
|
"model.decoder.embed_tokens": 0,
|
|
"lm_head": 0,
|
|
"model.decoder.embed_positions": 0,
|
|
"model.decoder.project_out": 0,
|
|
"model.decoder.project_in": 0,
|
|
"model.decoder.layers.0": 0,
|
|
"model.decoder.layers.1": 0,
|
|
"model.decoder.layers.2": 0,
|
|
"model.decoder.layers.3": 0,
|
|
"model.decoder.layers.4": 0,
|
|
"model.decoder.layers.5": 0,
|
|
"model.decoder.layers.6": 1,
|
|
"model.decoder.layers.7": 1,
|
|
"model.decoder.layers.8": 1,
|
|
"model.decoder.layers.9": 1,
|
|
"model.decoder.layers.10": 1,
|
|
"model.decoder.layers.11": 1,
|
|
"model.decoder.final_layer_norm": 1,
|
|
}
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=device_map,
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
|
|
@require_non_xpu
|
|
@require_torch_gpu
|
|
@require_eetq
|
|
class PeftEetqGPUTests(unittest.TestCase):
|
|
r"""
|
|
EETQ + peft tests
|
|
"""
|
|
|
|
def setUp(self):
|
|
self.causal_lm_model_id = "facebook/opt-125m"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
def _check_inference_finite(self, model, batch):
|
|
# try inference without Trainer class
|
|
training = model.training
|
|
model.eval()
|
|
output = model(**batch.to(model.device))
|
|
assert torch.isfinite(output.logits).all()
|
|
model.train(training)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_eetq(self):
|
|
r"""
|
|
Test the CausalLM training on a single GPU device. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
from transformers import EetqConfig
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
quantization_config = EetqConfig("int8")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id, device_map="auto", quantization_config=quantization_config
|
|
)
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
@require_torch_multi_gpu
|
|
def test_causal_lm_training_multi_gpu_eetq(self):
|
|
r"""
|
|
Test the CausalLM training on a multi-GPU device. The test would simply fail if the adapters are not set
|
|
correctly.
|
|
"""
|
|
from transformers import EetqConfig
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
quantization_config = EetqConfig("int8")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
|
|
quantization_config=quantization_config,
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
setattr(model, "model_parallel", True)
|
|
setattr(model, "is_parallelizable", True)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
|
|
@require_non_cpu
|
|
@require_torchao
|
|
class PeftTorchaoGPUTests(unittest.TestCase):
|
|
r"""
|
|
torchao + peft tests
|
|
"""
|
|
|
|
supported_quant_types = [
|
|
"int8_weight_only",
|
|
"int8_dynamic_activation_int8_weight",
|
|
# int4_weight_only raises an error:
|
|
# RuntimeError: derivative for aten::_weight_int4pack_mm is not implemented
|
|
# "int4_weight_only",
|
|
]
|
|
|
|
def setUp(self):
|
|
self.causal_lm_model_id = "facebook/opt-125m"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
|
|
# torchao breaks with fp16 and if a previous test uses fp16, transformers will set this env var, which affects
|
|
# subsequent tests, therefore the env var needs to be cleared explicitly
|
|
#
|
|
# TODO: remove this once https://github.com/huggingface/transformers/pull/39483 is merged
|
|
os.environ.pop("ACCELERATE_MIXED_PRECISION", None)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
Efficient mechanism to free GPU memory after each test. Based on
|
|
https://github.com/huggingface/transformers/issues/21094
|
|
"""
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
@parameterized.expand(supported_quant_types)
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_single_gpu_torchao(self, quant_type):
|
|
from transformers import TorchAoConfig
|
|
|
|
device = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
quantization_config = TorchAoConfig(quant_type=quant_type)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id, device_map=device, quantization_config=quantization_config
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_single_gpu_torchao_dora_int8_weight_only(self):
|
|
from transformers import TorchAoConfig
|
|
|
|
device = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
quantization_config = TorchAoConfig(quant_type="int8_weight_only")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id, device_map=device, quantization_config=quantization_config
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_single_gpu_torchao_dora_int8_dynamic_activation_int8_weight_raises(self):
|
|
from transformers import TorchAoConfig
|
|
|
|
device = 0
|
|
|
|
quantization_config = TorchAoConfig(quant_type="int8_dynamic_activation_int8_weight")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id, device_map=device, quantization_config=quantization_config
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
with pytest.raises(NotImplementedError):
|
|
get_peft_model(model, config)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_causal_lm_training_single_gpu_torchao_int4_raises(self):
|
|
# int4_weight_only raises an error:
|
|
# RuntimeError: derivative for aten::_weight_int4pack_mm is not implemented
|
|
# TODO: Once proper torchao support for int4 is added, remove this test and add int4 to supported_quant_types
|
|
from transformers import TorchAoConfig
|
|
|
|
device = 0
|
|
|
|
quantization_config = TorchAoConfig(quant_type="int4_weight_only")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id, device_map=device, quantization_config=quantization_config
|
|
)
|
|
model = prepare_model_for_kbit_training(model)
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
msg = re.escape("TorchaoLoraLinear only supports int8 weights for now")
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
@parameterized.expand(supported_quant_types)
|
|
@pytest.mark.multi_gpu_tests
|
|
@require_torch_multi_accelerator
|
|
def test_causal_lm_training_multi_accelerator_torchao(self, quant_type):
|
|
from transformers import TorchAoConfig
|
|
|
|
device_map = {
|
|
"model.decoder.embed_tokens": 0,
|
|
"lm_head": 0,
|
|
"model.decoder.embed_positions": 0,
|
|
