mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
Implements DeLoRA: "Decoupling Angles and Strength in Low-rank Adaptation" (https://huggingface.co/papers/2503.18225). Similar to DoRA, DeLoRA decouples the angular learning from the adaptation strength, but it also allows to limit the norm of the change. This way, DeLoRA promises to reduce the risk of catastrophic forgetting and to be more robust to hyper-parameter settings such as the learning rate.
4795 lines
207 KiB
Python
4795 lines
207 KiB
Python
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import itertools
|
|
import math
|
|
import platform
|
|
import re
|
|
import warnings
|
|
from collections import defaultdict
|
|
from contextlib import contextmanager
|
|
from copy import deepcopy
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
import torch
|
|
from datasets import Dataset
|
|
from huggingface_hub import snapshot_download
|
|
from safetensors.torch import load_file
|
|
from scipy import stats
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
from peft import (
|
|
AdaLoraConfig,
|
|
C3AConfig,
|
|
DeloraConfig,
|
|
EvaConfig,
|
|
IA3Config,
|
|
LoftQConfig,
|
|
LoKrConfig,
|
|
LoraConfig,
|
|
PeftMixedModel,
|
|
PeftModel,
|
|
PeftModelForCausalLM,
|
|
PeftModelForFeatureExtraction,
|
|
PeftModelForQuestionAnswering,
|
|
PeftModelForSeq2SeqLM,
|
|
PeftModelForSequenceClassification,
|
|
PeftModelForTokenClassification,
|
|
PeftWarning,
|
|
PrefixTuningConfig,
|
|
PromptTuningConfig,
|
|
RoadConfig,
|
|
VBLoRAConfig,
|
|
VeraConfig,
|
|
WaveFTConfig,
|
|
get_eva_state_dict,
|
|
get_peft_model,
|
|
initialize_lora_eva_weights,
|
|
inject_adapter_in_model,
|
|
set_peft_model_state_dict,
|
|
)
|
|
from peft.mapping import PEFT_TYPE_TO_PREFIX_MAPPING
|
|
from peft.tuners.lora.config import CordaConfig
|
|
from peft.tuners.lora.corda import preprocess_corda
|
|
from peft.tuners.lora.layer import LoraLayer
|
|
from peft.utils import infer_device
|
|
from peft.utils.hotswap import hotswap_adapter, prepare_model_for_compiled_hotswap
|
|
|
|
from .testing_utils import load_dataset_english_quotes, require_deterministic_for_xpu
|
|
|
|
|
|
try:
|
|
from huggingface_hub.utils import reset_sessions
|
|
except ImportError:
|
|
# this function was removed in hfh v1.0.0
|
|
reset_sessions = None
|
|
|
|
|
|
class TestLoraInitialization:
|
|
"""Test class to check the initialization of LoRA adapters."""
|
|
|
|
torch_device = infer_device()
|
|
|
|
def get_uniform(self, amin, amax, size=(10000,)):
|
|
unif = torch.distributions.uniform.Uniform(amin, amax)
|
|
samples = unif.sample(size)
|
|
return samples
|
|
|
|
def get_normal(self, mean, std, size=(10000,)):
|
|
normal = torch.distributions.normal.Normal(mean, std)
|
|
samples = normal.sample(size)
|
|
return samples
|
|
|
|
def get_model(self, bias=True):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# choose a large weight so that averages are close to expected values
|
|
self.linear = nn.Linear(1000, 1000, bias=bias)
|
|
self.embed = nn.Embedding(1000, 1000)
|
|
self.conv2d = nn.Conv2d(100, 100, 3, bias=bias)
|
|
|
|
def forward(self, x):
|
|
x_int = (100 * x).int()
|
|
x_4d = x.flatten().reshape(1, 100, 10, 10)
|
|
return self.linear(x), self.embed(x_int), self.conv2d(x_4d)
|
|
|
|
return MyModule().eval().to(self.torch_device)
|
|
|
|
@pytest.fixture
|
|
def data(self):
|
|
return torch.rand(10, 1000).to(self.torch_device)
|
|
|
|
def test_lora_linear_init_default(self):
|
|
# default is True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear"])
|
|
model = get_peft_model(model, config)
|
|
weight_A = model.linear.lora_A["default"].weight
|
|
weight_B = model.linear.lora_B["default"].weight
|
|
|
|
# use statistical test to check if weight A is from a uniform distribution
|
|
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
|
|
assert p_value > 0.5
|
|
|
|
# check that weight A is *not* from a normal distribution
|
|
normal = self.get_normal(weight_A.mean().item(), weight_A.std().item())
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
|
|
assert p_value < 0.05
|
|
|
|
# check that weight B is zero
|
|
assert (weight_B == 0.0).all()
|
|
|
|
def test_lora_linear_init_gaussian(self):
|
|
# use gaussian init
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear"], init_lora_weights="gaussian")
|
|
model = get_peft_model(model, config)
|
|
weight_A = model.linear.lora_A["default"].weight
|
|
weight_B = model.linear.lora_B["default"].weight
|
|
|
|
# use statistical test to check if weight A is from a normal distribution
|
|
normal = self.get_normal(0.0, 1 / config.r)
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
|
|
|
|
assert p_value > 0.5
|
|
|
|
# check that weight A is *not* from a uniform distribution
|
|
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
|
|
assert p_value < 0.05
|
|
|
|
# check that weight B is zero
|
|
assert (weight_B == 0.0).all()
|
|
|
|
def test_lora_linear_false(self):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear"], init_lora_weights=False)
|
|
model = get_peft_model(model, config)
|
|
weight_B = model.linear.lora_B["default"].weight
|
|
|
|
# with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values
|
|
# as long as they are not zero, in order to avoid identity transformation.
|
|
assert not torch.allclose(weight_B, torch.zeros_like(weight_B))
|
|
|
|
def test_lora_embedding_default(self):
|
|
# embedding is initialized as a normal distribution, not kaiming uniform
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["embed"])
|
|
model = get_peft_model(model, config)
|
|
weight_A = model.embed.lora_embedding_A["default"]
|
|
weight_B = model.embed.lora_embedding_B["default"]
|
|
|
|
# use statistical test to check if weight B is from a normal distribution
|
|
normal = self.get_normal(0.0, 1.0)
|
|
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
|
|
assert p_value > 0.5
|
|
|
|
# check that weight B is *not* from a uniform distribution
|
|
unif = self.get_uniform(weight_B.min().item(), weight_B.max().item())
|
|
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
|
|
assert p_value < 0.05
|
|
|
|
# check that weight A is zero
|
|
assert (weight_A == 0.0).all()
|
|
|
|
def test_lora_embedding_gaussian(self):
|
|
# embedding does not change with init_lora_weights="gaussian" vs True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["embed"], init_lora_weights="gaussian")
|
|
model = get_peft_model(model, config)
|
|
weight_A = model.embed.lora_embedding_A["default"]
|
|
weight_B = model.embed.lora_embedding_B["default"]
|
|
|
|
# use statistical test to check if weight B is from a normal distribution
|
|
normal = self.get_normal(0.0, 1.0)
|
|
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
|
|
assert p_value > 0.5
|
|
|
|
# check that weight B is *not* from a uniform distribution
|
|
unif = self.get_uniform(weight_B.min().item(), weight_B.max().item())
|
|
_, p_value = stats.kstest(weight_B.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
|
|
assert p_value < 0.05
|
|
|
|
# check that weight A is zero
|
|
assert (weight_A == 0.0).all()
|
|
|
|
def test_lora_embedding_false(self):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["embed"], init_lora_weights=False)
|
|
model = get_peft_model(model, config)
|
|
weight_A = model.embed.lora_embedding_B["default"]
|
|
|
|
# with init_lora_weights=False, weight A should *not* be zero. We don't care so much about the actual values
|
|
# as long as they are not zero, in order to avoid identity transformation.
|
|
assert not torch.allclose(weight_A, torch.zeros_like(weight_A))
|
|
|
|
def test_lora_conv2d_default(self):
|
|
# default is True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["conv2d"])
|
|
model = get_peft_model(model, config)
|
|
weight_A = model.conv2d.lora_A["default"].weight
|
|
weight_B = model.conv2d.lora_B["default"].weight
|
|
|
|
# use statistical test to check if weight A is from a uniform distribution
|
|
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
|
|
assert p_value > 0.5
|
|
|
|
# check that weight A is *not* from a normal distribution
|
|
normal = self.get_normal(weight_A.mean().item(), weight_A.std().item())
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
|
|
assert p_value < 0.05
|
|
|
|
# check that weight B is zero
|
|
assert (weight_B == 0.0).all()
|
|
|
|
def test_lora_conv2d_init_gaussian(self):
|
|
# use gaussian init
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["conv2d"], init_lora_weights="gaussian")
|
|
model = get_peft_model(model, config)
|
|
weight_A = model.conv2d.lora_A["default"].weight
|
|
weight_B = model.conv2d.lora_B["default"].weight
|
|
|
|
# use statistical test to check if weight A is from a normal distribution
|
|
normal = self.get_normal(0.0, 1 / config.r)
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), normal.flatten().cpu().numpy())
|
|
assert p_value > 0.5
|
|
|
|
# check that weight A is *not* from a uniform distribution
|
|
unif = self.get_uniform(weight_A.min().item(), weight_A.max().item())
|
|
_, p_value = stats.kstest(weight_A.detach().flatten().cpu().numpy(), unif.flatten().cpu().numpy())
|
|
assert p_value < 0.05
|
|
|
|
# check that weight B is zero
|
|
assert (weight_B == 0.0).all()
|
|
|
|
def test_lora_conv2d_false(self):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["conv2d"], init_lora_weights=False)
|
|
model = get_peft_model(model, config)
|
|
weight_B = model.conv2d.lora_B["default"].weight
|
|
|
|
# with init_lora_weights=False, weight B should *not* be zero. We don't care so much about the actual values
|
|
# as long as they are not zero, in order to avoid identity transformation.
|
|
assert not torch.allclose(weight_B, torch.zeros_like(weight_B))
|
|
|
|
def test_lora_init_orthogonal(self):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal")
|
|
model = get_peft_model(model, config)
|
|
|
|
weight_A = model.linear.lora_A["default"].weight
|
|
weight_B = model.linear.lora_B["default"].weight
|
|
|
|
assert not torch.allclose(weight_A, torch.zeros_like(weight_A))
|
|
assert not torch.allclose(weight_B, torch.zeros_like(weight_B))
|
|
assert (weight_B @ weight_A).abs().max() < 1e-6
|
|
|
|
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
def test_lora_init_orthogonal_half_precision_dtype(self, dtype):
|
|
try:
|
|
torch.zeros(1, dtype=dtype)
|
|
except Exception:
|
|
pytest.skip(f"dtype {dtype} not supported on this system, skipping test")
|
|
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal")
|
|
model = get_peft_model(model, config).to(dtype)
|
|
|
|
weight_A = model.linear.lora_A["default"].weight
|
|
weight_B = model.linear.lora_B["default"].weight
|
|
|
|
assert weight_A.dtype == dtype
|
|
assert weight_B.dtype == dtype
|
|
|
|
def test_lora_init_orthogonal_odd_rank_raises(self):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear"], init_lora_weights="orthogonal", r=7)
|
|
msg = "Orthogonal initialization requires the LoRA rank to be even, got 7 instead."
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_lora_scaling_default(self):
|
|
# default is True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
|
|
# check scaling factor use_rslora=False
|
|
config = LoraConfig(target_modules=["linear", "embed", "conv2d"], lora_alpha=3, r=16, use_rslora=False)
|
|
model = get_peft_model(model, config)
|
|
|
|
expected_scaling = config.lora_alpha / config.r
|
|
|
|
assert model.linear.scaling["default"] == expected_scaling
|
|
assert model.embed.scaling["default"] == expected_scaling
|
|
assert model.conv2d.scaling["default"] == expected_scaling
|
|
|
|
# testcase for bugfix for issue 2194
|
|
def test_rank_alpha_pattern_override(self):
|
|
torch.manual_seed(0)
|
|
|
|
layer = self.get_model()
|
|
model = nn.Sequential(layer, layer)
|
|
config = LoraConfig(
|
|
target_modules=["linear"],
|
|
lora_alpha=1,
|
|
r=8,
|
|
use_rslora=False,
|
|
rank_pattern={"linear": 8},
|
|
alpha_pattern={"0.linear": 2},
|
|
)
|
|
model = get_peft_model(model, config)
|
|
scaling_with_rank_pattern = model.model[0].linear.scaling
|
|
|
|
layer = self.get_model()
|
|
model = nn.Sequential(layer, layer)
|
|
config = LoraConfig(
|
|
target_modules=["linear"], lora_alpha=1, r=8, use_rslora=False, alpha_pattern={"0.linear": 2}
|
|
)
|
|
model = get_peft_model(model, config)
|
|
scaling_without_rank_pattern = model.model[0].linear.scaling
|
|
|
|
assert scaling_with_rank_pattern == scaling_without_rank_pattern
|
|
|
|
def test_lora_pissa_linear_init_default(self, data):
|
|
model = self.get_model()
|
|
output = model(data)[0]
|
|
|
|
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"])
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
assert torch.allclose(output, peft_model(data)[0], atol=1e-06)
|
|
|
|
config = LoraConfig(init_lora_weights="pissa_niter_16", target_modules=["linear"])
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
assert torch.allclose(output, peft_model(data)[0], atol=1e-06)
|
|
|
|
def test_lora_olora_linear_init_default(self, data):
|
|
model = self.get_model()
|
|
output = model(data)[0]
|
|
|
|
# Both OLoRA and olora should work
|
|
config = LoraConfig(init_lora_weights="OLoRA", target_modules=["linear"])
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
assert torch.allclose(output, peft_model(data)[0], atol=1e-06)
|
|
|
|
def test_lora_pissa_conversion_same_output_after_loading(self, data, tmp_path):
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "pissa"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_pissa = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "pissa-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_config_keys_before = list(peft_model.peft_config.keys())
|
|
peft_config_dict_before = peft_model.peft_config["default"].to_dict()
|
|
peft_model.save_pretrained(
|
|
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
peft_config_keys_after = list(peft_model.peft_config.keys())
|
|
peft_config_dict_after = peft_model.peft_config["default"].to_dict()
|
|
assert peft_config_keys_before == peft_config_keys_after
|
|
assert peft_config_dict_before == peft_config_dict_after
|
|
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_lora_pissa_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path):
|
|
# same as above, but using rank_pattern
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
# use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
|
|
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8, rank_pattern={"linear": 32})
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "pissa"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_pissa = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "pissa-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_lora_pissa_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path):
|
|
# same as above, but using alpha_pattern
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
# use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
|
|
# overridden
|
|
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], alpha_pattern={"linear": 5})
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "pissa"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_pissa = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "pissa-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_lora_pissa_conversion_same_output_after_loading_with_rslora(self, data, tmp_path):
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
config = LoraConfig(init_lora_weights="pissa", target_modules=["linear"], r=8, use_rslora=True)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "pissa"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_pissa = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_pissa, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "pissa-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "pissa-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "pissa-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_pissa, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
# same scale as before with a little bit of floating point imprecision
|
|
assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_pissa_rank_pattern_and_rslora_raises(self, tmp_path):
|
|
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
|
|
# scale is not stored in the state_dict
|
|
model = self.get_model()
|
|
config = LoraConfig(
|
|
init_lora_weights="pissa", target_modules=["linear"], r=8, rank_pattern={"linear": 2}, use_rslora=True
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
|
|
with pytest.raises(ValueError, match=msg):
|
|
peft_model.save_pretrained(
|
|
tmp_path / "pissa-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
|
|
def test_pissa_alpha_pattern_and_rslora_raises(self, tmp_path):
|
|
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
|
|
# scale is not stored in the state_dict
|
|
model = self.get_model()
|
|
config = LoraConfig(
|
|
init_lora_weights="pissa", target_modules=["linear"], r=8, alpha_pattern={"linear": 2}, use_rslora=True
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
|
|
with pytest.raises(ValueError, match=msg):
|
|
peft_model.save_pretrained(
|
|
tmp_path / "pissa-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
|
|
def test_olora_conversion_same_output_after_loading(self, data, tmp_path):
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_olora = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "olora-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_config_keys_before = list(peft_model.peft_config.keys())
|
|
peft_config_dict_before = peft_model.peft_config["default"].to_dict()
|
|
peft_model.save_pretrained(
|
|
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
peft_config_keys_after = list(peft_model.peft_config.keys())
|
|
peft_config_dict_after = peft_model.peft_config["default"].to_dict()
|
|
assert peft_config_keys_before == peft_config_keys_after
|
|
assert peft_config_dict_before == peft_config_dict_after
|
|
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_olora_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path):
|
|
# same as above, but using rank_pattern
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
# use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
|
|
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8, rank_pattern={"linear": 32})
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_olora = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "olora-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_olora_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path):
|
|
# same as above, but using alpha_pattern
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
# use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
|
|
# overridden
|
|
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], alpha_pattern={"linear": 5})
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_olora = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "olora-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_olora_conversion_same_output_after_loading_with_rslora(self, data, tmp_path):
|
|
# same as above, but using alpha_pattern
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
config = LoraConfig(init_lora_weights="olora", target_modules=["linear"], r=8, use_rslora=True)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_olora = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_olora, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "olora-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "olora-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "olora-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_olora, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
# same scale as before with a little bit of floating point imprecision
|
|
assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
def test_olora_rank_pattern_and_rslora_raises(self, tmp_path):
|
|
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
|
|
# scale is not stored in the state_dict
|
|
model = self.get_model()
|
|
config = LoraConfig(
|
|
init_lora_weights="olora", target_modules=["linear"], r=8, rank_pattern={"linear": 2}, use_rslora=True
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
|
|
with pytest.raises(ValueError, match=msg):
|
|
peft_model.save_pretrained(
|
|
tmp_path / "olora-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
|
|
def test_olora_alpha_pattern_and_rslora_raises(self, tmp_path):
|
|
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
|
|
# scale is not stored in the state_dict
|
|
model = self.get_model()
|
|
config = LoraConfig(
|
|
init_lora_weights="olora", target_modules=["linear"], r=8, alpha_pattern={"linear": 2}, use_rslora=True
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
|
|
with pytest.raises(ValueError, match=msg):
|
|
peft_model.save_pretrained(
|
|
tmp_path / "olora-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
|
|
@pytest.mark.parametrize(
|
|
"config_kwargs, should_warn",
|
|
[
|
|
# no warning
|
|
({"init_lora_weights": "pissa", "target_modules": ["linear"]}, False),
|
|
({"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"]}, False),
|
|
({"init_lora_weights": "olora", "target_modules": ["linear"]}, False),
|
|
({"init_lora_weights": "pissa", "target_modules": ["linear"], "use_rslora": True}, False),
|
|
({"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "use_rslora": True}, False),
|
|
({"init_lora_weights": "olora", "target_modules": ["linear"], "use_rslora": True}, False),
|
|
({"init_lora_weights": "pissa", "target_modules": ["linear"], "rank_pattern": {"linear": 8}}, False),
|
|
(
|
|
{"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "rank_pattern": {"linear": 8}},
|
|
False,
|
|
),
|
|
({"init_lora_weights": "olora", "target_modules": ["linear"], "rank_pattern": {"linear": 8}}, False),
|
|
({"init_lora_weights": "pissa", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}}, False),
|
|
(
|
|
{"init_lora_weights": "pissa_niter_3", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}},
|
|
False,
|
|
),
|
|
({"init_lora_weights": "olora", "target_modules": ["linear"], "alpha_pattern": {"linear": 8}}, False),
|
|
# warning
|
|
(
|
|
{
|
|
"init_lora_weights": "pissa",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"rank_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "pissa_niter_3",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"rank_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "olora",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"rank_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "pissa",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"alpha_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "pissa_niter_3",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"alpha_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "olora",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"alpha_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "pissa",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"rank_pattern": {"linear": 8},
|
|
"alpha_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "pissa_niter_3",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"rank_pattern": {"linear": 8},
|
|
"alpha_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"init_lora_weights": "olora",
|
|
"target_modules": ["linear"],
|
|
"use_rslora": True,
|
|
"rank_pattern": {"linear": 8},
|
|
"alpha_pattern": {"linear": 8},
|
|
},
|
|
True,
|
|
),
|
|
],
|
|
)
|
|
def test_lora_config_pissa_olora_warns(self, config_kwargs, should_warn, recwarn):