"model.decoder.project_out": 0,
|
|
"model.decoder.project_in": 0,
|
|
"model.decoder.layers.0": 0,
|
|
"model.decoder.layers.1": 0,
|
|
"model.decoder.layers.2": 0,
|
|
"model.decoder.layers.3": 0,
|
|
"model.decoder.layers.4": 0,
|
|
"model.decoder.layers.5": 0,
|
|
"model.decoder.layers.6": 1,
|
|
"model.decoder.layers.7": 1,
|
|
"model.decoder.layers.8": 1,
|
|
"model.decoder.layers.9": 1,
|
|
"model.decoder.layers.10": 1,
|
|
"model.decoder.layers.11": 1,
|
|
"model.decoder.final_layer_norm": 1,
|
|
}
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
quantization_config = TorchAoConfig(quant_type=quant_type)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=device_map,
|
|
quantization_config=quantization_config,
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
model.model_parallel = True
|
|
model.is_parallelizable = True
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
data = load_dataset_english_quotes()
|
|
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
train_dataset=data["train"],
|
|
args=TrainingArguments(
|
|
per_device_train_batch_size=4,
|
|
gradient_accumulation_steps=4,
|
|
warmup_steps=2,
|
|
max_steps=3,
|
|
learning_rate=2e-4,
|
|
logging_steps=1,
|
|
output_dir=tmp_dir,
|
|
),
|
|
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
|
|
)
|
|
trainer.model.config.use_cache = False
|
|
trainer.train()
|
|
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
assert "adapter_config.json" in os.listdir(tmp_dir)
|
|
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
|
|
|
|
# assert loss is not None
|
|
assert trainer.state.log_history[-1]["train_loss"] is not None
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
@require_torch_multi_accelerator
|
|
def test_causal_lm_training_multi_accelerator_torchao_int4_raises(self):
|
|
# int4_weight_only raises an error:
|
|
# RuntimeError: derivative for aten::_weight_int4pack_mm is not implemented
|
|
# TODO: Once proper torchao support for int4 is added, remove this test and add int4 to supported_quant_types
|
|
from transformers import TorchAoConfig
|
|
|
|
device_map = {
|
|
"model.decoder.embed_tokens": 0,
|
|
"lm_head": 0,
|
|
"model.decoder.embed_positions": 0,
|
|
"model.decoder.project_out": 0,
|
|
"model.decoder.project_in": 0,
|
|
"model.decoder.layers.0": 0,
|
|
"model.decoder.layers.1": 0,
|
|
"model.decoder.layers.2": 0,
|
|
"model.decoder.layers.3": 0,
|
|
"model.decoder.layers.4": 0,
|
|
"model.decoder.layers.5": 0,
|
|
"model.decoder.layers.6": 1,
|
|
"model.decoder.layers.7": 1,
|
|
"model.decoder.layers.8": 1,
|
|
"model.decoder.layers.9": 1,
|
|
"model.decoder.layers.10": 1,
|
|
"model.decoder.layers.11": 1,
|
|
"model.decoder.final_layer_norm": 1,
|
|
}
|
|
quantization_config = TorchAoConfig(quant_type="int4_weight_only")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id,
|
|
device_map=device_map,
|
|
quantization_config=quantization_config,
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
|
|
assert set(model.hf_device_map.values()) == set(range(device_count))
|
|
assert {p.device.index for p in model.parameters()} == set(range(device_count))
|
|
|
|
model = prepare_model_for_kbit_training(model)
|
|
model.model_parallel = True
|
|
model.is_parallelizable = True
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
|
|
msg = re.escape("TorchaoLoraLinear only supports int8 weights for now")
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_torchao_merge_layers_int8_weight_only(self):
|
|
from torchao.dtypes import AffineQuantizedTensor
|
|
from transformers import TorchAoConfig
|
|
|
|
quant_type = "int8_weight_only"
|
|
torch.manual_seed(0)
|
|
device = 0
|
|
dummy_input = torch.arange(10).view(-1, 1).to(device)
|
|
|
|
quantization_config = TorchAoConfig(quant_type=quant_type)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id, device_map=device, quantization_config=quantization_config
|
|
).eval()
|
|
logits_base = model(dummy_input)[0]
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
init_lora_weights=False,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
model.eval()
|
|
logits = model(dummy_input)[0]
|
|
|
|
# sanity check: outputs changed
|
|
# precision is quite low, so we need to use high atol and rtol
|
|
atol, rtol = 1e-1, 1e-1
|
|
assert not torch.allclose(logits, logits_base, atol=atol, rtol=rtol)
|
|
|
|
model.merge_adapter()
|
|
logits_merged = model(dummy_input)[0]
|
|
for name, module in model.named_modules():
|
|
if "base_layer" in name:
|
|
assert isinstance(module.weight, AffineQuantizedTensor)
|
|
|
|
model.unmerge_adapter()
|
|
logits_unmerged = model(dummy_input)[0]
|
|
for name, module in model.named_modules():
|
|
if "base_layer" in name:
|
|
assert isinstance(module.weight, AffineQuantizedTensor)
|
|
|
|
model = model.merge_and_unload()
|
|
logits_merged_unloaded = model(dummy_input)[0]
|
|
|
|
assert torch.allclose(logits, logits_merged, atol=atol, rtol=rtol)
|
|
assert torch.allclose(logits, logits_unmerged, atol=atol, rtol=rtol)
|
|
assert torch.allclose(logits, logits_merged_unloaded, atol=atol, rtol=rtol)
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
def test_torchao_merge_layers_int8_dynamic_activation_int8_weight_raises(self):
|
|
# int8_dynamic_activation_int8_weight does not support dequantize, thus merging does not work
|
|
from transformers import TorchAoConfig
|
|
|
|
quant_type = "int8_dynamic_activation_int8_weight"
|
|
torch.manual_seed(0)
|
|
device = 0
|
|
|
|
quantization_config = TorchAoConfig(quant_type=quant_type)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.causal_lm_model_id, device_map=device, quantization_config=quantization_config
|
|
).eval()
|
|
|
|
config = LoraConfig(
|
|
r=16,
|
|
lora_alpha=32,
|
|
target_modules=["q_proj", "v_proj"],
|
|
lora_dropout=0.05,
|
|
bias="none",
|
|
task_type="CAUSAL_LM",
|
|
init_lora_weights=False,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
msg = re.escape(
|
|
"Weights of type LinearActivationQuantizedTensor do not support dequantization (yet), which is needed to "
|
|
"support merging."
|
|
)
|
|
with pytest.raises(NotImplementedError, match=msg):
|
|
model.merge_adapter()
|
|
|
|
|
|
PRECISIONS = [(torch.float32), (torch.float16), (torch.bfloat16)]
|
|
|
|
LORA_PARAMS = {
|
|
"r": 8,
|
|
"lora_alpha": 16,
|
|
"lora_dropout": 0.05,
|
|
}
|
|
|
|
|
|
class SimpleModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.embedding_layer = torch.nn.Embedding(1000, 768)
|
|
self.layer_norm = torch.nn.LayerNorm(768)
|
|
self.linear_transform = torch.nn.Linear(768, 256)
|
|
|
|
def forward(self, input_ids):
|
|
embedded_output = self.embedding_layer(input_ids)
|
|
norm_output = self.layer_norm(embedded_output)
|
|
linear_output = self.linear_transform(norm_output)
|
|
|
|
return linear_output
|
|
|
|
|
|
class SimpleConv2DModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.embedding_layer = torch.nn.Embedding(1000, 768)
|
|
self.layer_norm = torch.nn.LayerNorm(768)
|
|
self.conv2d_transform = torch.nn.Conv2d(1, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
|
|
|
def forward(self, input_ids):
|
|
# Additional layers for your custom model
|
|
embedded_output = self.embedding_layer(input_ids)
|
|
norm_output = self.layer_norm(embedded_output)
|
|
|
|
# Reshape for Conv2d input (add batch size dimension)
|
|
norm_output = norm_output.unsqueeze(1)
|
|
conv_output = self.conv2d_transform(norm_output)
|
|
|
|
# Remove batch size dimension
|
|
conv_output = conv_output.squeeze(1)
|
|
|
|
return conv_output
|
|
|
|
|
|
@require_non_cpu
|
|
class TestAutoCast(unittest.TestCase):
|
|
device = infer_device()
|
|
|
|
# This test makes sure, that Lora dtypes are consistent with the types
|
|
# infered by torch.autocast under tested PRECISIONS
|
|
@parameterized.expand(PRECISIONS)
|
|
def test_simple_model(self, *args, **kwargs):
|
|
self._test_model(SimpleModel(), *args, **kwargs)
|
|
|
|
@parameterized.expand(PRECISIONS)
|
|
def test_simple_lora_linear_model(self, *args, **kwargs):
|
|
simple_model = SimpleModel()
|
|
config = LoraConfig(
|
|
**LORA_PARAMS,
|
|
target_modules=["linear_transform"],
|
|
)
|
|
|
|
lora_model = get_peft_model(simple_model, config)
|
|
|
|
self._test_model(lora_model, *args, **kwargs)
|
|
|
|
@parameterized.expand(PRECISIONS)
|
|
def test_simple_lora_embedding_model(self, *args, **kwargs):
|
|
simple_model = SimpleModel()
|
|
config = LoraConfig(
|
|
**LORA_PARAMS,
|
|
target_modules=["embedding_layer"],
|
|
)
|
|
lora_model = get_peft_model(simple_model, config)
|
|
|
|
self._test_model(lora_model, *args, **kwargs)
|
|
|
|
@parameterized.expand(PRECISIONS)
|
|
def test_simple_conv2d_model(self, *args, **kwargs):
|
|
self._test_model(SimpleConv2DModel(), *args, **kwargs)
|
|
|
|
@parameterized.expand(PRECISIONS)
|
|
def test_simple_lora_conv2d_model(self, *args, **kwargs):
|
|
simple_model = SimpleConv2DModel()
|
|
config = LoraConfig(
|
|
**LORA_PARAMS,
|
|
target_modules=["conv2d_transform"],
|
|
)
|
|
lora_model = get_peft_model(simple_model, config)
|
|
self._test_model(lora_model, *args, **kwargs)
|
|
|
|
def _test_model(self, model, precision):
|
|
# Move model to GPU
|
|
model = model.to(self.device)
|
|
|
|
# Prepare dummy inputs
|
|
input_ids = torch.randint(0, 1000, (2, 10)).to(self.device)
|
|
if precision == torch.bfloat16:
|
|
if not is_bf16_available():
|
|
self.skipTest("Bfloat16 not supported on this device")
|
|
|
|
# Forward pass with test precision
|
|
with torch.autocast(enabled=True, dtype=precision, device_type=self.device):
|
|
outputs = model(input_ids)
|
|
assert outputs.dtype == precision
|
|
|
|
|
|
class TestFSDPWrap:
|
|
"""
|
|
Test that we can successfully initialize an FSDP instance of the module.
|
|
|
|
This is a very simple test, as it does not perform actual FSDP training. Here we just ensure that the FSDP instance
|
|
can be created. This can fail for several reasons, e.g. int dtype from BNB or inconsistent requires_grad settings
|
|
due to the auto wrap policy.
|
|
|
|
"""
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
@require_bitsandbytes
|
|
def test_bnb_4bit_wrap_fsdp(self):
|
|
quant_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
# float32 must be used, or else FSDP will complain about mixed int and float dtypes
|
|
bnb_4bit_compute_dtype=torch.float32,
|
|
bnb_4bit_quant_storage=torch.float32,
|
|
bnb_4bit_use_double_quant=True,
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"facebook/opt-125m",
|
|
quantization_config=quant_config,
|
|
torch_dtype=torch.float32,
|
|
)
|
|
# model = prepare_model_for_kbit_training(model)
|
|
config = LoraConfig(
|
|
target_modules=["q_proj", "v_proj"],
|
|
task_type="CAUSAL_LM",
|
|
use_dora=True,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = "29501"
|
|
|
|
init_process_group(world_size=1, rank=0)
|
|
# check that this does not raise:
|
|
FSDP(model, auto_wrap_policy=fsdp_auto_wrap_policy(model), use_orig_params=False, sync_module_states=True)
|
|
|
|
def test_fsdp_auto_wrap_policy_does_not_raise_on_custom_model(self):
|
|
# See #2167
|
|
# Avoid raising on custom models since Trainer uses fsdp_auto_wrap_policy automatically for PEFT + FSDP
|
|
fsdp_auto_wrap_policy(SimpleModel()) # does not raise
|
|
|
|
|
|
class TestBOFT:
|
|
"""
|
|
Test that we can correctly use half-precision models with BOFT.