|
|
# Using post training conversion of modified base weights to restore their initial values (PiSSA, OLoRA) cannot
|
|
# be correctly done when using rslora + rank_pattern/alpha_pattern. We can't really know if the user intends
|
|
# this when they'll eventually call save_pretrained (i.e. if they'll pass
|
|
# path_initial_model_for_weight_conversionl). Therefore, we only warn but don't raise an error here.
|
|
msg = re.escape("Using Rank-Stabilized LoRA with rank_pattern/alpha_pattern and post-training conversion")
|
|
if should_warn:
|
|
LoraConfig(**config_kwargs)
|
|
assert len(recwarn.list) == 1
|
|
with pytest.warns(UserWarning, match=msg):
|
|
LoraConfig(**config_kwargs)
|
|
else:
|
|
LoraConfig(**config_kwargs)
|
|
assert not recwarn.list
|
|
|
|
@pytest.mark.parametrize("init_method", ["pissa", "olora"])
|
|
@pytest.mark.parametrize("pissa_olora_loaded_first", [False, True])
|
|
def test_load_pissa_olora_with_other_adapter_warns(self, init_method, pissa_olora_loaded_first, recwarn, tmp_path):
|
|
# Since PiSSA/OLoRA modifies the base weights, it should not be combined with other adapters. Check for a
|
|
# warning. See #2184.
|
|
|
|
# create an adapter without PiSSA/OloRA
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
model = get_peft_model(model, LoraConfig(init_lora_weights=True))
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
del model
|
|
|
|
# create a model with PiSSA/OLoRA
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
model = get_peft_model(model, LoraConfig(init_lora_weights=init_method))
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
del model
|
|
|
|
# load the model
|
|
if pissa_olora_loaded_first:
|
|
path0, path1 = tmp_path / "adapter1", tmp_path / "adapter0"
|
|
else:
|
|
path0, path1 = tmp_path / "adapter0", tmp_path / "adapter1"
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
model = PeftModel.from_pretrained(model, path0)
|
|
model = model.load_adapter(path1, adapter_name="other")
|
|
|
|
if init_method == "pissa":
|
|
msg = "PiSSA changes the base weights of the model and should thus not be used with other adapters"
|
|
else:
|
|
msg = "OLoRA changes the base weights of the model and should thus not be used with other adapters"
|
|
assert any(str(w.message).startswith(msg) for w in recwarn.list)
|
|
|
|
def test_lora_rslora_scaling(self):
|
|
# default is True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
|
|
# check scaling factor use_rslora=True
|
|
config = LoraConfig(target_modules=["linear", "embed", "conv2d"], lora_alpha=3, r=16, use_rslora=True)
|
|
model = get_peft_model(model, config)
|
|
|
|
expected_scaling = config.lora_alpha / (config.r**0.5)
|
|
|
|
assert model.linear.scaling["default"] == expected_scaling
|
|
assert model.embed.scaling["default"] == expected_scaling
|
|
assert model.conv2d.scaling["default"] == expected_scaling
|
|
|
|
def test_lora_default_scaling_pattern(self):
|
|
# default is True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
|
|
# check scaling factor use_rslora=False with rank and alpha pattern
|
|
config = LoraConfig(
|
|
target_modules=["linear", "embed", "conv2d"],
|
|
rank_pattern={"embed": 9, "conv2d": 16},
|
|
alpha_pattern={"linear": 11, "conv2d": 13},
|
|
lora_alpha=17,
|
|
r=25,
|
|
use_rslora=False,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
expected_scaling = {
|
|
"linear": config.alpha_pattern["linear"] / config.r,
|
|
"embed": config.lora_alpha / config.rank_pattern["embed"],
|
|
"conv2d": config.alpha_pattern["conv2d"] / config.rank_pattern["conv2d"],
|
|
}
|
|
|
|
assert model.linear.scaling["default"] == expected_scaling["linear"]
|
|
assert model.embed.scaling["default"] == expected_scaling["embed"]
|
|
assert model.conv2d.scaling["default"] == expected_scaling["conv2d"]
|
|
|
|
def test_lora_rslora_scaling_pattern(self):
|
|
# default is True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
|
|
# check scaling factor use_rslora=True with rank and alpha pattern
|
|
config = LoraConfig(
|
|
target_modules=["linear", "embed", "conv2d"],
|
|
rank_pattern={"embed": 9, "conv2d": 16},
|
|
alpha_pattern={"linear": 11, "conv2d": 13},
|
|
lora_alpha=17,
|
|
r=25,
|
|
use_rslora=True,
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
expected_scaling = {
|
|
"linear": config.alpha_pattern["linear"] / (config.r**0.5),
|
|
"embed": config.lora_alpha / (config.rank_pattern["embed"] ** 0.5),
|
|
"conv2d": config.alpha_pattern["conv2d"] / (config.rank_pattern["conv2d"] ** 0.5),
|
|
}
|
|
|
|
assert model.linear.scaling["default"] == expected_scaling["linear"]
|
|
assert model.embed.scaling["default"] == expected_scaling["embed"]
|
|
assert model.conv2d.scaling["default"] == expected_scaling["conv2d"]
|
|
|
|
def test_modules_to_save_targets_lora_layer_raises(self):
|
|
# There is no good reason to have auxiliary modules to target a LoRA layer. As auxiliary modules are applied
|
|
# *after* BaseTunerLayers, a possible way for this to happen accidentally is if the
|
|
# modules_to_save/trainable_token_indices coincide with the adapter name, e.g. if the adapter name is "foobar",
|
|
# we can have a module named model.base_model.model.self_attn.lora_A.foobar. If
|
|
# modules_to_save/trainable_token_indices is also "foobar", there would be a match.
|
|
# Note: Theoretically, a lot more PEFT methods support modules_to_save, so would have to be tested, but the code
|
|
# path is the same for all of them, so only testing LoRA.
|
|
model = self.get_model()
|
|
|
|
config = LoraConfig(
|
|
target_modules=["linear"],
|
|
modules_to_save=["foobar"],
|
|
)
|
|
msg = (
|
|
"You are trying to target a module with <class 'peft.utils.other.ModulesToSaveWrapper'> that is a child of "
|
|
"<class 'peft.tuners.lora.layer.Linear'>. This is almost certainly not the intended behavior. Please "
|
|
"ensure that the adapter name, 'foobar', does not conflict with any of the targeted modules."
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config, adapter_name="foobar")
|
|
|
|
def test_trainable_token_indices_targets_lora_layer_raises(self):
|
|
# Same test as test_modules_to_save_targets_lora_layer_raises, but using trainable_token_indices
|
|
model = self.get_model()
|
|
|
|
# check scaling factor use_rslora=True with rank and alpha pattern
|
|
config = LoraConfig(target_modules=["embed"], trainable_token_indices={"foobar": [1, 2, 3]})
|
|
msg = (
|
|
"You are trying to target a module with <class 'peft.utils.other.TrainableTokensWrapper'> that is a child "
|
|
"of <class 'peft.tuners.lora.layer.Embedding'>. This is almost certainly not the intended behavior. Please "
|
|
"ensure that the adapter name, 'foobar', does not conflict with any of the targeted modules."
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config, adapter_name="foobar")
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_lora_use_dora_linear(self, data):
|
|
# check that dora is a no-op when initialized
|
|
torch.manual_seed(0)
|
|
model = self.get_model()
|
|
output_base, _, _ = model(data)
|
|
|
|
# check scaling factor use_rslora=True
|
|
config = LoraConfig(target_modules=["linear"], use_dora=True)
|
|
model = get_peft_model(model, config)
|
|
|
|
with model.disable_adapter():
|
|
output_disabled, _, _ = model(data)
|
|
output_dora, _, _ = model(data)
|
|
|
|
assert torch.allclose(output_base, output_disabled)
|
|
assert torch.allclose(output_base, output_dora)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_lora_use_dora_linear_init_false(self, data):
|
|
# with init_lora_weights=False, dora should not be a no-op
|
|
torch.manual_seed(0)
|
|
model = self.get_model()
|
|
output_base, _, _ = model(data)
|
|
|
|
# check scaling factor use_rslora=True
|
|
config = LoraConfig(target_modules=["linear"], use_dora=True, init_lora_weights=False)
|
|
model = get_peft_model(model, config)
|
|
|
|
with model.disable_adapter():
|
|
output_disabled, _, _ = model(data)
|
|
output_dora, _, _ = model(data)
|
|
|
|
assert torch.allclose(output_base, output_disabled)
|
|
assert not torch.allclose(output_base, output_dora)
|
|
|
|
def test_lora_use_dora_with_megatron_core_raises(self):
|
|
megatron_config = {"does-not": "matter-here"}
|
|
with pytest.raises(ValueError, match="DoRA does not support megatron_core"):
|
|
LoraConfig(target_modules=["linear"], use_dora=True, megatron_config=megatron_config)
|
|
|
|
@pytest.fixture
|
|
def mha_cls(self):
|
|
class ModelMha(nn.Module):
|
|
def __init__(self, kdim=None, vdim=None):
|
|
super().__init__()
|
|
self.mha = nn.MultiheadAttention(10, 2, kdim=kdim, vdim=vdim)
|
|
self.lin0 = nn.Linear(10, 2)
|
|
self.sm = nn.LogSoftmax(dim=-1)
|
|
|
|
def forward(self, X):
|
|
X = X.float()
|
|
X, _ = self.mha(X, X, X)
|
|
X = self.lin0(X)
|
|
X = self.sm(X)
|
|
return X
|
|
|
|
return ModelMha
|
|
|
|
def test_mha_load_init_model_first(self, mha_cls):