|
|
"""
|
|
|
|
device = infer_device()
|
|
|
|
@require_non_cpu
|
|
@pytest.mark.single_gpu_tests
|
|
def test_boft_half_linear(self):
|
|
# Check that we can use BoFT with model loaded in half precision
|
|
layer = torch.nn.Linear(160, 160).to(self.device)
|
|
layer = boft.layer.Linear(layer, "layer", boft_n_butterfly_factor=2).to(dtype=torch.bfloat16)
|
|
x = torch.randn(160, 160, device=self.device, dtype=torch.bfloat16)
|
|
layer(x) # does not raise
|
|
|
|
@require_non_cpu
|
|
@pytest.mark.single_gpu_tests
|
|
def test_boft_half_conv(self):
|
|
conv = torch.nn.Conv2d(1, 1, 4).to(self.device)
|
|
conv = boft.layer.Conv2d(conv, "conv", boft_n_butterfly_factor=2).to(dtype=torch.bfloat16)
|
|
x = torch.randn(1, 160, 160, device=self.device, dtype=torch.bfloat16)
|
|
conv(x) # does not raise
|
|
|
|
|
|
class TestPTuningReproducibility:
|
|
device = infer_device()
|
|
|
|
@require_non_cpu
|
|
@require_deterministic_for_xpu
|
|
def test_p_tuning_exactly_reproducible_after_loading(self, tmp_path):
|
|
# See: https://github.com/huggingface/peft/issues/2043#issuecomment-2321522577
|
|
# Ensure that after loading a p-tuning checkpoint, results are exactly reproducible (before the patch, they were
|
|
# only _almost_ identical).
|
|
|
|
# The model must be sufficiently large for the effect to be measurable, which is why this test requires is not
|
|
# run on CPU.
|
|
model_id = "facebook/opt-125m"
|
|
inputs = torch.arange(10).view(-1, 1).to(self.device)
|
|
|
|
torch.manual_seed(0)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id).to(self.device)
|
|
peft_config = PromptEncoderConfig(task_type="CAUSAL_LM", num_virtual_tokens=20, encoder_hidden_size=128)
|
|
model = get_peft_model(model, peft_config).eval()
|
|
|
|
with torch.inference_mode():
|
|
output_peft = model(inputs).logits
|
|
gen_peft = model.generate(inputs, min_new_tokens=10, max_new_tokens=10)
|
|
|
|
model.save_pretrained(tmp_path)
|
|
del model
|
|
clear_device_cache(garbage_collection=True)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id).to(self.device)
|
|
model = PeftModel.from_pretrained(model, tmp_path)
|
|
|
|
with torch.inference_mode():
|
|
output_loaded = model(inputs).logits
|
|
gen_loaded = model.generate(inputs, min_new_tokens=10, max_new_tokens=10)
|
|
|
|
torch.testing.assert_close(output_loaded, output_peft)
|
|
torch.testing.assert_close(gen_loaded, gen_peft)
|
|
|
|
|
|
@pytest.mark.single_gpu_tests
|
|
class TestLowCpuMemUsageDifferentDevices:
|
|
"""Test for the low CPU memory usage option for loading PEFT models.
|
|
|
|
There are already tests for low_cpu_mem_usage=True in test_initialization.py but here we want to run tests that
|
|
require a GPU.
|
|
|
|
"""
|
|
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
device = infer_device()
|
|
|
|
@require_non_cpu
|
|
@pytest.mark.parametrize("device_model, device_sd", [("cpu", infer_device()), (infer_device(), "cpu")])
|
|
def test_low_cpu_mem_usage_model_model_on_gpu_state_dict_on_cpu_works(self, device_model, device_sd):
|
|
# specifically test diverging devices for the model and state_dict
|
|
inputs = {"input_ids": torch.randint(0, 100, (1, 10)), "attention_mask": torch.ones(1, 10)}
|
|
inputs = {k: v.to(device_model) for k, v in inputs.items()}
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_id).to(device_model)
|
|
lora_config = LoraConfig(init_lora_weights=False, target_modules="all-linear")
|
|
model = get_peft_model(model, lora_config)
|
|
model.eval()
|
|
logits_not_low_cpu_mem = model(**inputs).logits
|
|
|
|
state_dict = get_peft_model_state_dict(model)
|
|
peft_model_state_dict = {}
|
|
# remap the state dict so that it can be correctly loaded, and move weights to the other device
|
|
prefix = "base_model.model."
|
|
for k, v in state_dict.items():
|
|
k = k[len(prefix) :]
|
|
peft_model_state_dict[k] = v.to(device_sd)
|
|
|
|
del model
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_id).to(device_model)
|
|
model.eval()
|
|
inject_adapter_in_model(lora_config, model, low_cpu_mem_usage=True)
|
|
load_result = set_peft_model_state_dict(model, peft_model_state_dict, low_cpu_mem_usage=True)
|
|
|
|
# sanity check: all lora keys are matched
|
|
assert not any("lora" in k for k in load_result.missing_keys)
|
|
assert not any("lora" in k for k in load_result.unexpected_keys)
|
|
|
|
logits_low_cpu_mem = model(**inputs).logits
|
|
|
|
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem)
|
|
assert {p.device.type for p in model.parameters()} == {device_model}
|
|
|
|
@require_bitsandbytes
|
|
@pytest.mark.parametrize("quantization_method", ["bnb-4bit", "bnb-8bit"])
|
|
def test_low_cpu_mem_usage_with_quantization(self, quantization_method):
|
|
# Ensure that low_cpu_mem_usage works with quantization
|
|
# See also https://github.com/huggingface/diffusers/issues/10550
|
|
if quantization_method == "bnb-4bit":
|
|
quantization_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_compute_dtype=torch.float32,
|
|
bnb_4bit_quant_storage=torch.float32,
|
|
bnb_4bit_use_double_quant=True,
|
|
)
|
|
elif quantization_method == "bnb-8bit":
|
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
|
else:
|
|
raise ValueError(f"Unknown quantization method {quantization_method}")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_id, quantization_config=quantization_config)
|
|
if model.device.type != self.device:
|
|
# calling model.to("cuda") with 8 bit bnb raises an error, thus guard against it
|
|
model = model.to(self.device)
|
|
|
|
lora_config = LoraConfig(init_lora_weights=False, target_modules="all-linear")
|
|
|
|
# We use get_peft_model with low_cpu_mem_usage=True here. This is not typically done in practice (the option is
|
|
# mostly interesting for loading trained adapters), but it does the job for testing purposes.
|
|
model = get_peft_model(model, lora_config, low_cpu_mem_usage=True) # this should not raise
|
|
assert {p.device.type for p in model.parameters()} == {self.device, "meta"}
|
|
|
|
|
|
class TestEvaInitializationGPU:
|
|
"""GPU tests for the Eva initialization method."""