|
|
# This test used to fail and require a workaround, for more context, see:
|
|
# https://github.com/huggingface/peft/pull/1324#issuecomment-2252473980
|
|
# The workaround was that _restore_weights had to be called manually on lora.MHA layers in order to make loading
|
|
# the state dict work. With recent changes, this workaround is no longer required, so that test has been
|
|
# deleted.
|
|
inputs = torch.rand(10, 10, 10)
|
|
model = mha_cls()
|
|
config = LoraConfig(target_modules=["mha"], init_lora_weights=False)
|
|
model = get_peft_model(model, config).eval()
|
|
restore_state_dict = {k: v.detach().cpu() for k, v in model.state_dict().items()}
|
|
|
|
del model
|
|
|
|
model = mha_cls()
|
|
model = get_peft_model(model, config)
|
|
# the workaround used to be:
|
|
# for module in model.modules():
|
|
# if isinstance(module, peft.tuners.lora.layer.MultiheadAttention):
|
|
# module._restore_weights()
|
|
model(inputs)
|
|
model.load_state_dict(restore_state_dict)
|
|
|
|
def test_mha_with_separate_qkv_embed_raises(self, mha_cls):
|
|
# passing different kdim and vdim results in separate parameters for q, k, v, which is not supported (yet)
|
|
model = mha_cls(kdim=20, vdim=30)
|
|
config = LoraConfig(target_modules=["mha"])
|
|
msg = "Only same embed for query/key/value is supported as of now for MultiheadAttention"
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_mha_with_dora_raises(self, mha_cls):
|
|
model = mha_cls()
|
|
config = LoraConfig(target_modules=["mha"], use_dora=True)
|
|
msg = re.escape("MultiheadAttention does not support DoRA (yet), please set use_dora to False")
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_mha_exposes_attributes(self, mha_cls):
|
|
# MHA requires a bunch of attributes to be exposed, try to check them exhaustively here
|
|
model = mha_cls()
|
|
embed_dim = model.mha.embed_dim
|
|
kdim = model.mha.kdim
|
|
vdim = model.mha.vdim
|
|
qkv_same_embed_dim = model.mha._qkv_same_embed_dim
|
|
num_heads = model.mha.num_heads
|
|
dropout = model.mha.dropout
|
|
batch_first = model.mha.batch_first
|
|
head_dim = model.mha.head_dim
|
|
in_proj_weight = model.mha.in_proj_weight
|
|
in_proj_bias = model.mha.in_proj_bias
|
|
out_proj = model.mha.out_proj
|
|
bias_k = model.mha.bias_k
|
|
bias_v = model.mha.bias_v
|
|
add_zero_attn = model.mha.add_zero_attn
|
|
|
|
config = LoraConfig(target_modules=["mha"])
|
|
peft_model = get_peft_model(model, config)
|
|
assert peft_model.base_model.mha.embed_dim == embed_dim
|
|
assert peft_model.base_model.mha.kdim == kdim
|
|
assert peft_model.base_model.mha.vdim == vdim
|
|
assert peft_model.base_model.mha._qkv_same_embed_dim == qkv_same_embed_dim
|
|
assert peft_model.base_model.mha.num_heads == num_heads
|
|
assert peft_model.base_model.mha.dropout == dropout
|
|
assert peft_model.base_model.mha.batch_first == batch_first
|
|
assert peft_model.base_model.mha.head_dim == head_dim
|
|
if in_proj_weight is not None:
|
|
assert torch.allclose(peft_model.base_model.mha.in_proj_weight, in_proj_weight)
|
|
else:
|
|
assert peft_model.base_model.mha.in_proj_weight is None
|
|
if in_proj_bias is not None:
|
|
assert torch.allclose(peft_model.base_model.mha.in_proj_bias, in_proj_bias)
|
|
else:
|
|
assert peft_model.base_model.mha.in_proj_bias is None
|
|
assert peft_model.base_model.mha.out_proj is out_proj
|
|
if bias_k is not None:
|
|
assert torch.allclose(peft_model.base_model.mha.bias_k, bias_k)
|
|
else:
|
|
assert peft_model.base_model.mha.bias_k is None
|
|
if bias_v is not None:
|
|
assert torch.allclose(peft_model.base_model.mha.bias_v, bias_v)
|
|
else:
|
|
assert peft_model.base_model.mha.bias_v is None
|
|
assert peft_model.base_model.mha.add_zero_attn == add_zero_attn
|
|
|
|
def test_mha_merge_masks_method(self, mha_cls):
|
|
# MHA requires a merge_masks method to be exposed, check that it works
|
|
model = mha_cls()
|
|
config = LoraConfig(target_modules=["mha"])
|
|
peft_model = get_peft_model(model, config)
|
|
|
|
attn_mask = torch.randint(0, 2, (10, 10))
|
|
key_padding_mask = torch.randint(0, 2, (10, 10))
|
|
query = torch.rand(10, 10, 10)
|
|
merged_mask0, mask_type0 = model.mha.merge_masks(attn_mask, key_padding_mask, query)
|
|
merged_mask1, mask_type1 = peft_model.base_model.mha.merge_masks(attn_mask, key_padding_mask, query)
|
|
|
|
assert torch.allclose(merged_mask0, merged_mask1)
|
|
assert mask_type0 == mask_type1
|
|
|
|
@pytest.mark.parametrize("bias", ["none", "all", "lora_only", "invalid"])
|
|
def test_lora_with_bias_argument(self, bias):
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear", "conv2d"], bias=bias)
|
|
|
|
if bias == "invalid":
|
|
with pytest.raises(NotImplementedError):
|
|
get_peft_model(model, config)
|
|
return
|
|
|
|
model = get_peft_model(model, config) # does not raise
|
|
for name, param in model.named_parameters():
|
|
if not name.endswith("bias"):
|
|
continue
|
|
if bias == "none":
|
|
assert param.requires_grad is False
|
|
elif bias == "all":
|
|
assert param.requires_grad is True
|
|
elif bias == "lora_only":
|
|
# only layers targeted with target_modules
|
|
assert param.requires_grad is ("linear" in name) or ("conv2d" in name)
|
|
|
|
def test_lora_with_bias_extra_params(self):
|
|
# lora with lora_bias=True
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear", "conv2d"], lora_bias=False)
|
|
model_no_bias = get_peft_model(model, config)
|
|
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear", "conv2d"], lora_bias=True)
|
|
model_bias = get_peft_model(model, config)
|
|
|
|
# check that bias for LoRA B is set
|
|
assert model_no_bias.base_model.model.linear.lora_B["default"].bias is None
|
|
assert model_bias.base_model.model.linear.lora_B["default"].bias.shape == (1000,)
|
|
assert model_no_bias.base_model.model.conv2d.lora_B["default"].bias is None
|
|
assert model_bias.base_model.model.conv2d.lora_B["default"].bias.shape == (100,)
|
|
|
|
# check that the same params are present except for the extra bias term
|
|
params_no_bias = {name for name, _ in model_no_bias.named_parameters()}
|
|
params_bias = {name for name, _ in model_bias.named_parameters()}
|
|
extra_params = {
|
|
"base_model.model.linear.lora_B.default.bias",
|
|
"base_model.model.conv2d.lora_B.default.bias",
|
|
}
|
|
assert params_bias - params_no_bias == extra_params
|
|
assert params_no_bias.issubset(params_bias)
|
|
|
|
def test_lora_with_bias_embedding_raises(self):
|
|
# lora with lora_bias=True is not supported for embedding layers
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["embed"], lora_bias=True)
|
|
msg = "lora_bias=True is not supported for Embedding"
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
@pytest.mark.parametrize(
|
|
"extra_kwargs",
|
|
[
|
|
{"use_dora": True},
|
|
{"init_lora_weights": "eva"},
|
|
{"init_lora_weights": "gaussian"},
|
|
{"init_lora_weights": "loftq", "loftq_config": LoftQConfig()},
|
|
{"init_lora_weights": "olora"},
|
|
{"init_lora_weights": "pissa"},
|
|
{"init_lora_weights": "pissa_niter_3"},
|
|
{"init_lora_weights": "orthogonal"},
|
|
],
|
|
)
|
|
def test_lora_with_bias_incompatible_arguments(self, extra_kwargs):
|
|
# some arguments don't work in conjunction with lora_bias and should raise
|
|
# just check the common chunk of the error message
|
|
msg = "The argument lora_bias=True is"
|
|
with pytest.raises(ValueError, match=msg):
|
|
LoraConfig(target_modules=["linear"], lora_bias=True, **extra_kwargs)
|
|
|
|
def test_lora_linear_with_bias_when_base_layer_has_no_bias_warns(self):
|
|
model = self.get_model(bias=False)
|
|
config = LoraConfig(target_modules=["linear"], lora_bias=True)
|
|
msg = re.escape("`lora_bias=True` was passed but the targeted layer of type Linear has no bias")
|
|
with pytest.warns(PeftWarning, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_lora_conv2d_with_bias_when_base_layer_has_no_bias_warns(self):
|
|
model = self.get_model(bias=False)
|
|
config = LoraConfig(target_modules=["conv2d"], lora_bias=True)
|
|
msg = re.escape("`lora_bias=True` was passed but the targeted layer of type Conv2d has no bias")
|
|
with pytest.warns(PeftWarning, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_lora_incompatible_mamba_modules(self):
|
|
# Ensure LoRA raises an error when applying to forbidden modules
|
|
# ('out_proj', 'conv1d') in Mamba-based architectures like Falcon-Mamba tiny.
|
|
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-tiny-dev")
|
|
|
|
config = LoraConfig(
|
|
task_type="CAUSAL_LM",
|
|
target_modules=["out_proj", "conv1d"], # Forbidden modules for Mamba-based models
|
|
)
|
|
msg = "is incompatible with Mamba-based models"
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def get_model_conv2d_groups(self):
|
|
class ModelConv2DGroups(nn.Module):
|
|
"""For testing when groups argument is used in conv layer"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv2d = nn.Conv2d(16, 32, 3, padding=1, groups=2)
|
|
self.relu = nn.ReLU()
|
|
self.flat = nn.Flatten()
|
|
self.lin0 = nn.Linear(12800, 2)
|
|
self.sm = nn.LogSoftmax(dim=-1)
|
|
self.dtype = torch.float
|
|
|
|
def forward(self, X):
|
|
# This is ignoring input since main usage is for checking raising of error when peft is applied
|
|
X = torch.arange(9 * 16 * 20 * 20).view([9, 16, 20, 20]).to(self.conv2d.weight.device)
|
|
X = X.to(self.dtype)
|
|
X = self.conv2d(X)
|
|
X = self.relu(X)
|
|
X = self.flat(X)
|
|
X = self.lin0(X)
|
|
X = self.sm(X)
|
|
return X
|
|
|
|
return ModelConv2DGroups().eval().to(self.torch_device)
|
|
|
|
@pytest.mark.parametrize(
|
|
"config_cls, config_kwargs",
|
|
[
|
|
pytest.param(LoraConfig, {"r": 8, "target_modules": ["conv2d"]}, id="lora with rank divisible by groups"),
|
|
pytest.param(LoraConfig, {"r": 2, "target_modules": ["conv2d"]}, id="lora with rank equal to groups"),
|
|
pytest.param(
|
|
LoraConfig, {"r": 1, "target_modules": ["conv2d"]}, id="lora with rank not divisible by groups"
|
|
),
|
|
pytest.param(
|
|
LoraConfig,
|
|
{"r": 8, "target_modules": ["conv2d"], "use_dora": True},
|
|
id="dora with rank divisible by groups",
|
|
),
|
|
pytest.param(
|
|
LoraConfig,
|
|
{"r": 2, "target_modules": ["conv2d"], "use_dora": True},
|
|
id="dora with rank equal to groups",
|
|
),
|
|
pytest.param(
|
|
LoraConfig,
|
|
{"r": 1, "target_modules": ["conv2d"], "use_dora": True},
|
|
id="dora with rank not divisible by groups",
|
|
),
|
|
],
|
|
)
|
|
def test_error_raised_if_rank_not_divisible_by_groups(self, config_cls, config_kwargs):
|
|
# This test checks if error is raised when rank is not divisible by groups for conv layer since
|
|
# currently, support is limited to conv layers where the rank is divisible by groups in lora and dora
|
|
base_model = self.get_model_conv2d_groups()
|
|
peft_config = config_cls(**config_kwargs)
|
|
r = config_kwargs["r"]
|
|
base_layer = base_model.conv2d
|
|
groups = base_layer.groups
|
|
if r % groups != 0:
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=(
|
|
f"Targeting a {base_layer.__class__.__name__} with groups={base_layer.groups} and rank {r}. "
|
|
"Currently, support is limited to conv layers where the rank is divisible by groups. "
|
|
"Either choose a different rank or do not target this specific layer."
|
|
),
|
|
):
|
|
peft_model = get_peft_model(base_model, peft_config)
|
|
else:
|
|
# No error should be raised
|
|
peft_model = get_peft_model(base_model, peft_config)
|
|
|
|
def test_target_module_and_target_parameter_on_same_layer(self):
|
|
# When targeting an nn.Parameter with LoRA using target_parameters, ensure that this is not already another LoRA
|
|
# layer (i.e. avoid double wrapping).
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(10, 10)
|
|
|
|
base_model = MyModule()
|
|
config = LoraConfig(target_modules=["linear"], target_parameters=["linear.weight"])
|
|
msg = "Trying to wrap an `nn.Parameter` of layer 'linear' of type Linear, which is not a valid target."
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(base_model, config)
|
|
|
|
@pytest.mark.parametrize("target_parameters", [["linear"], ["foobar"], ["foobar.weight"], ["foo", "bar"]])
|
|
@pytest.mark.parametrize("target_modules", [None, [], ""])
|
|
def test_valid_no_target_module_nor_target_parameter_match_raises(self, target_parameters, target_modules):
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=target_modules, target_parameters=target_parameters)
|
|
msg = re.escape(
|
|
"No `target_modules` passed but also no `target_parameters` found. Please check the values for "
|
|
"these arguments."
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_target_parameters_wrong_type_raises(self):
|
|
# Check that target_parameters being a string raises a useful error message -- this is an easy mistake to make
|
|
# because strings are allowed for target_modules
|
|
model = self.get_model()
|
|
msg = "`target_parameters` must be a list of strings or None."
|
|
with pytest.raises(TypeError, match=msg):
|
|
LoraConfig(target_parameters="linear.weight")
|
|
|
|
def test_valid_target_parameters_invalid_target_modules_warns(self):
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["foobar"], target_parameters=["linear.weight"])
|
|
msg = re.escape("target_modules={'foobar'} were set but no module was matched.")
|
|
with pytest.warns(RuntimeWarning, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_valid_target_modules_invalid_target_parameters_warns(self):
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=["linear"], target_parameters=["foobar.weight"])
|
|
msg = re.escape("target_parameters=['foobar.weight'] were set but no parameter was matched.")
|
|
with pytest.warns(RuntimeWarning, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_adding_multiple_adapters_with_target_parameters_raises(self):
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=[], target_parameters=["linear.weight"])
|
|
model = get_peft_model(model, config)
|
|
msg = re.escape("only one LoRA adapter per model with `target_parameters` is allowed")
|
|
with pytest.raises(ValueError, match=msg):
|
|
model.add_adapter(adapter_name="other", peft_config=config)
|
|
|
|
def test_loading_loading_adapters_with_target_parameters_raises(self, tmp_path):
|
|
model = self.get_model()
|
|
config = LoraConfig(target_modules=[], target_parameters=["linear.weight"])
|
|
model = get_peft_model(model, config)
|
|
model.save_pretrained(tmp_path)
|
|
|
|
model = self.get_model()
|
|
model = PeftModel.from_pretrained(model, tmp_path)
|
|
msg = re.escape("only one LoRA adapter per model with `target_parameters` is allowed")
|
|
with pytest.raises(ValueError, match=msg):
|
|
model.load_adapter(tmp_path, adapter_name="other")
|
|
|
|
def test_multiple_configs_with_bias_raises(self, tmp_path):
|
|
# There cannot be more than one config with bias != "none".
|
|
# Note: This would need to be tested for all PEFT methods that support the bias parameter, but as this method
|
|
# comes from BaseTuner, it's fine to only check LoRA.
|
|
model = self.get_model()
|
|
config0 = LoraConfig(target_modules=["linear"], bias="all")
|
|
model = get_peft_model(model, config0)
|
|
|
|
config1 = LoraConfig(target_modules=["linear"], bias="lora_only")
|
|
msg = "supports only 1 adapter with bias. When using multiple adapters"
|
|
with pytest.raises(ValueError, match=msg):
|
|
model.add_adapter("other", config1)
|
|
|
|
# the invalid peft config was not added
|
|
assert len(model.peft_config) == 1
|
|
|
|
# it's okay to add a config with bias="none" (the default)
|
|
config2 = LoraConfig(target_modules=["linear"], bias="none")
|
|
model.add_adapter("other", config2) # does not raise
|
|
|
|
|
|
class TestLokrInitialization:
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# Choose a large weight so that averages are close to expected values.
|
|
self.linear = nn.Linear(1000, 1000)
|
|
self.conv2d = nn.Conv2d(100, 100, 3)
|
|
|
|
def forward(self, x):
|
|
x_4d = x.flatten().reshape(1, 100, 10, 10)
|
|
return self.linear(x), self.conv2d(x_4d)
|
|
|
|
return MyModule().eval().to(self.torch_device)
|
|
|
|
@pytest.fixture
|
|
def data(self):
|
|
return torch.rand(10, 1000).to(self.torch_device)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_lokr_linear_init_default(self, data):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[0]
|
|
config = LoKrConfig(target_modules=["linear"])
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[0]
|
|
|
|
assert torch.allclose(output_before, output_after)
|
|
|
|
def test_lokr_linear_init_false(self, data):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[0]
|
|
config = LoKrConfig(target_modules=["linear"], init_weights=False)
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[0]
|
|
|
|
assert not torch.allclose(output_before, output_after)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_lokr_linear_init_lycoris(self, data):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[0]
|
|
config = LoKrConfig(target_modules=["linear"], init_weights="lycoris")
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[0]
|
|
|
|
assert torch.allclose(output_before, output_after)
|
|
|
|
def test_lokr_conv2d_init_default(self, data):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[1]
|
|
config = LoKrConfig(target_modules=["conv2d"])
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[1]
|
|
|
|
assert torch.allclose(output_before, output_after)
|
|
|
|
def test_lokr_conv2d_init_false(self, data):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[1]
|
|
config = LoKrConfig(target_modules=["conv2d"], init_weights=False)
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[1]
|
|
|
|
assert not torch.allclose(output_before, output_after)
|
|
|
|
def test_lokr_conv2d_init_lycoris(self, data):
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[1]
|
|
config = LoKrConfig(target_modules=["conv2d"], init_weights="lycoris")
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[1]
|
|
|
|
assert torch.allclose(output_before, output_after)
|
|
|
|
|
|
class TestAdaLoraInitialization:
|
|
torch_device = infer_device()
|
|
|
|
def test_adalora_target_modules_set(self):
|
|
config = AdaLoraConfig(target_modules=["linear", "embed", "conv2d"], total_step=1)
|
|
assert config.target_modules == {"linear", "embed", "conv2d"}
|
|
|
|
def test_adalora_use_dora_raises(self):
|
|
with pytest.raises(ValueError, match="ADALORA does not support DoRA"):
|
|
AdaLoraConfig(use_dora=True, total_step=1)
|
|
|
|
def test_adalora_loftq_config_raises(self):
|
|
with pytest.raises(ValueError, match="ADALORA does not support LOFTQ"):
|
|
AdaLoraConfig(init_lora_weights="loftq", loftq_config={"loftq": "config"}, total_step=1)
|
|
|
|
def get_model(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# choose a large weight so that averages are close to expected values
|
|
self.linear = nn.Linear(1000, 1000)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
return MyModule().eval().to(self.torch_device)
|
|
|
|
@pytest.fixture
|
|
def data(self):
|
|
return torch.rand(10, 1000).to(self.torch_device)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_adalora_default_init_identity(self, data):
|
|
# default is True
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)
|
|
config = AdaLoraConfig(target_modules=["linear"], total_step=1)
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)
|
|
assert torch.allclose(output_before, output_after)
|
|
|
|
|
|
class TestPromptTuningInitialization:
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# choose a large weight so that averages are close to expected values
|
|
self.linear = nn.Linear(1000, 1000)
|
|
self.embed = nn.Embedding(1000, 1000)
|
|
self.conv2d = nn.Conv2d(100, 100, 3)
|
|
|
|
def forward(self, x):
|
|
x_int = (100 * x).int()
|
|
x_4d = x.flatten().reshape(1, 100, 10, 10)
|
|
return self.linear(x), self.embed(x_int), self.conv2d(x_4d)
|
|
|
|
return MyModule().eval().to(self.torch_device)
|
|
|
|
def test_use_prompt_tuning_init_text_raises(self):
|
|
with pytest.raises(ValueError, match="When prompt_tuning_init='TEXT', tokenizer_name_or_path can't be None"):
|
|
PromptTuningConfig(prompt_tuning_init="TEXT", prompt_tuning_init_text="prompt tuning init text")
|
|
with pytest.raises(ValueError, match="When prompt_tuning_init='TEXT', prompt_tuning_init_text can't be None"):
|
|
PromptTuningConfig(prompt_tuning_init="TEXT", tokenizer_name_or_path="t5-base")
|
|
|
|
|
|
class TestVeraInitialization:
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MLP(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.lin0 = nn.Linear(10, 20, bias=bias)
|
|
self.lin1 = nn.Linear(20, 2, bias=bias)
|
|
|
|
def forward(self, X):
|
|
X = self.lin0(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
return MLP().to(self.torch_device)
|
|
|
|
def test_vera_mixing_save_projection_raises(self):
|
|
# it is unclear what the right thing to do would be if some adapters save the projection weights and some don't
|
|
# so we better raise an error
|
|
|
|
config0 = VeraConfig(target_modules=["lin0"], init_weights=False, save_projection=True)
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config0)
|
|
config1 = VeraConfig(target_modules=["lin0"], init_weights=False, save_projection=False)
|
|
msg = re.escape(
|
|
"VeRA projection weights must be saved for all adapters or none, but got multiple different values: "
|
|
"[False, True]"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
model.add_adapter("other", config1)
|
|
|
|
def test_vera_add_second_adapter_with_incompatible_input_shape(self):
|
|
config0 = VeraConfig(target_modules=["lin0"], r=8)
|
|
config1 = VeraConfig(target_modules=["lin1"])
|
|
|
|
base_model = self.get_model()
|
|
lin0_in_feat = base_model.lin0.in_features
|
|
lin1_in_feat = base_model.lin1.in_features
|
|
model = get_peft_model(base_model, config0)
|
|
# not full message but enough to identify the error
|
|
msg = f"vera_A has a size of {lin0_in_feat} but {lin1_in_feat} or greater is required"
|
|
with pytest.raises(ValueError, match=msg):
|
|
model.add_adapter("other", config1)
|
|
|
|
def test_vera_add_second_adapter_with_higher_rank(self):
|
|
rank0 = 123
|
|
rank1 = 456
|
|
config0 = VeraConfig(target_modules=["lin0"], r=rank0)
|
|
# second adapter has higher rank
|
|
config1 = VeraConfig(target_modules=["lin0"], r=rank1)
|
|
|
|
model = get_peft_model(self.get_model(), config0)
|
|
# not full message but enough to identify the error
|
|
msg = f"vera_A has a size of {rank0} but {rank1} or greater is required"
|
|
with pytest.raises(ValueError, match=msg):
|
|
model.add_adapter("other", config1)
|
|
|
|
|
|
class TestVBLoraInitialization:
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MLP(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.lin0 = nn.Linear(10, 30, bias=bias)
|
|
self.lin1 = nn.Linear(30, 2, bias=bias)
|
|
|
|
def forward(self, X):
|
|
X = self.lin0(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
return MLP().to(self.torch_device)
|
|
|
|
def test_vblora_with_incompatible_vector_length_with_in_features(self):
|
|
vector_length = 3
|
|
model = self.get_model()
|
|
config = VBLoRAConfig(target_modules=["lin0"], vector_length=vector_length)
|
|
msg = f"`in_features` {model.lin0.in_features} must be divisible by `vector_length` {vector_length}"
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_vblora_with_incompatible_vector_length_with_out_features(self):
|
|
vector_length = 3
|
|
model = self.get_model()
|
|
config = VBLoRAConfig(target_modules=["lin1"], vector_length=vector_length)
|
|
msg = f"`out_features` {model.lin1.out_features} must be divisible by `vector_length` {vector_length}"
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
|
|
class TestC3AInitialization:
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MLP(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.lin0 = nn.Linear(10, 30, bias=bias)
|
|
self.lin1 = nn.Linear(30, 2, bias=bias)
|
|
|
|
def forward(self, X):
|
|
X = self.lin0(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
return MLP().to(self.torch_device)
|
|
|
|
def test_c3a_with_incompatible_block_size_with_in_features(self):
|
|
block_size = 3
|
|
model = self.get_model()
|
|
config = C3AConfig(target_modules=["lin0"], block_size=block_size)
|
|
msg = f"The block size should be a factor of the input size. However, the input size is {model.lin0.in_features} and the block size is {block_size}"
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
def test_c3a_with_incompatible_block_size_with_out_features(self):
|
|
block_size = 3
|
|
model = self.get_model()
|
|
config = C3AConfig(target_modules=["lin1"], block_size=block_size)
|
|
msg = f"The block size should be a factor of the output size. However, the output size is {model.lin1.out_features} and the block size is {block_size}"
|
|
with pytest.raises(ValueError, match=msg):
|
|
get_peft_model(model, config)
|
|
|
|
|
|
class TestWaveFTInitialization:
|
|
"""Test class to check the initialization of WaveFT adapters."""
|
|
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# Choose a large weight so that averages are close to expected values.
|
|
self.linear = nn.Linear(1000, 1000)
|
|
self.conv2d = nn.Conv2d(100, 100, 3)
|
|
|
|
def forward(self, x):
|
|
x_4d = x.flatten().reshape(1, 100, 10, 10)
|
|
return self.linear(x), self.conv2d(x_4d)
|
|
|
|
return MyModule().eval().to(self.torch_device)
|
|
|
|
@pytest.fixture
|
|
def data(self):
|
|
return torch.rand(10, 1000).to(self.torch_device)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_waveft_linear_init_default(self, data):
|
|
# Default initialization should result in no change to output (zeros initialization)
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[0]
|
|
config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=True)
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[0]
|
|
|
|
assert torch.allclose(output_before, output_after, atol=1e-6)
|
|
|
|
def test_waveft_linear_init_false(self, data):
|
|
# With init_weights=False, output should change (random initialization)
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[0]
|
|
config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=False)
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[0]
|
|
|
|
assert not torch.allclose(output_before, output_after, atol=1e-6)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_waveft_linear_with_scaling(self, data):
|
|
# Test that scaling parameter affects output correctly
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
output_before = model(data)[0]
|
|
config = WaveFTConfig(target_modules=["linear"], n_frequency=100, init_weights=False, scaling=10.0)
|
|
model = get_peft_model(model, config)
|
|
output_after = model(data)[0]
|
|
|
|
assert not torch.allclose(output_before, output_after, atol=1e-6)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_waveft_different_wavelet_families(self, data):
|
|
# Test different wavelet families
|
|
torch.manual_seed(0)
|
|
|
|
model1 = self.get_model()
|
|
config1 = WaveFTConfig(target_modules=["linear"], n_frequency=100, wavelet_family="db1", init_weights=False)
|
|
model1 = get_peft_model(model1, config1)
|
|
output1 = model1(data)[0]
|
|
|
|
torch.manual_seed(0)
|
|
model2 = self.get_model()
|
|
config2 = WaveFTConfig(target_modules=["linear"], n_frequency=100, wavelet_family="sym2", init_weights=False)
|
|
model2 = get_peft_model(model2, config2)
|
|
output2 = model2(data)[0]
|
|
|
|
# Different wavelet families should produce different results
|
|
assert not torch.allclose(output1, output2, atol=1e-6)
|
|
|
|
@require_deterministic_for_xpu
|
|
def test_waveft_use_idwt_flag(self, data):
|
|
# Test use_idwt flag
|
|
torch.manual_seed(0)
|
|
|
|
model1 = self.get_model()
|
|
config1 = WaveFTConfig(target_modules=["linear"], n_frequency=100, use_idwt=True, init_weights=False)
|
|
model1 = get_peft_model(model1, config1)
|
|
output1 = model1(data)[0]
|
|
|
|
torch.manual_seed(0)
|
|
model2 = self.get_model()
|
|
config2 = WaveFTConfig(target_modules=["linear"], n_frequency=100, use_idwt=False, init_weights=False)
|
|
model2 = get_peft_model(model2, config2)
|
|
output2 = model2(data)[0]
|
|
|
|
# Different use_idwt settings should produce different results
|
|
assert not torch.allclose(output1, output2, atol=1e-6)
|
|
|
|
def test_waveft_non_positive_n_frequency_raises(self):
|
|
# Test that n_frequency <= 0 raises appropriate error
|
|
model = self.get_model()
|
|
|
|
# Test with n_frequency = 0
|
|
n_frequency = 0
|
|
msg = f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}"
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
|
|
get_peft_model(model, config)
|
|
|
|
# Test with negative n_frequency
|
|
n_frequency = -1
|
|
msg = f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}"
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
|
|
get_peft_model(model, config)
|
|
|
|
def test_waveft_excessive_n_frequency_raises(self):
|
|
# Test that n_frequency > in_features * out_features raises appropriate error
|
|
model = self.get_model()
|
|
|
|
# The model has a linear layer with 1000 in_features and 1000 out_features
|
|
# So the maximum n_frequency should be 1000 * 1000 = 1,000,000
|
|
max_allowed = 1000 * 1000
|
|
n_frequency = max_allowed + 1
|
|
msg = (
|
|
f"`n_frequency` should be less than or equal to the product of the input and output dimensions "
|
|
f"but the value passed is {n_frequency} and the product is {max_allowed}"
|
|
)
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
config = WaveFTConfig(target_modules=["linear"], n_frequency=n_frequency)
|
|
get_peft_model(model, config)
|
|
|
|
def test_waveft_n_frequency_pattern(self, data):
|
|
# Test n_frequency_pattern functionality
|
|
torch.manual_seed(0)
|
|
|
|
model = self.get_model()
|
|
config = WaveFTConfig(
|
|
target_modules=["linear"], n_frequency=50, n_frequency_pattern={"linear": 100}, init_weights=True
|
|
)
|
|
model = get_peft_model(model, config)
|
|
|
|
# Check that the pattern was applied
|
|
waveft_layer = model.base_model.model.linear
|
|
assert hasattr(waveft_layer, "waveft_n_frequency")
|
|
assert waveft_layer.waveft_n_frequency["default"] == 100
|
|
|
|
def test_waveft_layers_pattern_without_layers_to_transform_raises(self):
|
|
# Test that when layers_pattern is specified, layers_to_transform must also be specified
|
|
msg = "When `layers_pattern` is specified, `layers_to_transform` must also be specified."
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
WaveFTConfig(target_modules=["linear"], layers_pattern=["layers"], layers_to_transform=None)
|
|
|
|
def test_waveft_invalid_wavelet_family_raises(self):
|
|
# Test that invalid wavelet families raise appropriate errors
|
|
invalid_family = "invalid_wavelet"
|
|
msg = f"Wavelet family {invalid_family} not supported. Supported wavelet families are:"
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
WaveFTConfig(target_modules=["linear"], wavelet_family=invalid_family)
|
|
|
|
|
|
class TestRoadInitialization:
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MLP(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.lin0 = nn.Linear(10, 30, bias=bias)
|
|
self.lin1 = nn.Linear(30, 2, bias=bias)
|
|
|
|
def forward(self, X):
|
|
X = self.lin0(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
return MLP().to(self.torch_device)
|
|
|
|
def get_conv2d_model(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# choose a large weight so that averages are close to expected values
|
|
self.linear = nn.Linear(1000, 1000)
|
|
self.embed = nn.Embedding(1000, 1000)
|
|
self.conv2d = nn.Conv2d(100, 100, 3)
|
|
|
|
def forward(self, x):
|
|
x_int = (100 * x).int()
|
|
x_4d = x.flatten().reshape(1, 100, 10, 10)
|
|
return self.linear(x), self.embed(x_int), self.conv2d(x_4d)
|
|
|
|
return MyModule().eval().to(self.torch_device)
|
|
|
|
def test_road_default_initialization(self):
|
|
torch.manual_seed(0)
|
|
model = self.get_model()
|
|
config = RoadConfig(target_modules=["lin0"], group_size=2)
|
|
model = get_peft_model(model, config)
|
|
weight_alpha = model.lin0.road_alpha["default"].data
|
|
weight_theta = model.lin0.road_theta["default"].data
|
|
torch.allclose(weight_alpha, torch.ones_like(weight_alpha))
|
|
torch.allclose(weight_theta, torch.zeros_like(weight_theta))
|
|
|
|
def test_road_with_odd_group_size(self):
|
|
group_size = 3 # odd values are not allowed
|
|
msg = f"The group_size must be divisible by 2 when using RoadLayer, but got {group_size}."
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
RoadConfig(group_size=group_size)
|
|
|
|
def test_road_with_too_large_group_size(self):
|
|
group_size = 64 # larger than out_features
|
|
msg = (
|
|
f"The out_features of the base layer must be divisible by group_size ({group_size}) when using RoadLayer."
|
|
)
|
|
model = self.get_model()
|
|
config = RoadConfig(target_modules=["lin0"], group_size=group_size)
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
get_peft_model(model, config)
|
|
|
|
def test_road_with_incompatible_group_size_with_out_features(self):
|
|
group_size = 4 # even, but 30 does not divide by 4
|
|
model = self.get_model()
|
|
config = RoadConfig(target_modules=["lin0"], group_size=group_size)
|
|
msg = (
|
|
f"The out_features of the base layer must be divisible by group_size ({group_size}) when using RoadLayer."
|
|
)
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
get_peft_model(model, config)
|
|
|
|
def test_road_with_conv2d_layer(self):
|
|
model = self.get_conv2d_model()
|
|
config = RoadConfig(target_modules=["conv2d"], group_size=2)
|
|
msg = "Target module Conv2d(100, 100, kernel_size=(3, 3), stride=(1, 1)) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`."
|
|
with pytest.raises(ValueError, match=re.escape(msg)):
|
|
get_peft_model(model, config)
|
|
|
|
|
|
class TestDeLoRAInitialization:
|
|
"""Basic sanity tests for the DeLoRA tuner."""