|
|
|
|
# Constants for test configuration
|
|
COSINE_SIMILARITY_THRESHOLD = 0.75
|
|
NUM_SEEDS = 3
|
|
BATCH_SIZE = 4
|
|
MAX_LENGTH = 256
|
|
LORA_DIM = 8
|
|
LORA_ALPHA = 1
|
|
DEVICE = infer_device()
|
|
|
|
@pytest.fixture
|
|
def tokenizer(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
return tokenizer
|
|
|
|
@pytest.fixture
|
|
def dataset(self, tokenizer):
|
|
dataset = load_dataset_english_quotes()["train"]
|
|
# concatenate examples
|
|
examples = []
|
|
example = ""
|
|
for data in dataset:
|
|
if len(example) >= self.MAX_LENGTH:
|
|
examples.append(example)
|
|
example = ""
|
|
example = example + " " + data["quote"]
|
|
dataset = Dataset.from_dict({"text": examples})
|
|
# tokenize
|
|
dataset = dataset.map(
|
|
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=self.MAX_LENGTH),
|
|
batched=True,
|
|
remove_columns=dataset.column_names,
|
|
)
|
|
dataset.set_format(type="torch")
|
|
return dataset
|
|
|
|
@pytest.fixture
|
|
def model(self):
|
|
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
|
model.transformer.h = model.transformer.h[:2] # truncate to 2 layers
|
|
return model.to(self.DEVICE)
|
|
|
|
@pytest.fixture
|
|
def model_bnb(self):
|
|
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"openai-community/gpt2",
|
|
quantization_config=bnb_config,
|
|
attn_implementation="eager", # gpt2 doesnt support flash attention
|
|
)
|
|
model.transformer.h = model.transformer.h[:2] # truncate to 2 layers
|
|
model = prepare_model_for_kbit_training(model)
|
|
return model
|
|
|
|
@pytest.fixture
|
|
def model_fixture(self, request):
|
|
return request.getfixturevalue(request.param)
|
|
|
|
@pytest.fixture
|
|
def peft_config(self):
|
|
return LoraConfig(
|
|
r=self.LORA_DIM,
|
|
lora_alpha=self.LORA_ALPHA,
|
|
target_modules=["c_attn"],
|
|
init_lora_weights="eva",
|
|
eva_config=EvaConfig(rho=2),
|
|
)
|
|
|
|
def is_bnb_model(self, model):
|
|
return hasattr(model.config, "quantization_config")
|
|
|
|
@staticmethod
|
|
def collate_fn(examples):
|
|
return {k: torch.stack([v[k] for v in examples], dim=0) for k in examples[0].keys()}
|
|
|
|
@require_non_cpu
|
|
@require_bitsandbytes
|
|
@pytest.mark.single_gpu_tests
|
|
@pytest.mark.parametrize("model_fixture", ["model", "model_bnb"], indirect=True)
|
|
def test_eva_initialization_consistency(self, model_fixture, dataset, peft_config):
|
|
"""Test that the state dict returned by get_eva_state_dict loaded correctly and is consistent across different seeds based
|
|
on the cosine similarity of the svd components."""
|
|
state_dicts = []
|
|
for seed in range(self.NUM_SEEDS):
|
|
shuffled_dataset = dataset.shuffle(seed=seed)
|
|
dataloader = DataLoader(
|
|
shuffled_dataset,
|
|
batch_size=self.BATCH_SIZE,
|
|
collate_fn=lambda examples: {
|
|
k: torch.stack([v[k] for v in examples], dim=0) for k in examples[0].keys()
|
|
},
|
|
shuffle=False,
|
|
)
|
|
peft_model = get_peft_model(deepcopy(model_fixture), peft_config)
|
|
initialize_lora_eva_weights(peft_model, dataloader)
|
|
state_dicts.append(
|
|
{k: v.cpu() for k, v in peft_model.state_dict().items() if "lora_A.default.weight" in k}
|
|
)
|
|
|
|
cos_sims = defaultdict(list)
|
|
for i, j in itertools.combinations(range(self.NUM_SEEDS), 2):
|
|
for k, v1 in state_dicts[i].items():
|
|
v2 = state_dicts[j][k]
|
|
min_size = min(v1.size(0), v2.size(0))
|
|
cos_sims[k].extend(torch.cosine_similarity(v1[:min_size], v2[:min_size], dim=1).abs().tolist())
|
|
|
|
mean_cosine_similarities = {k: torch.tensor(v).mean() for k, v in cos_sims.items()}
|
|
for layer_name, mean_cosine_similarity in mean_cosine_similarities.items():
|
|
assert mean_cosine_similarity > self.COSINE_SIMILARITY_THRESHOLD, (
|
|
f"Mean absolute cosine similarity {mean_cosine_similarity:.4f} "
|
|
f"is not greater than {self.COSINE_SIMILARITY_THRESHOLD}"
|
|
)
|
|
|
|
|
|
class TestALoRAInferenceGPU:
|
|
"""GPU inference for Activated LoRA."""