|
|
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self, bias=True):
|
|
class MLP(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.lin0 = nn.Linear(10, 30, bias=bias)
|
|
self.lin1 = nn.Linear(30, 2, bias=bias)
|
|
|
|
def forward(self, X):
|
|
X = self.lin0(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
return MLP(bias=bias).to(self.torch_device).eval()
|
|
|
|
@pytest.fixture
|
|
def data(self):
|
|
torch.manual_seed(0)
|
|
return torch.randn(4, 10, device=self.torch_device)
|
|
|
|
def test_delora_injection_keeps_output_default(self, data):
|
|
# With init_weights=True (default), initial forward should match base model
|
|
torch.manual_seed(0)
|
|
base = self.get_model()
|
|
y_base = base(data)
|
|
|
|
cfg = DeloraConfig(target_modules=["lin0"], r=8, delora_lambda=15, init_weights=True)
|
|
model = get_peft_model(base, cfg)
|
|
y_peft = model(data)
|
|
|
|
assert torch.allclose(y_base, y_peft, atol=1e-6, rtol=1e-6)
|
|
|
|
def test_delora_param_shapes(self):
|
|
base = self.get_model()
|
|
in_f, out_f = base.lin0.in_features, base.lin0.out_features
|
|
r = 4
|
|
cfg = DeloraConfig(target_modules=["lin0"], r=r, delora_lambda=15, init_weights=True)
|
|
model = get_peft_model(base, cfg)
|
|
|
|
layer = model.lin0 # DeloraLinear wrapper
|
|
assert hasattr(layer, "delora_A") and hasattr(layer, "delora_B") and hasattr(layer, "delora_lambda")
|
|
A = layer.delora_A["default"]
|
|
B = layer.delora_B["default"]
|
|
delora_lambda = layer.delora_lambda["default"]
|
|
assert tuple(A.shape) == (r, in_f)
|
|
assert tuple(B.shape) == (out_f, r)
|
|
assert tuple(delora_lambda.shape) == (1,)
|
|
|
|
def test_init_weights_false_shifts_output(self, data):
|
|
# With init_weights=False, there should be an initial delta to the base model output
|
|
base = self.get_model()
|
|
y_base = base(data)
|
|
cfg = DeloraConfig(target_modules=["lin0"], r=8, delora_lambda=15, init_weights=False)
|
|
model = get_peft_model(base, cfg)
|
|
y_peft = model(data)
|
|
assert not torch.allclose(y_base, y_peft, atol=1e-6, rtol=1e-6)
|
|
|
|
|
|
class TestNoInfiniteRecursionDeepspeed:
|
|
# see #1892 for details
|
|
classes = [
|
|
PeftModel,
|
|
PeftMixedModel,
|
|
PeftModelForSequenceClassification,
|
|
PeftModelForQuestionAnswering,
|
|
PeftModelForTokenClassification,
|
|
PeftModelForCausalLM,
|
|
PeftModelForSeq2SeqLM,
|
|
PeftModelForFeatureExtraction,
|
|
]
|
|
|
|
@pytest.fixture
|
|
def wrap_init(self):
|
|
# emulates the wrapper from DeepSpeed
|
|
import functools
|
|
|
|
def decorator(f):
|
|
@functools.wraps(f)
|
|
def wrapper(self, *args, **kwargs):
|
|
hasattr(self, "abc") # any hasattr will do
|
|
f(self, *args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
@pytest.fixture
|
|
def model(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(10, 10)
|
|
# to emulate LMs:
|
|
self.prepare_inputs_for_generation = None
|
|
self._prepare_encoder_decoder_kwargs_for_generation = None
|
|
|
|
return MyModule()
|
|
|
|
@pytest.mark.parametrize("cls", classes)
|
|
def test_no_infinite_recursion(self, cls, model, wrap_init):
|
|
original_init = cls.__init__
|
|
try:
|
|
cls.__init__ = wrap_init(cls.__init__)
|
|
# this would trigger an infinite loop before the fix in 1892
|
|
cls(model, LoraConfig(target_modules=["linear"]))
|
|
finally:
|
|
# ensure there are no side effects of this test
|
|
cls.__init__ = original_init
|
|
|
|
|
|
class TestLoadAdapterOfflineMode:
|
|
base_model = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
peft_model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora"
|
|
|
|
# make sure that PEFT honors offline mode
|
|
@contextmanager
|
|
def hub_offline_ctx(self):
|
|
# this is required to simulate offline mode, setting the env var dynamically inside the test does not work
|
|
# because the value is checked only once at the start of the session
|
|
|
|
if reset_sessions is None:
|
|
# this means we're using huggingface_hub >= 1.0.0, there is no need to call reset_sessions() anymore
|
|
with patch("huggingface_hub.constants.HF_HUB_OFFLINE", True):
|
|
yield
|
|
else:
|
|
# in huggingface_hub < 1.0.0, it's necessary to reset the session
|
|
# TODO: remove once huggingface_hub < 1.0.0 is no longer supported
|
|
with patch("huggingface_hub.constants.HF_HUB_OFFLINE", True):
|
|
reset_sessions()
|
|
yield
|
|
reset_sessions()
|
|
|
|
def test_load_from_hub_then_offline_model(self):
|
|
# this uses LoRA but it's the same mechanism for other methods
|
|
base_model = AutoModelForCausalLM.from_pretrained(self.base_model)
|
|
|
|
# first ensure that the adapter model has been downloaded
|
|
PeftModel.from_pretrained(base_model, self.peft_model_id)
|
|
|
|
del base_model
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained(self.base_model)
|
|
with self.hub_offline_ctx():
|
|
# does not raise
|
|
PeftModel.from_pretrained(base_model, self.peft_model_id)
|
|
|
|
@pytest.fixture
|
|
def changed_default_cache_dir(self, tmp_path, monkeypatch):
|
|
# ensure that this test does not interact with other tests that may use the HF cache
|
|
monkeypatch.setattr("huggingface_hub.constants.HF_HOME", tmp_path)
|
|
monkeypatch.setattr("huggingface_hub.constants.HF_HUB_CACHE", tmp_path / "hub")
|
|
monkeypatch.setattr("huggingface_hub.constants.HF_TOKEN_PATH", tmp_path / "token")
|
|
|
|
def load_checkpoints(self, cache_dir):
|
|
# download model and lora checkpoint to a specific cache dir
|
|
snapshot_download(self.base_model, cache_dir=cache_dir)
|
|
snapshot_download(self.peft_model_id, cache_dir=cache_dir)
|
|
|
|
def test_load_checkpoint_offline_non_default_cache_dir(self, changed_default_cache_dir, tmp_path):
|
|
# See #2373 for context
|
|
self.load_checkpoints(tmp_path)
|
|
with self.hub_offline_ctx():
|
|
base_model = AutoModelForCausalLM.from_pretrained(self.base_model, cache_dir=tmp_path)
|
|
PeftModel.from_pretrained(base_model, self.peft_model_id, cache_dir=tmp_path)
|
|
|
|
|
|
class TestCustomModelConfigWarning:
|
|
# Check potential warnings when the user provided base_model_name_or_path is overridden by PEFT. See #2001 for
|
|
# context. We use LoRA for this test but the same applies to other methods
|
|
@pytest.fixture
|
|
def custom_module(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.lin = nn.Linear(10, 10)
|
|
|
|
return MyModule()
|
|
|
|
def test_no_warning_by_default_transformers_model(self, recwarn):
|
|
# first a sanity test that there is no warning by default when using a model from transformers
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
|
|
get_peft_model(model, LoraConfig())
|
|
for warning in recwarn.list:
|
|
assert "renamed" not in str(warning.message)
|
|
|
|
def test_no_warning_by_default_custom_model(self, custom_module, recwarn):
|
|
# same as above but with a custom model
|
|
get_peft_model(custom_module, LoraConfig(target_modules=["lin"]))
|
|
for warning in recwarn.list:
|
|
assert "renamed" not in str(warning.message)
|
|
|
|
def test_warning_name_transformers_model(self, recwarn):
|
|
# The base_model_name_or_path provided by the user is overridden.
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
|
|
custom_name = "custom_name"
|
|
get_peft_model(model, LoraConfig(base_model_name_or_path=custom_name))
|
|
msg = f"was renamed from '{custom_name}' to 'hf-internal-testing/tiny-random-OPTForCausalLM'"
|
|
assert any(msg in str(warning.message) for warning in recwarn.list)
|
|
|
|
def test_warning_name_custom_model(self, custom_module, recwarn):
|
|
custom_name = "custom_name"
|
|
get_peft_model(custom_module, LoraConfig(target_modules=["lin"], base_model_name_or_path=custom_name))
|
|
msg = f"was renamed from '{custom_name}' to 'None'"
|
|
assert any(msg in str(warning.message) for warning in recwarn.list)
|
|
|
|
def test_warning_name_custom_model_with_custom_name(self, custom_module, recwarn):
|
|
custom_name = "custom_name"
|
|
custom_module.name_or_path = "foobar"
|
|
get_peft_model(custom_module, LoraConfig(target_modules=["lin"], base_model_name_or_path=custom_name))
|
|
msg = f"was renamed from '{custom_name}' to 'foobar'"
|
|
assert any(msg in str(warning.message) for warning in recwarn.list)
|
|
|
|
|
|
class TestLowCpuMemUsage:
|
|
"""Test for the low CPU memory usage option for loading PEFT models.
|
|
|
|
Note that we have `test_load_model_low_cpu_mem_usage` in the custom model and stable diffusion tests. Those are
|
|
broad tests (i.e. testing all the supported PEFT methods) but not very deep (only testing if loading works and the
|
|
device is correctly set). The test class here goes deeper but only tests LoRA, as checking all PEFT methods would
|
|
be too much.
|
|
|
|
"""
|
|
|
|
# test on CPU and optionally on accelerator device
|
|
devices = ["cpu"]
|
|
_device = infer_device()
|
|
if _device != "cpu":
|
|
devices.append(_device)
|
|
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
|
|
def get_model(self):
|
|
return AutoModelForCausalLM.from_pretrained(self.model_id)
|
|
|
|
@pytest.fixture(scope="class")
|
|
def lora_config(self):
|
|
return LoraConfig(init_lora_weights=False, target_modules="all-linear")
|
|
|
|
@pytest.fixture(scope="class")
|
|
def lora_path(self, tmp_path_factory, lora_config):
|
|
torch.manual_seed(0)
|
|
tmp_path = tmp_path_factory.mktemp("lora")
|
|
model = self.get_model()
|
|
model = get_peft_model(model, lora_config)
|
|
model.save_pretrained(tmp_path)
|
|
return tmp_path
|
|
|
|
@pytest.fixture(scope="class")
|
|
def inputs(self):
|
|
return {"input_ids": torch.randint(0, 100, (1, 10)), "attention_mask": torch.ones(1, 10)}
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_from_pretrained_low_cpu_mem_usage_works(self, device, inputs, lora_path):
|
|
model = self.get_model().to(device)
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
model = PeftModel.from_pretrained(model, lora_path, torch_device=device).eval()
|
|
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_not_low_cpu_mem = model(**inputs).logits
|
|
|
|
del model
|
|
|
|
model = self.get_model().to(device)
|
|
model = PeftModel.from_pretrained(model, lora_path, low_cpu_mem_usage=True, torch_device=device).eval()
|
|
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_low_cpu_mem = model(**inputs).logits
|
|
|
|
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
|
|
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_load_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
|
|
model = self.get_model().to(device)
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, lora_config)
|
|
model.load_adapter(lora_path, adapter_name="other", torch_device=device)
|
|
model.set_adapter("other")
|
|
model.eval()
|
|
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_not_low_cpu_mem = model(**inputs).logits
|
|
|
|
del model
|
|
|
|
model = self.get_model().to(device)
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, lora_config)
|
|
model.load_adapter(lora_path, adapter_name="other", low_cpu_mem_usage=True, torch_device=device)
|
|
model.set_adapter("other")
|
|
model.eval()
|
|
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_low_cpu_mem = model(**inputs).logits
|
|
|
|
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
|
|
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_get_peft_model_low_cpu_mem_usage_works(self, device, inputs):
|
|
# when calling get_peft_model, the PEFT weights will not be initialized on device but remain on meta
|
|
model = self.get_model().to(device)
|
|
model = get_peft_model(model, LoraConfig(target_modules="all-linear"), low_cpu_mem_usage=True)
|
|
|
|
devices_lora_weights = {p.device for n, p in model.named_parameters() if "lora_" in n}
|
|
expected = {torch.device("meta")}
|
|
assert devices_lora_weights == expected
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_get_peft_model_with_task_type_low_cpu_mem_usage_works(self, device, inputs):
|
|
# same as the previous test, but pass the task_type argument
|
|
model = self.get_model().to(device)
|
|
model = get_peft_model(
|
|
model, LoraConfig(target_modules="all-linear", task_type="CAUSAL_LM"), low_cpu_mem_usage=True
|
|
)
|
|
|
|
devices_lora_weights = {p.device for n, p in model.named_parameters() if "lora_" in n}
|
|
expected = {torch.device("meta")}
|
|
assert devices_lora_weights == expected
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_inject_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
|
|
# external libs like transformers and diffusers use inject_adapter_in_model, let's check that this also works
|
|
model = self.get_model().to(device)
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, lora_config)
|
|
model.load_adapter(lora_path, adapter_name="other", torch_device=device)
|
|
model.set_adapter("other")
|
|
model.eval()
|
|
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_not_low_cpu_mem = model(**inputs).logits
|
|
|
|
del model
|
|
|
|
torch.manual_seed(0)
|
|
model = self.get_model().to(device)
|
|
inject_adapter_in_model(lora_config, model, low_cpu_mem_usage=True)
|
|
device_set_before_loading = {p.device.type for p in model.parameters()}
|
|
# at this stage, lora weights are still on meta device
|
|
assert device_set_before_loading == {"meta", device}
|
|
|
|
state_dict = load_file(lora_path / "adapter_model.safetensors")
|
|
remapped_dict = {}
|
|
prefix = "base_model.model."
|
|
for key, val in state_dict.items():
|
|
new_key = key[len(prefix) :]
|
|
remapped_dict[new_key] = val.to(device)
|
|
errors = set_peft_model_state_dict(model, remapped_dict, low_cpu_mem_usage=True)
|
|
# sanity check: no unexpected keys
|
|
assert not errors.unexpected_keys
|
|
|
|
model.eval()
|
|
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_low_cpu_mem = model(**inputs).logits
|
|
|
|
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
|
|
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
|
|
|
|
############################
|
|
# tests for PeftMixedModel #
|
|
############################
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_mixed_model_from_pretrained_low_cpu_mem_usage_works(self, device, inputs, lora_path):
|
|
model = self.get_model().to(device)
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
model = PeftMixedModel.from_pretrained(model, lora_path, torch_device=device).eval()
|
|
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_not_low_cpu_mem = model(**inputs).logits
|
|
|
|
del model
|
|
|
|
model = self.get_model().to(device)
|
|
model = PeftMixedModel.from_pretrained(model, lora_path, low_cpu_mem_usage=True, torch_device=device).eval()
|
|
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_low_cpu_mem = model(**inputs).logits
|
|
|
|
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
|
|
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_mixed_model_load_adapter_low_cpu_mem_usage_works(self, device, inputs, lora_path, lora_config):
|
|
model = self.get_model().to(device)
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
|
torch.manual_seed(0)
|
|
model = PeftModel.from_pretrained(model, lora_path)
|
|
model.load_adapter(lora_path, adapter_name="other", torch_device=device)
|
|
model.set_adapter("other")
|
|
model.eval()
|
|
device_set_not_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_not_low_cpu_mem = model(**inputs).logits
|
|
|
|
del model
|
|
|
|
model = self.get_model().to(device)
|
|
torch.manual_seed(0)
|
|
model = PeftModel.from_pretrained(model, lora_path)
|
|
model.load_adapter(lora_path, adapter_name="other", low_cpu_mem_usage=True, torch_device=device)
|
|
model.set_adapter("other")
|
|
model.eval()
|
|
device_set_low_cpu_mem = {p.device.type for p in model.parameters()}
|
|
logits_low_cpu_mem = model(**inputs).logits
|
|
|
|
assert device_set_low_cpu_mem == device_set_not_low_cpu_mem
|
|
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem, atol=1e-6, rtol=1e-6)
|
|
|
|
|
|
def test_from_pretrained_missing_keys_warning(recwarn, tmp_path):
|
|
# For more context, see issue 2115
|
|
# When loading a PEFT adapter and we're missing a PEFT-specific weight, there should be a warning.
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
|
|
config = LoraConfig()
|
|
model = get_peft_model(model, config)
|
|
state_dict = model.state_dict()
|
|
|
|
# first, sanity check that there are no warnings if no key is missing
|
|
model.save_pretrained(tmp_path)
|
|
del model
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
|
|
model = PeftModel.from_pretrained(model, tmp_path)
|
|
msg = "Found missing adapter keys"
|
|
assert not any(msg in str(w.message) for w in recwarn.list)
|
|
|
|
# remove a key from the state_dict
|
|
missing_key = "base_model.model.model.decoder.layers.0.self_attn.v_proj.lora_A.default.weight"
|
|
|
|
def new_state_dict():
|
|
return {k: v for k, v in state_dict.items() if k != missing_key}
|
|
|
|
model.state_dict = new_state_dict
|
|
model.save_pretrained(tmp_path)
|
|
del model
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
|
|
model = PeftModel.from_pretrained(model, tmp_path)
|
|
assert any(msg in str(w.message) for w in recwarn.list)
|
|
assert any(missing_key in str(w.message) for w in recwarn.list)
|
|
|
|
|
|
class TestNamingConflictWarning:
|
|
"""
|
|
Tests for warnings related to naming conflicts between adapter names and tuner prefixes. References: Issue 2252
|
|
"""
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def setup(self):
|
|
self.peft_config = LoraConfig()
|
|
self.prefix = PEFT_TYPE_TO_PREFIX_MAPPING[self.peft_config.peft_type]
|
|
self.base_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-OPTForCausalLM")
|
|
|
|
def _save_and_reload_model(self, model, adapter_name, tmp_path):
|
|
# Helper method to save and reload the PEFT model
|
|
model.save_pretrained(tmp_path, selected_adapters=[adapter_name])
|
|
del model
|
|
reloaded_base_model = AutoModelForCausalLM.from_pretrained(tmp_path / adapter_name)
|
|
return PeftModel.from_pretrained(reloaded_base_model, tmp_path / adapter_name)
|
|
|
|
def test_no_warning_without_naming_conflict_get_peft_model(self, recwarn):
|
|
# No warning should be raised when there is no naming conflict during get_peft_model.
|
|
non_conflict_adapter = "adapter"
|
|
_ = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
|
|
expected_msg = f"Adapter name '{non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
|
|
assert not any(expected_msg in str(w.message) for w in recwarn.list)
|
|
|
|
def test_no_warning_without_naming_conflict_add_adapter(self, recwarn):
|
|
# No warning should be raised when adding an adapter without naming conflict.
|
|
non_conflict_adapter = "adapter"
|
|
other_non_conflict_adapter = "other_adapter"
|
|
model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
|
|
_ = model.add_adapter(other_non_conflict_adapter, self.peft_config)
|
|
expected_msg = (
|
|
f"Adapter name '{other_non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
|
|
)
|
|
assert not any(expected_msg in str(w.message) for w in recwarn.list)
|
|
|
|
def test_no_warning_without_naming_conflict_save_and_load(self, recwarn, tmp_path):
|
|
# No warning should be raised when saving and loading the model without naming conflict.
|
|
non_conflict_adapter = "adapter"
|
|
model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
|
|
_ = self._save_and_reload_model(model, non_conflict_adapter, tmp_path)
|
|
expected_msg = f"Adapter name '{non_conflict_adapter}' should not be contained in the prefix '{self.prefix}'."