|
|
|
|
# Constants for test configuration
|
|
NUM_SEEDS = 3
|
|
LORA_DIM = 8
|
|
LORA_ALPHA = 1
|
|
DEVICE = infer_device()
|
|
|
|
@pytest.fixture
|
|
def tokenizer(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
return tokenizer
|
|
|
|
@pytest.fixture
|
|
def model(self):
|
|
model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
|
|
model.model.decoder.layers = model.model.decoder.layers[:2] # truncate to 2 layers
|
|
return model.to(self.DEVICE)
|
|
|
|
@pytest.fixture
|
|
def model_bnb(self):
|
|
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"facebook/opt-125m",
|
|
quantization_config=bnb_config,
|
|
)
|
|
model.model.decoder.layers = model.model.decoder.layers[:2] # truncate to 2 layers
|
|
model = prepare_model_for_kbit_training(model)
|
|
return model
|
|
|
|
@pytest.fixture
|
|
def peft_config(self):
|
|
return LoraConfig(
|
|
r=self.LORA_DIM,
|
|
task_type="CAUSAL_LM",
|
|
lora_alpha=self.LORA_ALPHA,
|
|
target_modules=["q_proj"],
|
|
alora_invocation_tokens=[2], # id for </s>
|
|
init_lora_weights=False,
|
|
)
|
|
|
|
@require_non_cpu
|
|
@require_bitsandbytes
|
|
@pytest.mark.single_gpu_tests
|
|
def test_alora_forward_consistency(self, model, model_bnb, peft_config):
|
|
"""Test that the forwards of the model with adapter are similar across quantizations."""
|
|
for seed in range(self.NUM_SEEDS):
|
|
torch.manual_seed(seed)
|
|
# random.seed(seed)
|
|
np.random.seed(seed)
|
|
peft_model = get_peft_model(deepcopy(model), peft_config)
|
|
torch.manual_seed(seed)
|
|
# random.seed(seed)
|
|
np.random.seed(seed)
|
|
peft_model_bnb = get_peft_model(deepcopy(model_bnb), peft_config)
|
|
peft_model.eval()
|
|
peft_model_bnb.eval()
|
|
input_ids = torch.tensor([[0, 1, 2, 3]]).to(self.DEVICE)
|
|
with torch.no_grad():
|
|
peft_out = peft_model(input_ids=input_ids, return_dict=True, output_hidden_states=True)
|
|
peft_out_bnb = peft_model_bnb(input_ids=input_ids, return_dict=True, output_hidden_states=True)
|
|
h_fp = peft_out.hidden_states[-1]
|
|
h_4b = peft_out_bnb.hidden_states[-1]
|
|
a = h_fp.detach().to(torch.float32).cpu()
|
|
b = h_4b.detach().to(torch.float32).cpu()
|
|
import torch.nn.functional as F
|
|
|
|
cos = F.cosine_similarity(a.flatten(), b.flatten(), dim=0).item()
|
|
assert cos > 0.9
|
|
|
|
|
|
@pytest.mark.multi_gpu_tests
|
|
class TestPrefixTuning:
|
|
device = infer_device()
|
|
|
|
@require_torch_multi_accelerator
|
|
def test_prefix_tuning_multiple_devices_decoder_model(self):
|
|
# See issue 2134
|
|
model_id = "hf-internal-testing/tiny-random-MistralForCausalLM"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, padding="left")
|
|
inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to(self.device)
|
|
|
|
device_map = {
|
|
"model.embed_tokens": 0,
|
|
"model.layers.0": 0,
|
|
"model.layers.1": 1,
|
|
"model.norm": 1,
|
|
"model.rotary_emb": 1,
|
|
"lm_head": 1,
|
|
}
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device_map)
|
|
# sanity check, as the test passes trivially for a single device
|
|
assert len({p.device for p in model.parameters()}) > 1
|
|
# sanity check: this should work without peft
|
|
model.generate(**inputs) # does not raise
|
|
|
|
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
|
|
model = get_peft_model(model, peft_config)
|
|
model.generate(**inputs) # does not raise
|
|
|
|
@require_torch_multi_accelerator
|
|
def test_prefix_tuning_multiple_devices_encoder_decoder_model(self):
|
|
# See issue 2134
|
|
model_id = "hf-internal-testing/tiny-random-T5Model"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, padding="left")
|
|
inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to(self.device)
|
|
device_map = {
|
|
"shared": 0,
|
|
"encoder.embed_tokens": 0,
|
|
"encoder.block.0": 0,
|
|
"encoder.block.1": 0,
|
|
"encoder.block.2": 1,
|
|
"encoder.block.3": 1,
|
|
"encoder.block.4": 1,
|
|
"encoder.final_layer_norm": 1,
|
|
"decoder.embed_tokens": 0,
|
|
"decoder.block.0": 0,
|
|
"decoder.block.1": 0,
|
|
"decoder.block.2": 1,
|
|
"decoder.block.3": 1,
|
|
"decoder.block.4": 1,
|
|
"decoder.final_layer_norm": 1,
|
|
"lm_head": 0,
|
|
}
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, device_map=device_map)
|
|
# sanity check, as the test passes trivially for a single device
|
|
assert len({p.device for p in model.parameters()}) > 1
|
|
# sanity check: this should work without peft
|
|
model.generate(**inputs) # does not raise
|
|
|
|
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="SEQ_2_SEQ_LM")
|
|
model = get_peft_model(model, peft_config)
|
|
model.generate(**inputs) # does not raise
|
|
|
|
|
|
@pytest.mark.skipif(not (torch.cuda.is_available() or is_xpu_available()), reason="test requires a GPU or XPU")
|
|
@pytest.mark.single_gpu_tests
|
|
class TestHotSwapping:
|
|
"""
|
|
Test hotswapping on compiled models.
|
|
|
|
This test suite is only run on GPU as it is quite slow.
|
|
"""
|
|
|
|
torch_device = infer_device()
|
|
|
|
@pytest.fixture(scope="class", autouse=True)
|
|
def reset_float32_matmul_precision(self):
|
|
# Earlier tests may run torchao, which, at the time this was added, sets the float32 matmul precision to 'high'.
|
|
# This in turn results in some models producing different outputs when compiled (but only for some seeds).
|
|
# Therefore, we need to ensure that the precision is reset to "highest", which is the default.
|
|
# TODO: if torchao removes the side effect, this fixture can be deleted.
|
|
# https://github.com/pytorch/ao/blob/ffb4350640e76c7e7f449dd1e36d33f19fe384c8/torchao/quantization/utils.py#L589
|
|
torch.set_float32_matmul_precision("highest")
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def reset_dynamo_cache(self):
|
|
# It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
|
|
# there will be recompilation errors, as torch caches the model when run in the same process.
|
|
yield
|
|
torch._dynamo.reset()
|
|
|
|
#######
|
|
# LLM #
|
|
#######
|
|
|
|
def check_hotswap(self, do_hotswap, ranks, alpha_scalings):
|
|
"""
|
|
Test hotswapping with a compiled model.