|
|
assert not any(expected_msg in str(w.message) for w in recwarn.list)
|
|
|
|
def test_warning_naming_conflict_get_peft_model(self, recwarn):
|
|
# Warning is raised when the adapter name conflicts with the prefix in get_peft_model.
|
|
conflicting_adapter_name = self.prefix[:-1]
|
|
_ = get_peft_model(self.base_model, self.peft_config, adapter_name=conflicting_adapter_name)
|
|
expected_msg = (
|
|
f"Adapter name '{conflicting_adapter_name}' should not be contained in the prefix '{self.prefix}'."
|
|
)
|
|
assert any(expected_msg in str(w.message) for w in recwarn.list)
|
|
|
|
def test_warning_naming_conflict_add_adapter(self, recwarn):
|
|
# Warning is raised when adding an adapter with a name that conflicts with the prefix.
|
|
conflicting_adapter = self.prefix[1:]
|
|
non_conflict_adapter = "adapter"
|
|
model = get_peft_model(self.base_model, self.peft_config, adapter_name=non_conflict_adapter)
|
|
_ = model.add_adapter(conflicting_adapter, self.peft_config)
|
|
expected_msg = f"Adapter name '{conflicting_adapter}' should not be contained in the prefix '{self.prefix}'."
|
|
assert any(expected_msg in str(w.message) for w in recwarn.list)
|
|
|
|
def test_warning_naming_conflict_save_and_load(self, recwarn, tmp_path):
|
|
# Warning is raised when saving and loading the model with a naming conflict.
|
|
conflicting_adapter = self.prefix[:-1]
|
|
model = get_peft_model(self.base_model, self.peft_config, adapter_name=conflicting_adapter)
|
|
_ = self._save_and_reload_model(model, conflicting_adapter, tmp_path)
|
|
expected_msg = f"Adapter name '{conflicting_adapter}' should not be contained in the prefix '{self.prefix}'."
|
|
assert any(expected_msg in str(w.message) for w in recwarn.list)
|
|
|
|
|
|
class TestCordaInitialization:
|
|
"""Test class to check the initialization of CorDA adapters."""
|
|
|
|
torch_device = infer_device()
|
|
|
|
def get_model(self):
|
|
class MyModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# choose a large weight so that averages are close to expected values
|
|
self.linear = nn.Linear(1000, 1000)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
return MyModule().eval().to(self.torch_device)
|
|
|
|
@pytest.fixture
|
|
def data(self):
|
|
# larger data is required to pass KPM test
|
|
torch.manual_seed(233)
|
|
return torch.rand(1000, 1000).to(self.torch_device)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_no_redundant_fields(self, data, corda_method):
|
|
original_model = self.get_model()
|
|
model = deepcopy(original_model)
|
|
|
|
corda_config = CordaConfig(
|
|
corda_method=corda_method,
|
|
)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(
|
|
model,
|
|
config,
|
|
run_model=lambda: model(data),
|
|
hooked_model=model,
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
|
|
# check if the redundant fields are removed
|
|
assert not hasattr(peft_model.base_model.linear, "sample_count")
|
|
assert not hasattr(peft_model.base_model.linear, "covariance_matrix")
|
|
assert not hasattr(peft_model.base_model.linear, "corda_method")
|
|
assert not hasattr(peft_model.base_model.linear, "rank")
|
|
assert not hasattr(peft_model.base_model.linear, "eigens")
|
|
|
|
# legacy debug fields
|
|
assert not hasattr(peft_model.base_model.linear, "mean")
|
|
assert not hasattr(peft_model.base_model.linear, "std")
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_sample_count(self, data, corda_method):
|
|
original_model = self.get_model()
|
|
model = deepcopy(original_model)
|
|
|
|
corda_config = CordaConfig(
|
|
corda_method=corda_method,
|
|
prune_temporary_fields=False,
|
|
)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(
|
|
model,
|
|
config,
|
|
run_model=lambda: [model(data), model(data)], # running model twice to test `sample_count`
|
|
hooked_model=model,
|
|
)
|
|
|
|
# covariance of linear should be data.T @ data
|
|
layer = model.linear
|
|
assert hasattr(layer, "covariance_matrix")
|
|
assert torch.allclose(layer.covariance_matrix, data.T @ data, atol=1e-06)
|
|
|
|
# sample count of linear should be 2
|
|
assert hasattr(layer, "sample_count")
|
|
assert layer.sample_count == 2
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_hook_unregister(self, data, corda_method):
|
|
original_model = self.get_model()
|
|
model = deepcopy(original_model)
|
|
|
|
hook_call_count = 0
|
|
|
|
def hook(*args):
|
|
nonlocal hook_call_count
|
|
hook_call_count += 1
|
|
|
|
model.linear.register_forward_hook(hook)
|
|
|
|
corda_config = CordaConfig(
|
|
corda_method=corda_method,
|
|
prune_temporary_fields=False,
|
|
)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(
|
|
model,
|
|
config,
|
|
run_model=lambda: model(data),
|
|
hooked_model=model,
|
|
)
|
|
|
|
# after preprocessing, external and internal hook should be run once
|
|
assert hook_call_count == 1
|
|
assert model.linear.sample_count == 1
|
|
|
|
# run preprocessed model once
|
|
model(data)[0]
|
|
|
|
# the external hook should be kept, but the internal hook should be gone
|
|
assert hook_call_count == 2
|
|
assert model.linear.sample_count == 1
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_linear_init_default(self, data, tmp_path, corda_method):
|
|
original_model = self.get_model()
|
|
model = deepcopy(original_model)
|
|
output_base = model(data)[0]
|
|
|
|
corda_config = CordaConfig(
|
|
cache_file=tmp_path / "corda_cache.pt",
|
|
covariance_file=tmp_path / "covariance_cache.pt",
|
|
corda_method=corda_method,
|
|
)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(
|
|
model,
|
|
config,
|
|
run_model=lambda: model(data),
|
|
hooked_model=model,
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
|
|
# check if adapter performs an identity transformantion
|
|
assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_corda = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
|
|
|
|
# if load SVD result from cache, the output should be the same
|
|
model = deepcopy(original_model)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
|
|
)
|
|
preprocess_corda(model, config)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
|
|
|
|
# if load covariance from cache, the output should be the same
|
|
model = deepcopy(original_model)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
|
|
)
|
|
preprocess_corda(model, config)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_hooked_model_linear_init_default(self, data, tmp_path, corda_method):
|
|
original_model = self.get_model()
|
|
model = deepcopy(original_model)
|
|
hooked_model = deepcopy(model)
|
|
output_base = model(data)[0]
|
|
|
|
corda_config = CordaConfig(
|
|
cache_file=tmp_path / "corda_cache.pt",
|
|
covariance_file=tmp_path / "covariance_cache.pt",
|
|
corda_method=corda_method,
|
|
)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=corda_config,
|
|
)
|
|
|
|
# difference from the above test: this test uses a copied model as hooked model
|
|
preprocess_corda(
|
|
model,
|
|
config,
|
|
run_model=lambda: hooked_model(data),
|
|
hooked_model=hooked_model,
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
|
|
# check if adapter performs an identity transformantion
|
|
assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_corda = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
|
|
|
|
# if load SVD result from cache, the output should be the same
|
|
model = deepcopy(original_model)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
|
|
)
|
|
preprocess_corda(model, config)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
|
|
|
|
# if load covariance from cache, the output should be the same
|
|
model = deepcopy(original_model)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
|
|
)
|
|
preprocess_corda(model, config)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_linear_init_default_with_rank_pattern(self, data, tmp_path, corda_method):
|
|
original_model = self.get_model()
|
|
model = deepcopy(original_model)
|
|
output_base = model(data)[0]
|
|
|
|
corda_config = CordaConfig(
|
|
cache_file=tmp_path / "corda_cache.pt",
|
|
covariance_file=tmp_path / "covariance_cache.pt",
|
|
corda_method=corda_method,
|
|
)
|
|
config = LoraConfig(
|
|
rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(
|
|
model,
|
|
config,
|
|
run_model=lambda: model(data),
|
|
)
|
|
peft_model = get_peft_model(model, config)
|
|
|
|
# check if adapter performs an identity transformantion
|
|
assert torch.allclose(output_base, peft_model(data)[0], atol=1e-06)
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_corda = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
|
|
|
|
# if load SVD result from cache, the output should be the same
|
|
model = deepcopy(original_model)
|
|
config = LoraConfig(
|
|
rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=CordaConfig(cache_file=tmp_path / "corda_cache.pt", corda_method=corda_method),
|
|
)
|
|
preprocess_corda(model, config)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
|
|
|
|
# if load covariance from cache, the output should be the same
|
|
model = deepcopy(original_model)
|
|
config = LoraConfig(
|
|
rank_pattern={"linear": 8, "embed": 16, "conv2d": 32},
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
corda_config=CordaConfig(covariance_file=tmp_path / "covariance_cache.pt", corda_method=corda_method),
|
|
)
|
|
preprocess_corda(model, config)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
assert torch.allclose(output_corda, peft_model(data)[0], atol=1e-06)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_conversion_same_output_after_loading(self, data, tmp_path, corda_method):
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
corda_config = CordaConfig(corda_method=corda_method)
|
|
config = LoraConfig(init_lora_weights="corda", target_modules=["linear"], r=8, corda_config=corda_config)
|
|
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "corda"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_corda = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "corda-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_config_keys_before = list(peft_model.peft_config.keys())
|
|
peft_config_dict_before = peft_model.peft_config["default"].to_dict()
|
|
peft_model.save_pretrained(
|
|
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
peft_config_keys_after = list(peft_model.peft_config.keys())
|
|
peft_config_dict_after = peft_model.peft_config["default"].to_dict()
|
|
assert peft_config_keys_before == peft_config_keys_after
|
|
assert peft_config_dict_before == peft_config_dict_after
|
|
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_conversion_same_output_after_loading_with_rank_pattern(self, data, tmp_path, corda_method):
|
|
# same as above, but using rank_pattern
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
# use rank_pattern here; note that since there is only a single linear layer, r is completely overridden
|
|
corda_config = CordaConfig(corda_method=corda_method)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
r=8,
|
|
rank_pattern={"linear": 32},
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "corda"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_corda = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "corda-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 32
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 64
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_conversion_same_output_after_loading_with_alpha_pattern(self, data, tmp_path, corda_method):
|
|
# same as above, but using alpha_pattern
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
# use alpha_pattern here; note that since there is only a single linear layer, lora_alpha is completely
|
|
# overridden
|
|
corda_config = CordaConfig(corda_method=corda_method)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
alpha_pattern={"linear": 5},
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "corda"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_corda = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "corda-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
assert model_loaded.base_model.model.linear.scaling["default"] == 5 / 8
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
assert model_converted.base_model.model.linear.scaling["default"] == 10 / 16
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_conversion_same_output_after_loading_with_rslora(self, data, tmp_path, corda_method):
|
|
model = self.get_model()
|
|
output_base = model(data)[0]
|
|
|
|
corda_config = CordaConfig(corda_method=corda_method)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda", target_modules=["linear"], r=8, use_rslora=True, corda_config=corda_config
|
|
)
|
|
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
|
|
peft_model = get_peft_model(deepcopy(model), config)
|
|
# save the initial model
|
|
peft_model.peft_config["default"].init_lora_weights = True
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
peft_model.peft_config["default"].init_lora_weights = "corda"
|
|
|
|
# modify the weights, or else the adapter performs an identity transformation
|
|
peft_model.base_model.linear.lora_B["default"].weight.data *= 2.0
|
|
output_corda = peft_model(data)[0]
|
|
|
|
# sanity check
|
|
tol = 1e-06
|
|
assert not torch.allclose(output_base, output_corda, atol=tol, rtol=tol)
|
|
|
|
# save the model normally
|
|
peft_model.save_pretrained(tmp_path / "corda-model")
|
|
model_loaded = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model")
|
|
output_loaded = model_loaded(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_loaded, atol=tol, rtol=tol)
|
|
# sanity check: ranks should still be 8 as initially
|
|
assert model_loaded.peft_config["default"].r == 8
|
|
assert model_loaded.base_model.model.linear.lora_A["default"].weight.shape[0] == 8
|
|
assert model_loaded.base_model.model.linear.scaling["default"] == 8 / (8**0.5)
|
|
# sanity check: the base model weights were indeed changed
|
|
assert not torch.allclose(
|
|
model.linear.weight, model_loaded.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
# save the model with conversion
|
|
peft_model.save_pretrained(
|
|
tmp_path / "corda-model-converted", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
model_converted = PeftModel.from_pretrained(deepcopy(model), tmp_path / "corda-model-converted")
|
|
output_converted = model_converted(data)[0]
|
|
|
|
assert torch.allclose(output_corda, output_converted, atol=tol, rtol=tol)
|
|
# rank should be double of what it was initially
|
|
assert model_converted.peft_config["default"].r == 16
|
|
assert model_converted.base_model.model.linear.lora_A["default"].weight.shape[0] == 16
|
|
# same scale as before with a little bit of floating point imprecision
|
|
assert model_converted.base_model.model.linear.scaling["default"] == pytest.approx(8 / (8**0.5))
|
|
# base model weights should be the same as the initial model
|
|
assert torch.allclose(
|
|
model.linear.weight, model_converted.base_model.model.linear.base_layer.weight, atol=tol, rtol=tol
|
|
)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_rank_pattern_and_rslora_raises(self, data, tmp_path, corda_method):
|
|
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
|
|
# scale is not stored in the state_dict
|
|
model = self.get_model()
|
|
corda_config = CordaConfig(corda_method=corda_method)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
r=8,
|
|
rank_pattern={"linear": 2},
|
|
use_rslora=True,
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
|
|
with pytest.raises(ValueError, match=msg):
|
|
peft_model.save_pretrained(
|
|
tmp_path / "corda-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
|
|
@pytest.mark.parametrize("corda_method", ("ipm", "kpm"))
|
|
def test_lora_corda_alpha_pattern_and_rslora_raises(self, data, tmp_path, corda_method):
|
|
# it's not possible to determine the correct scale when using rslora with rank or alpha pattern, because the
|
|
# scale is not stored in the state_dict
|
|
model = self.get_model()
|
|
corda_config = CordaConfig(corda_method=corda_method)
|
|
config = LoraConfig(
|
|
init_lora_weights="corda",
|
|
target_modules=["linear"],
|
|
r=8,
|
|
alpha_pattern={"linear": 2},
|
|
use_rslora=True,
|
|
corda_config=corda_config,
|
|
)
|
|
preprocess_corda(model, config, run_model=lambda: model(data), hooked_model=model)
|
|
peft_model = get_peft_model(model, config)
|
|
peft_model.save_pretrained(tmp_path / "init-model")
|
|
|
|
msg = re.escape("Passing `path_initial_model_for_weight_conversion` to `save_pretrained`")
|
|
with pytest.raises(ValueError, match=msg):
|
|
peft_model.save_pretrained(
|
|
tmp_path / "corda-model", path_initial_model_for_weight_conversion=tmp_path / "init-model"
|
|
)
|
|
|
|
|
|
class TestEvaInitialization:
|
|
"""Tests for the EVA (Explained Variance Adaptation) initialization method.
|
|
|
|
This test suite verifies:
|
|
1. Consistency of initialization across different seeds
|
|
2. Proper error handling for invalid inputs
|
|
3. Compatibility with different model architectures
|
|
4. Reproducibility of results
|
|
5. Proper handling of edge cases
|
|
"""
|
|
|
|
# Constants for test configuration
|
|
COSINE_SIMILARITY_THRESHOLD = 0.75
|
|
NUM_SEEDS = 2
|
|
BATCH_SIZE = 4
|
|
MAX_LENGTH = 256
|
|
LORA_DIM = 8
|
|
LORA_ALPHA = 1
|
|
DEVICE = infer_device()
|
|
# for caching purposes:
|
|
_dataset = load_dataset_english_quotes()["train"]
|
|
|
|
@pytest.fixture
|
|
def tokenizer(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
return tokenizer
|
|
|
|
@pytest.fixture
|
|
def dataset(self, tokenizer):
|
|
# concatenate examples
|
|
examples = []
|
|
example = ""
|
|
for data in self._dataset:
|
|
if len(example) >= self.MAX_LENGTH:
|
|
examples.append(example)
|
|
example = ""
|
|
example = example + " " + data["quote"]
|
|
dataset = Dataset.from_dict({"text": examples})
|
|
# tokenize
|
|
dataset = dataset.map(
|
|
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=self.MAX_LENGTH),
|
|
batched=True,
|
|
remove_columns=dataset.column_names,
|
|
)
|
|
dataset.set_format(type="torch")
|
|
return dataset
|
|
|
|
@pytest.fixture
|
|
def model(self):
|
|
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
|
model.transformer.h = model.transformer.h[:2] # truncate to 2 layers
|
|
return model.to(self.DEVICE)
|
|
|
|
@pytest.fixture
|
|
def peft_config(self):
|
|
return LoraConfig(
|
|
r=self.LORA_DIM,
|
|
lora_alpha=self.LORA_ALPHA,
|
|
target_modules=["c_attn"],
|
|
init_lora_weights="eva",
|
|
eva_config=EvaConfig(rho=2),
|
|
)
|
|
|
|
@staticmethod
|
|
def collate_fn(examples):
|
|
return {k: torch.stack([v[k] for v in examples], dim=0) for k in examples[0].keys()}
|
|
|
|
@staticmethod
|
|
def prepare_layer_inputs_fn(layer_input, model_input, layer_name):
|
|
return layer_input[0].view(-1, layer_input[0].size(-1))
|
|
|
|
def get_dataloader(self, dataset):
|
|
return DataLoader(
|
|
dataset,
|
|
batch_size=self.BATCH_SIZE,
|
|
collate_fn=self.collate_fn,
|
|
shuffle=False,
|
|
)
|
|
|
|
@pytest.mark.parametrize(
|
|
"prepare_layer_inputs_keys, expected_outcome",
|
|
[
|
|
(None, "success"),
|
|
(["transformer.h.0.attn.c_attn"], "success"),
|
|
(
|
|
["transformer.h.0.attn.c_attn", "transformer.h.1.attn.c_attn", "transformer.h.2.attn.c_attn"],
|
|
"value_error",
|
|
),
|
|
],
|
|
)
|
|
def test_eva_state_dict_prepare_inputs_mapping(
|
|
self, model, dataset, peft_config, prepare_layer_inputs_keys, expected_outcome
|
|
):
|
|
"""
|
|
Tests for cases where prepare_layer_inputs_fn is a mapping. Checks that if not all target modules are present,
|
|
the prepare_layer_inputs_fn for the remaining modules is set to None. Also checks that if more keys than target
|
|
modules are present, a ValueError is raised.
|
|
"""
|
|
|
|
def fn(x, *args):
|
|
return x[0].view(-1, x[0].size(-1))
|
|
|
|
if prepare_layer_inputs_keys is None:
|
|
prepare_layer_inputs_fn = fn
|
|
else:
|
|
prepare_layer_inputs_fn = {k: fn for k in prepare_layer_inputs_keys}
|
|
|
|
shuffled_dataset = dataset.shuffle(seed=0)
|
|
dataloader = self.get_dataloader(shuffled_dataset)
|
|
modified_peft_config = deepcopy(peft_config)
|
|
modified_peft_config.eva_config.tau = 0 # converge immediately
|
|
if expected_outcome == "success":
|
|
sd = get_eva_state_dict(
|
|
model,
|
|
dataloader,
|
|
modified_peft_config,
|
|
prepare_model_inputs_fn=None,
|
|
prepare_layer_inputs_fn=prepare_layer_inputs_fn,
|
|
)
|
|
assert len(sd) == 2
|
|
assert "transformer.h.0.attn.c_attn" in sd
|
|
assert "transformer.h.1.attn.c_attn" in sd
|
|
else:
|
|
with pytest.raises(
|
|
ValueError, match="prepare_layer_inputs_fn is a mapping but the following module names were not found"
|
|
):
|
|
get_eva_state_dict(
|
|
model,
|
|
dataloader,
|
|
modified_peft_config,
|
|
prepare_model_inputs_fn=None,
|
|
prepare_layer_inputs_fn=prepare_layer_inputs_fn,
|
|
)
|
|
|
|
@pytest.mark.parametrize(
|
|
"eva_config",
|
|
[EvaConfig(rho=2, adjust_scaling_factors=True)],
|
|
)
|
|
def test_eva_state_dict_adjust_scaling_factors(self, model, dataset, peft_config, eva_config):
|
|
"""
|
|
Tests that the scaling factors are adjusted so that all LoRA gradients have the same scale regardless of their
|
|
rank.
|
|
"""
|
|
modified_peft_config = deepcopy(peft_config)
|
|
modified_peft_config.eva_config = eva_config
|
|
dataloader = self.get_dataloader(dataset)
|
|
peft_model = get_peft_model(deepcopy(model), modified_peft_config)
|
|
scaling_factors_before = {}
|
|
for n, m in peft_model.named_modules():
|
|
if isinstance(m, LoraLayer):
|
|
scaling_factors_before[n] = m.scaling["default"]
|
|
initialize_lora_eva_weights(peft_model, dataloader)
|
|
for n, m in peft_model.named_modules():
|
|
if isinstance(m, LoraLayer):
|
|
assert m.scaling["default"] == scaling_factors_before[n]
|
|
|
|
@pytest.mark.parametrize(
|
|
"eva_config",
|
|
[
|
|
# note: lower tau to decrease number of iterations until convergence, as tests are slow on CPU
|
|
EvaConfig(rho=2, tau=0.9),
|
|
EvaConfig(rho=1, tau=0.9),
|
|
EvaConfig(rho=1, whiten=True, tau=0.9),
|
|
EvaConfig(rho=1.0001, tau=0.9),
|
|
],
|
|
)
|
|
def test_eva_initialization_consistency(self, model, dataset, peft_config, eva_config):
|
|
"""
|
|
Tests that the state dict returned by `get_eva_state_dict` is consistent across different seeds based on the
|
|
cosine similarity of the svd components.
|
|
"""
|
|
modified_peft_config = deepcopy(peft_config)
|
|
modified_peft_config.eva_config = eva_config
|
|
state_dicts = []
|
|
for seed in range(self.NUM_SEEDS):
|
|
shuffled_dataset = dataset.shuffle(seed=seed)
|
|
dataloader = self.get_dataloader(shuffled_dataset)
|
|
sd = get_eva_state_dict(model, dataloader, modified_peft_config, show_progress_bar=False)
|
|
state_dicts.append(sd)
|
|
|
|
cos_sims = defaultdict(list)
|
|
for i, j in itertools.combinations(range(self.NUM_SEEDS), 2):
|
|
for k, v1 in state_dicts[i].items():
|
|
v2 = state_dicts[j][k]
|
|
min_size = min(v1.size(0), v2.size(0))
|
|
cos_sims[k].extend(torch.cosine_similarity(v1[:min_size].abs(), v2[:min_size].abs(), dim=1).tolist())
|
|
|
|
mean_cosine_similarities = {k: torch.tensor(v).mean() for k, v in cos_sims.items()}
|
|
for layer_name, mean_cosine_similarity in mean_cosine_similarities.items():
|
|
assert mean_cosine_similarity > self.COSINE_SIMILARITY_THRESHOLD, (
|
|
f"Mean absolute cosine similarity {mean_cosine_similarity:.4f} "
|
|
f"is not greater than {self.COSINE_SIMILARITY_THRESHOLD}"
|
|
)
|
|
|
|
@pytest.mark.parametrize("has_rank_zero", [True, False])
|
|
def test_load_eva_state_dict(self, model, dataset, peft_config, tmp_path, has_rank_zero):
|
|
"""
|
|
Tests that the `eva_state_dict` argument in `initialize_lora_eva_weights` can be used to initialize a model
|
|
with EVA weights and that the initialized model can be saved and loaded correctly.
|
|
"""
|
|
dataloader = self.get_dataloader(dataset)
|
|
peft_model = get_peft_model(deepcopy(model), peft_config)
|
|
sd = get_eva_state_dict(peft_model, dataloader)
|
|
if has_rank_zero:
|
|
k = "base_model.model.transformer.h.0.attn.c_attn"
|
|
sd[k] = sd[k][:0]
|
|
initialize_lora_eva_weights(peft_model, eva_state_dict=sd)
|
|
if has_rank_zero:
|
|
assert not isinstance(peft_model.model.transformer.h[0].attn.c_attn, LoraLayer)
|
|
else:
|
|
assert isinstance(peft_model.model.transformer.h[0].attn.c_attn, LoraLayer)
|
|
peft_model.save_pretrained(tmp_path)
|
|
peft_model = PeftModel.from_pretrained(model, tmp_path, torch_device=self.DEVICE, low_cpu_mem_usage=True)
|
|
peft_model(**{k: v.to(self.DEVICE) for k, v in next(iter(dataloader)).items()})
|
|
|
|
def test_missing_eva_inits(self, model, dataset, peft_config):
|
|
"""
|
|
Tests that a warning is raised when some adapter modules were not initialized with EVA weights.
|
|
"""
|
|
modified_peft_config = deepcopy(peft_config)
|
|
modified_peft_config.target_modules = ["wte"]
|
|
dataloader = self.get_dataloader(dataset)
|
|
peft_model = get_peft_model(deepcopy(model), modified_peft_config)
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="the following layers were initialized with init_lora_weights=True because they were not found in the eva state_dict:*",
|
|
):
|
|
initialize_lora_eva_weights(peft_model, dataloader)
|
|
|
|
def test_load_eva_model(self, model, dataset, peft_config, tmp_path):
|
|
"""
|
|
Tests that a model initialized with EVA weights can be loaded correctly.
|
|
"""
|
|
dataloader = self.get_dataloader(dataset)
|
|
peft_model = get_peft_model(deepcopy(model), peft_config)
|
|
initialize_lora_eva_weights(peft_model, dataloader)
|
|
peft_model.save_pretrained(tmp_path)
|
|
peft_model = PeftModel.from_pretrained(model, tmp_path, torch_device=self.DEVICE, low_cpu_mem_usage=True)
|
|
peft_model(**{k: v.to(self.DEVICE) for k, v in next(iter(dataloader)).items()})
|
|
|
|
def test_eva_initialization_with_invalid_dataloader(self, model, peft_config):
|
|
"""Test that appropriate error is raised when dataloader is empty."""
|
|
empty_dataset = Dataset.from_dict({"text": []})
|
|
dataloader = self.get_dataloader(empty_dataset)
|
|
|
|
with pytest.raises(ValueError, match="dataloader is empty"):
|
|
get_eva_state_dict(model, dataloader, peft_config)
|
|
|
|
def test_eva_config_rho(self):
|
|
"""
|
|
Tests that EvaConfig.__init__ raises a ValueError when rho is negative.
|
|
"""
|
|
with pytest.raises(ValueError, match="`rho` must be >= 1.0"):
|
|
EvaConfig(rho=-1)
|
|
|
|
def test_eva_config_tau(self):
|
|
"""
|
|
Tests that EvaConfig.__init__ raises a ValueError when tau is not between 0.0 and 1.0.
|
|
"""
|
|
with pytest.raises(ValueError, match="`tau` must be between 0.0 and 1.0."):
|
|
EvaConfig(tau=-0.1)
|
|
with pytest.raises(ValueError, match="`tau` must be between 0.0 and 1.0."):
|
|
EvaConfig(tau=1.1)
|
|
|
|
def test_lora_config_raises_warning_with_eva_init_but_not_eva_config(self):
|
|
"""
|
|
Tests that LoraConfig.__init__ raises a warning when init_lora_weights='eva' but eva_config is not set.
|
|
"""
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="`init_lora_weights` is 'eva' but `eva_config` is not specified. Using default EVA config.",
|
|
):
|
|
LoraConfig(init_lora_weights="eva")
|
|
|
|
def test_lora_config_raises_warning_with_eva_config_but_not_eva_init(self):
|
|
"""
|
|
Tests that LoraConfig.__init__ raises a warning when init_lora_weights is not 'eva' but eva_config is set.
|
|
"""
|
|
with pytest.warns(
|
|
UserWarning, match="`eva_config` specified but will be ignored when `init_lora_weights` is not 'eva'."
|
|
):
|
|
LoraConfig(init_lora_weights=True, eva_config=EvaConfig())
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
platform.system() != "Linux", reason="Out of the box, torch.compile does not work on Windows or MacOS"
|
|
)
|
|
class TestHotSwapping:
|
|
"""Tests for the hotswapping function"""
|
|
|
|
torch_device = infer_device()
|
|
|
|
def compile(self, model, do_compile):
|
|
if not do_compile:
|
|
return model
|
|
return torch.compile(model)
|
|
|
|
def get_model(self):
|
|
class MLP(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.lin0 = nn.Linear(10, 20, bias=True)
|
|
self.relu = nn.ReLU()
|
|
self.lin1 = nn.Linear(20, 5, bias=False)
|
|
|
|
def forward(self, X):
|
|
X = X.float()
|
|
X = self.lin0(X)
|
|
X = self.relu(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
torch.manual_seed(0)
|
|
return MLP().to(self.torch_device)
|
|
|
|
def get_model_conv2d(self):
|
|
class ConvModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(3, 10, kernel_size=3)
|
|
|
|
def forward(self, X):
|
|
return self.conv(X)
|
|
|
|
torch.manual_seed(0)
|
|
return ConvModel().to(self.torch_device)
|
|
|
|
# this works with all adapters except prompt learning, but we don't test all
|
|
# as it is unnecessary and would be slow
|
|
@pytest.mark.parametrize(
|
|
"config",
|
|
[
|
|
LoraConfig(init_lora_weights=0, target_modules=["lin0"]),
|
|
LoraConfig(init_lora_weights=0, target_modules=["lin0", "lin1"]),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("do_compile", [False, True])
|
|
def test_hotswap_works(self, config, do_compile, tmp_path):
|
|
# Load 2 different adapters and check that we can hotswap between them, with the model optionally being
|
|
# compiled.
|
|
atol, rtol = 1e-4, 1e-4
|
|
inputs = torch.rand(3, 10).to(self.torch_device)
|
|
|
|
# create adapter 0
|
|
model = self.get_model()
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, config)
|
|
model = self.compile(model, do_compile=do_compile)
|
|
model.eval()
|
|
with torch.inference_mode():
|
|
output0 = model(inputs)
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
|
|
del model
|
|
|
|
# create adapter 1
|
|
model = self.get_model()
|
|
torch.manual_seed(1)
|
|
model = get_peft_model(model, config)
|
|
model = self.compile(model, do_compile=do_compile)
|
|
model.eval()
|
|
with torch.inference_mode():
|
|
output1 = model(inputs)
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
|
|
# sanity check: they're not the same
|
|
assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)
|
|
|
|
del model
|
|
|
|
# load adapter 0
|
|
model = self.get_model()
|
|
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
|
|
model = self.compile(model, do_compile=do_compile)
|
|
with torch.inference_mode():
|
|
output_loaded0 = model(inputs)
|
|
|
|
# sanity check: same output after loading for adapter 0
|
|
assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)
|
|
|
|
# hotswap with adapter 1
|
|
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
|
|
with torch.inference_mode():
|
|
output_loaded1 = model(inputs)
|
|
|
|
# real check: model now behaves like adapter 1
|
|
assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)
|
|
|
|
# hotswap back to adapter 0
|
|
hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
|
|
with torch.inference_mode():
|
|
output_loaded_back0 = model(inputs)
|
|
|
|
# real check: model now behaves again like adapter 0
|
|
assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)
|
|
|
|
def test_hotswap_different_peft_types_raises(self, tmp_path):
|
|
# When the configs of the two adapters are different PEFT methods, raise
|
|
config0 = LoraConfig(target_modules=["lin0"])
|
|
config1 = IA3Config(target_modules=["lin0"], feedforward_modules=[])
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config0)
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
del model
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config1)
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
del model
|
|
|
|
# load adapter 0
|
|
model = self.get_model()
|
|
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
|
|
|
|
msg = r"Incompatible PEFT types found: LORA and IA3"
|
|
with pytest.raises(ValueError, match=msg):
|
|
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
|
|
|
|
def test_hotswap_wrong_peft_types_raises(self, tmp_path):
|
|
# Only LoRA is supported at the moment
|
|
config0 = IA3Config(target_modules=["lin0"], feedforward_modules=[])
|
|
config1 = IA3Config(target_modules=["lin0"], feedforward_modules=[])
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config0)
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
del model
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config1)
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
del model
|
|
|
|
# load adapter 0
|
|
model = self.get_model()
|
|
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
|
|
|
|
msg = r"Hotswapping only supports LORA but IA3 was passed"
|
|
with pytest.raises(ValueError, match=msg):
|
|
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
|
|
|
|
def test_hotswap_missing_key_works(self, tmp_path):
|
|
# When a key is missing, it is fine, the extra weight is zeroed out
|
|
config = LoraConfig(target_modules=["lin0", "lin1"])
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
del model
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
# remove one key from the state_dict
|
|
key = "base_model.model.lin1.lora_A.default.weight"
|
|
state_dict = model.state_dict()
|
|
del state_dict[key]
|
|
model.state_dict = lambda: state_dict
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
del model
|
|
|
|
# load adapter 0
|
|
model = self.get_model()
|
|
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
|
|
|
|
# sanity check: the missing weight is not already all zeros
|
|
assert not (model.base_model.model.lin1.lora_A["default"].weight == 0).all()
|
|
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
|
|
# after hotswapping, it is zeroed out
|
|
assert (model.base_model.model.lin1.lora_A["default"].weight == 0).all()
|
|
|
|
def test_hotswap_extra_key_raises(self, tmp_path):
|
|
# When there is an extra key, raise
|
|
config = LoraConfig(target_modules=["lin0"])
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
del model
|
|
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
# add an unexpected key
|
|
state_dict = model.state_dict()
|
|
new_key = "base_model.model.lin1.lora_A.default.weight"
|
|
state_dict[new_key] = torch.zeros(8, 20)
|
|
model.state_dict = lambda: state_dict
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
del model
|
|
|
|
# load adapter 0
|
|
model = self.get_model()
|
|
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
|
|
|
|
msg = f"Hot swapping the adapter did not succeed, unexpected keys found: {new_key}"
|
|
with pytest.raises(RuntimeError, match=msg):
|
|
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
|
|
|
|
@pytest.mark.parametrize("ranks", [(7, 13), (13, 7)])
|
|
def test_hotswap_works_different_ranks_alphas(self, ranks, tmp_path):