|
|
|
|
Passing do_hotswap=False should trigger recompilation. Use the raise_error_on_recompile context manager to
|
|
raise an error when recompilation occurs.
|
|
|
|
"""
|
|
torch.manual_seed(0)
|
|
inputs = torch.arange(10).view(-1, 1).to(self.torch_device)
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
model = AutoModelForCausalLM.from_pretrained(model_id).to(self.torch_device)
|
|
rank0, rank1 = ranks
|
|
alpha0, alpha1 = alpha_scalings
|
|
|
|
# note that the 2nd adapter targeting a subset of the 1st adapter is okay, but not the other way round
|
|
config0 = LoraConfig(init_lora_weights=False, r=rank0, lora_alpha=alpha0, target_modules=["q_proj", "v_proj"])
|
|
config1 = LoraConfig(init_lora_weights=False, r=rank1, lora_alpha=alpha1, target_modules=["q_proj"])
|
|
model = get_peft_model(model, config0, adapter_name="adapter0").eval()
|
|
with torch.inference_mode():
|
|
output0 = model(inputs).logits
|
|
|
|
model.add_adapter("adapter1", config1)
|
|
model.set_adapter("adapter1")
|
|
with torch.inference_mode():
|
|
output1 = model(inputs).logits
|
|
|
|
# sanity check:
|
|
tol = 1e-4
|
|
assert not torch.allclose(output0, output1, atol=tol, rtol=tol)
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
model.save_pretrained(tmp_dirname)
|
|
del model
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id).to(self.torch_device)
|
|
model = PeftModel.from_pretrained(model, os.path.join(tmp_dirname, "adapter0")).eval()
|
|
if do_hotswap:
|
|
prepare_model_for_compiled_hotswap(model, config=model.peft_config, target_rank=max(ranks))
|
|
model = torch.compile(model, mode="reduce-overhead")
|
|
output_after0 = model(inputs).logits
|
|
assert torch.allclose(output0, output_after0, atol=tol, rtol=tol)
|
|
|
|
# swap and check that we get the output from adapter1
|
|
if do_hotswap:
|
|
hotswap_adapter(model, os.path.join(tmp_dirname, "adapter1"), adapter_name="default")
|
|
else:
|
|
model.load_adapter(os.path.join(tmp_dirname, "adapter1"), adapter_name="other")
|
|
model.set_adapter("other")
|
|
|
|
# we need to call forward to potentially trigger recompilation
|
|
output_after1 = model(inputs).logits
|
|
assert torch.allclose(output1, output_after1, atol=tol, rtol=tol)
|
|
|
|
# we need to call forward third time since cudagraphs are not recorded in first call.
|
|
if do_hotswap:
|
|
hotswap_adapter(model, os.path.join(tmp_dirname, "adapter0"), adapter_name="default")
|
|
output_after2 = model(inputs).logits
|
|
assert torch.allclose(output0, output_after2, atol=tol, rtol=tol)
|
|
|
|
# it is important to check hotswapping small to large ranks and large to small ranks
|
|
@pytest.mark.parametrize("ranks", [(11, 11), (7, 13), (13, 7)])
|
|
def test_hotswapping_compiled_model_does_not_trigger_recompilation(self, ranks):
|
|
# here we set three configs to ensure no recompilation or cudagraph re-record occurs:
|
|
# 1. error_on_recompile: raise an error on recompilation
|
|
# 2. inline_inbuilt_nn_modules: needed to raise an error on static input address changes instead of re-recording
|
|
# 3. triton.cudagraph_support_input_mutation: same as above
|
|
dynamo_config_ctx = torch._dynamo.config.patch(error_on_recompile=True, inline_inbuilt_nn_modules=False)
|
|
inductor_config_ctx = torch._inductor.config.patch("triton.cudagraph_support_input_mutation", False)
|
|
with dynamo_config_ctx, inductor_config_ctx:
|
|
self.check_hotswap(do_hotswap=True, ranks=ranks, alpha_scalings=ranks)
|
|
|
|
def test_no_hotswapping_compiled_model_triggers_recompilation(self):
|
|
# contingency test to ensure that hotswapping is actually needed to prevent recompilation
|
|
ranks = 7, 13
|
|
with torch._dynamo.config.patch(error_on_recompile=True):
|
|
with pytest.raises(torch._dynamo.exc.RecompileError): # raise an error on recompilation
|
|
self.check_hotswap(do_hotswap=False, ranks=ranks, alpha_scalings=ranks)
|
|
|
|
###################
|
|
# DIFFUSION MODEL #
|
|
###################
|
|
|
|
def get_small_unet(self):
|
|
# from diffusers UNet2DConditionModelTests
|
|
from diffusers import UNet2DConditionModel
|
|
|
|
torch.manual_seed(0)
|
|
init_dict = {
|
|
"block_out_channels": (4, 8),
|
|
"norm_num_groups": 4,
|
|
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
|
|
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
|
|
"cross_attention_dim": 8,
|
|
"attention_head_dim": 2,
|
|
"out_channels": 4,
|
|
"in_channels": 4,
|
|
"layers_per_block": 1,
|
|
"sample_size": 16,
|
|
}
|
|
model = UNet2DConditionModel(**init_dict)
|
|
return model.to(self.torch_device)
|
|
|
|
def get_unet_lora_config(self, lora_rank, lora_alpha, target_modules):
|
|
# from diffusers test_models_unet_2d_condition.py
|
|
# note that this only targets linear layers by default
|
|
unet_lora_config = LoraConfig(
|
|
r=lora_rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=target_modules,
|
|
init_lora_weights=False,
|
|
use_dora=False,
|
|
)
|
|
return unet_lora_config
|
|
|
|
def get_dummy_input(self):
|
|
pipeline_inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"num_inference_steps": 5,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
"return_dict": False,
|
|
}
|
|
return pipeline_inputs
|
|
|
|
def set_lora_device(self, model, adapter_names, device):
|
|
# copied from diffusers LoraBaseMixin.set_lora_device
|
|
for module in model.modules():
|
|
if isinstance(module, BaseTunerLayer):
|
|
for adapter_name in adapter_names:
|
|
module.lora_A[adapter_name].to(device)
|
|
module.lora_B[adapter_name].to(device)
|
|
# this is a param, not a module, so device placement is not in-place -> re-assign
|
|
if hasattr(module, "lora_magnitude_vector") and module.lora_magnitude_vector is not None:
|
|
if adapter_name in module.lora_magnitude_vector:
|
|
module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[adapter_name].to(
|
|
device
|
|
)
|
|
|
|
def check_hotswap_diffusion(self, ranks, alpha_scalings, target_modules):
|
|
"""
|
|
Check that hotswapping works on a pipeline.
|
|
|
|
This is essentially the same test as:
|
|
https://github.com/huggingface/diffusers/blob/d7dd924ece56cddf261cd8b9dd901cbfa594c62c/tests/pipelines/test_pipelines.py#L2264
|
|
|
|
Steps:
|
|
- create 2 LoRA adapters and save them
|
|
- load the first adapter
|
|
- hotswap the second adapter
|
|
- check that the outputs are correct
|
|
- optionally compile the model
|
|
|
|
Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
|
|
fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
|
|
fine.
|
|
"""
|
|
from diffusers import StableDiffusionPipeline
|
|
|
|
# create 2 adapters with different ranks and alphas
|
|
dummy_input = self.get_dummy_input()
|
|
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
|
|
rank0, rank1 = ranks
|
|
alpha0, alpha1 = alpha_scalings
|
|
max_rank = max([rank0, rank1])
|
|
lora_config0 = self.get_unet_lora_config(rank0, alpha0, target_modules)
|
|
lora_config1 = self.get_unet_lora_config(rank1, alpha1, target_modules)
|
|
|
|
torch.manual_seed(0)
|
|
pipeline.unet.add_adapter(lora_config0, adapter_name="adapter0")
|
|
output0_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
|
|
|
|
torch.manual_seed(1)
|
|
pipeline.unet.add_adapter(lora_config1, adapter_name="adapter1")
|
|
pipeline.unet.set_adapter("adapter1")
|
|
output1_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
|
|
|
|
# sanity check
|
|
tol = 1e-3
|
|
assert not np.allclose(output0_before, output1_before, atol=tol, rtol=tol)
|
|
assert not (output0_before == 0).all()
|
|
assert not (output1_before == 0).all()
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
# save the adapter checkpoints
|
|
sd0 = get_peft_model_state_dict(pipeline.unet, adapter_name="adapter0")
|
|
StableDiffusionPipeline.save_lora_weights(
|
|
save_directory=os.path.join(tmp_dirname, "adapter0"), safe_serialization=True, unet_lora_layers=sd0
|
|
)
|
|
sd1 = get_peft_model_state_dict(pipeline.unet, adapter_name="adapter1")
|
|
StableDiffusionPipeline.save_lora_weights(
|
|
save_directory=os.path.join(tmp_dirname, "adapter1"), safe_serialization=True, unet_lora_layers=sd1
|
|
)
|
|
del pipeline
|
|
|
|
# load the first adapter
|
|
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
|
|
# no need to prepare if the model is not compiled or if the ranks are identical
|
|
pipeline.enable_lora_hotswap(target_rank=max_rank)
|
|
|
|
file_name0 = os.path.join(tmp_dirname, "adapter0", "pytorch_lora_weights.safetensors")
|
|
file_name1 = os.path.join(tmp_dirname, "adapter1", "pytorch_lora_weights.safetensors")
|
|
|
|
pipeline.load_lora_weights(file_name0)
|
|
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead")
|
|
|
|
output0_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
|
|
|
|
# sanity check: still same result
|
|
assert np.allclose(output0_before, output0_after, atol=tol, rtol=tol)
|
|
|
|
# hotswap the 2nd adapter
|
|
pipeline.load_lora_weights(file_name1, hotswap=True, adapter_name="default_0")
|
|
output1_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
|
|
|
|
# sanity check: since it's the same LoRA, the results should be identical
|
|
assert np.allclose(output1_before, output1_after, atol=tol, rtol=tol)
|
|
|
|
# we need to call forward third time since cudagraphs are not recorded in first call.
|
|
pipeline.load_lora_weights(file_name0, hotswap=True, adapter_name="default_0")
|
|
output2_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
|
|
assert np.allclose(output0_before, output2_after, atol=tol, rtol=tol)
|
|
|
|
@pytest.mark.skipif(not is_diffusers_available(), reason="Test requires diffusers to be installed")
|
|
# it is important to check hotswapping small to large ranks and large to small ranks
|
|
@pytest.mark.parametrize("ranks", [(11, 11), (7, 13), (13, 7)])
|
|
@pytest.mark.parametrize(
|
|
"target_modules",
|
|
[
|
|
["to_q", "to_k", "to_v", "to_out.0"], # Linear layers
|
|
["conv", "conv1", "conv2"], # Conv2d layers
|
|
["to_q", "conv"], # mix of Linear and Conv2d
|
|
],
|
|
)
|
|
def test_hotswapping_compiled_diffusers_model_does_not_trigger_recompilation(self, ranks, target_modules):
|
|
# here we set three configs to ensure no recompilation or cudagraph re-record occurs:
|
|
# 1. error_on_recompile: raise an error on recompilation
|
|
# 2. inline_inbuilt_nn_modules: needed to raise an error on static input address changes instead of re-recording
|
|
# 3. triton.cudagraph_support_input_mutation: same as above
|
|
dynamo_config_ctx = torch._dynamo.config.patch(error_on_recompile=True, inline_inbuilt_nn_modules=False)
|
|
inductor_config_ctx = torch._inductor.config.patch("triton.cudagraph_support_input_mutation", False)
|
|
with dynamo_config_ctx, inductor_config_ctx:
|
|
self.check_hotswap_diffusion(ranks=ranks, alpha_scalings=ranks, target_modules=target_modules)
|