|
|
# same as test_hotswap_works but different rank and alpha
|
|
# Load 2 different adapters and check that we can hotswap between them, with the model optionally being
|
|
# compiled.
|
|
atol, rtol = 1e-4, 1e-4
|
|
inputs = torch.rand(3, 10).to(self.torch_device)
|
|
|
|
# create adapter 0
|
|
config0 = LoraConfig(target_modules=["lin0", "lin1"], r=ranks[0], lora_alpha=ranks[0], init_lora_weights=False)
|
|
model = self.get_model()
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, config0)
|
|
model.eval()
|
|
with torch.inference_mode():
|
|
output0 = model(inputs)
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
|
|
del model
|
|
|
|
# create adapter 1
|
|
config1 = LoraConfig(target_modules=["lin0"], r=ranks[1], lora_alpha=ranks[1], init_lora_weights=False)
|
|
model = self.get_model()
|
|
torch.manual_seed(1)
|
|
model = get_peft_model(model, config1)
|
|
model.eval()
|
|
with torch.inference_mode():
|
|
output1 = model(inputs)
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
|
|
# sanity check: they're not the same
|
|
assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)
|
|
|
|
del model
|
|
|
|
# load adapter 0
|
|
model = self.get_model()
|
|
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
|
|
with torch.inference_mode():
|
|
output_loaded0 = model(inputs)
|
|
|
|
# sanity check: same output after loading for adapter 0
|
|
assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)
|
|
|
|
# hotswap with adapter 1
|
|
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
|
|
with torch.inference_mode():
|
|
output_loaded1 = model(inputs)
|
|
|
|
# real check: model now behaves like adapter 1
|
|
assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)
|
|
|
|
# hotswap back to adapter 0
|
|
hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
|
|
with torch.inference_mode():
|
|
output_loaded_back0 = model(inputs)
|
|
|
|
# real check: model now behaves again like adapter 0
|
|
assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)
|
|
|
|
@pytest.mark.parametrize("ranks", [(7, 13), (13, 7)])
|
|
def test_hotswap_works_different_ranks_alphas_conv2d(self, ranks, tmp_path):
|
|
# same as previous test, but for a Conv2d model
|
|
atol, rtol = 1e-4, 1e-4
|
|
inputs = torch.rand(3, 3, 10, 10).to(self.torch_device)
|
|
|
|
# create adapter 0
|
|
config0 = LoraConfig(target_modules=["conv"], r=ranks[0], init_lora_weights=False)
|
|
model = self.get_model_conv2d()
|
|
torch.manual_seed(0)
|
|
model = get_peft_model(model, config0)
|
|
model.eval()
|
|
with torch.inference_mode():
|
|
output0 = model(inputs)
|
|
model.save_pretrained(tmp_path / "adapter0")
|
|
|
|
del model
|
|
|
|
# create adapter 1
|
|
config1 = LoraConfig(target_modules=["conv"], r=ranks[1], init_lora_weights=False)
|
|
model = self.get_model_conv2d()
|
|
torch.manual_seed(1)
|
|
model = get_peft_model(model, config1)
|
|
model.eval()
|
|
with torch.inference_mode():
|
|
output1 = model(inputs)
|
|
model.save_pretrained(tmp_path / "adapter1")
|
|
|
|
# sanity check: they're not the same
|
|
assert not torch.allclose(output0, output1, atol=atol, rtol=rtol)
|
|
|
|
del model
|
|
|
|
# load adapter 0
|
|
model = self.get_model_conv2d()
|
|
model = PeftModel.from_pretrained(model, tmp_path / "adapter0")
|
|
with torch.inference_mode():
|
|
output_loaded0 = model(inputs)
|
|
|
|
# sanity check: same output after loading for adapter 0
|
|
assert torch.allclose(output0, output_loaded0, atol=atol, rtol=rtol)
|
|
|
|
# hotswap with adapter 1
|
|
hotswap_adapter(model, tmp_path / "adapter1", adapter_name="default")
|
|
with torch.inference_mode():
|
|
output_loaded1 = model(inputs)
|
|
|
|
# real check: model now behaves like adapter 1
|
|
assert torch.allclose(output1, output_loaded1, atol=atol, rtol=rtol)
|
|
|
|
# hotswap back to adapter 0
|
|
hotswap_adapter(model, tmp_path / "adapter0", adapter_name="default")
|
|
with torch.inference_mode():
|
|
output_loaded_back0 = model(inputs)
|
|
|
|
# real check: model now behaves again like adapter 0
|
|
assert torch.allclose(output0, output_loaded_back0, atol=atol, rtol=rtol)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_scalings_are_tensors(self):
|
|
config = LoraConfig(target_modules=["lin0", "lin1"])
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
# sanity check: all scalings are floats
|
|
scalings_before = {}
|
|
for name, module in model.named_modules():
|
|
if hasattr(module, "scaling"):
|
|
for key, val in module.scaling.items():
|
|
assert isinstance(val, float)
|
|
scalings_before[f"{name}.{key}"] = val
|
|
|
|
prepare_model_for_compiled_hotswap(model)
|
|
|
|
scalings_after = {}
|
|
for name, module in model.named_modules():
|
|
if hasattr(module, "scaling"):
|
|
for key, val in module.scaling.items():
|
|
assert isinstance(val, torch.Tensor)
|
|
scalings_after[f"{name}.{key}"] = val.item()
|
|
|
|
assert scalings_before == scalings_after
|
|
|
|
def test_prepare_model_for_compiled_hotswap_rank_padding_works(self):
|
|
old_rank = 8
|
|
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank)
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
# sanity check
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
assert param.shape[0] == old_rank
|
|
elif "lora_B" in name:
|
|
assert param.shape[1] == old_rank
|
|
|
|
new_rank = 13
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
assert param.shape[0] == new_rank
|
|
elif "lora_B" in name:
|
|
assert param.shape[1] == new_rank
|
|
|
|
def test_prepare_model_for_compiled_hotswap_same_rank_padding_works(self):
|
|
# same as previous test, but ensure there is no error if the rank to pad to is the same
|
|
old_rank = 8
|
|
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank)
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
prepare_model_for_compiled_hotswap(model, target_rank=old_rank)
|
|
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
assert param.shape[0] == old_rank
|
|
elif "lora_B" in name:
|
|
assert param.shape[1] == old_rank
|
|
|
|
def test_prepare_model_for_compiled_hotswap_conv2d_rank_padding_works(self):
|
|
# same as previous test, but for a Conv2d model
|
|
old_rank = 8
|
|
config = LoraConfig(target_modules=["conv"], r=old_rank)
|
|
model = self.get_model_conv2d()
|
|
model = get_peft_model(model, config)
|
|
|
|
# sanity check
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
assert param.shape[0] == old_rank
|
|
elif "lora_B" in name:
|
|
assert param.shape[1] == old_rank
|
|
|
|
new_rank = 13
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
assert param.shape[0] == new_rank
|
|
elif "lora_B" in name:
|
|
assert param.shape[1] == new_rank
|
|
|
|
def test_prepare_model_for_compiled_hotswap_lower_rank_padding_raises(self):
|
|
# when trying to pad to a lower rank, raise an error
|
|
old_rank0 = 8
|
|
old_rank1 = 10
|
|
new_rank = 9
|
|
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
msg = re.escape("Trying to pad the adapter to the target rank 9, but the original rank is larger (10)")
|
|
with pytest.raises(ValueError, match=msg):
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_with_rank_pattern(self):
|
|
old_rank0 = 8
|
|
old_rank1 = 9
|
|
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
# sanity check
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
if "lin0" in name:
|
|
assert param.shape[0] == old_rank0
|
|
else:
|
|
assert param.shape[0] == old_rank1
|
|
elif "lora_B" in name:
|
|
if "lin0" in name:
|
|
assert param.shape[1] == old_rank0
|
|
else:
|
|
assert param.shape[1] == old_rank1
|
|
|
|
new_rank = 13
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
assert param.shape[0] == new_rank
|
|
elif "lora_B" in name:
|
|
assert param.shape[1] == new_rank
|
|
|
|
def test_prepare_model_for_compiled_hotswap_model_already_compiled_raises(self):
|
|
config = LoraConfig(target_modules=["lin0"])
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
model = torch.compile(model, mode="reduce-overhead")
|
|
|
|
msg = re.escape("Call prepare_model_for_compiled_hotswap *before* compiling the model")
|
|
with pytest.raises(ValueError, match=msg):
|
|
prepare_model_for_compiled_hotswap(model)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_model_already_compiled_warns(self, recwarn):
|
|
config = LoraConfig(target_modules=["lin0"])
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
model = torch.compile(model, mode="reduce-overhead")
|
|
|
|
msg = "prepare_model_for_compiled_hotswap was called with a model that is already compiled"
|
|
prepare_model_for_compiled_hotswap(model, check_compiled="warn")
|
|
assert any(msg in str(w.message) for w in recwarn)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_model_already_compiled_ignore(self, recwarn):
|
|
config = LoraConfig(target_modules=["lin0"])
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
model = torch.compile(model, mode="reduce-overhead")
|
|
|
|
msg = "prepare_model_for_compiled_hotswap was called with a model that is already compiled"
|
|
prepare_model_for_compiled_hotswap(model, check_compiled="ignore")
|
|
# no error, no warning
|
|
assert not any(msg in str(w.message) for w in recwarn)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_model_already_compiled_wrong_argument(self, recwarn):
|
|
config = LoraConfig(target_modules=["lin0"])
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
model = torch.compile(model, mode="reduce-overhead")
|
|
|
|
msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-option' instead.")
|
|
with pytest.raises(ValueError, match=msg):
|
|
prepare_model_for_compiled_hotswap(model, check_compiled="wrong-option")
|
|
|
|
def test_prepare_model_for_compiled_hotswap_model_no_adapter_raises(self):
|
|
model = self.get_model()
|
|
msg = re.escape("No adapter layers found on the model")
|
|
with pytest.raises(ValueError, match=msg):
|
|
prepare_model_for_compiled_hotswap(model)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_does_not_change_output(self):
|
|
# preparing the model for hotswapping should not change the model output
|
|
inputs = torch.rand(3, 10).to(self.torch_device)
|
|
model = self.get_model().eval()
|
|
with torch.inference_mode():
|
|
output_base = model(inputs)
|
|
|
|
old_rank = 8
|
|
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank, init_lora_weights=False)
|
|
model = get_peft_model(model, config).eval()
|
|
with torch.inference_mode():
|
|
output_before = model(inputs)
|
|
|
|
# sanity check: LoRA changed output
|
|
assert not torch.allclose(output_base, output_before)
|
|
|
|
new_rank = 13
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
with torch.inference_mode():
|
|
output_after = model(inputs)
|
|
|
|
assert torch.allclose(output_before, output_after)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_does_not_change_output_conv2d(self):
|
|
# preparing the model for hotswapping should not change the model output
|
|
inputs = torch.rand(3, 3, 10, 10).to(self.torch_device)
|
|
model = self.get_model_conv2d().eval()
|
|
with torch.inference_mode():
|
|
output_base = model(inputs)
|
|
|
|
old_rank = 8
|
|
config = LoraConfig(target_modules=["conv"], r=old_rank, init_lora_weights=False)
|
|
model = get_peft_model(model, config).eval()
|
|
with torch.inference_mode():
|
|
output_before = model(inputs)
|
|
|
|
# sanity check: LoRA changed output
|
|
assert not torch.allclose(output_base, output_before)
|
|
|
|
new_rank = 13
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
with torch.inference_mode():
|
|
output_after = model(inputs)
|
|
|
|
assert torch.allclose(output_before, output_after)
|
|
|
|
def test_prepare_model_for_compiled_hotswap_scalings_update_config(self):
|
|
old_rank0 = 11
|
|
old_rank1 = 13
|
|
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank0, rank_pattern={"lin1": old_rank1})
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
new_rank = 15
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank, config=model.peft_config)
|
|
|
|
assert model.peft_config["default"].r == new_rank
|
|
assert model.peft_config["default"].rank_pattern == {"lin1": new_rank}
|
|
|
|
def test_prepare_model_for_compiled_hotswap_lora_bias(self):
|
|
# When setting lora_bias=True in the LoraConfig, the LoRA B parameter will have a bias term. Check that padding
|
|
# still works correctly. Note that the LoRA A parameter still won't have a bias term.
|
|
old_rank = 8
|
|
config = LoraConfig(target_modules=["lin0", "lin1"], r=old_rank, lora_bias=True)
|
|
model = self.get_model()
|
|
model = get_peft_model(model, config)
|
|
|
|
# sanity check
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name and name.endswith(".weight"):
|
|
assert param.shape[0] == old_rank
|
|
elif "lora_B" in name and name.endswith(".weight"):
|
|
assert param.shape[1] == old_rank
|
|
elif "lora_A" in name and name.endswith(".bias"):
|
|
assert False, "LoRA A should not have a bias term"
|
|
elif "lora_B" in name and name.endswith(".bias"):
|
|
assert param.shape[0] in (5, 20) # output shapes of the 2 layers
|
|
|
|
new_rank = 13
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name and name.endswith(".weight"):
|
|
assert param.shape[0] == new_rank
|
|
elif "lora_B" in name and name.endswith(".weight"):
|
|
assert param.shape[1] == new_rank
|
|
elif "lora_A" in name and name.endswith(".bias"):
|
|
assert False, "LoRA A should not have a bias term"
|
|
elif "lora_B" in name and name.endswith(".bias"):
|
|
assert param.shape[0] in (5, 20) # output shapes of the 2 layers
|
|
|
|
def test_prepare_model_for_compiled_hotswap_conv2d_lora_bias(self):
|
|
# same as previous test, but for a Conv2d model
|
|
old_rank = 8
|
|
config = LoraConfig(target_modules=["conv"], r=old_rank, lora_bias=True)
|
|
model = self.get_model_conv2d()
|
|
model = get_peft_model(model, config)
|
|
|
|
# sanity check
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name and name.endswith(".weight"):
|
|
assert param.shape[0] == old_rank
|
|
elif "lora_B" in name and name.endswith(".weight"):
|
|
assert param.shape[1] == old_rank
|
|
elif "lora_A" in name and name.endswith(".bias"):
|
|
assert False, "LoRA A should not have a bias term"
|
|
elif "lora_B" in name and name.endswith(".bias"):
|
|
assert param.shape[0] == 10 # output shape of conv layer
|
|
|
|
new_rank = 13
|
|
prepare_model_for_compiled_hotswap(model, target_rank=new_rank)
|
|
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name and name.endswith(".weight"):
|
|
assert param.shape[0] == new_rank
|
|
elif "lora_B" in name and name.endswith(".weight"):
|
|
assert param.shape[1] == new_rank
|
|
elif "lora_A" in name and name.endswith(".bias"):
|
|
assert False, "LoRA A should not have a bias term"
|
|
elif "lora_B" in name and name.endswith(".bias"):
|
|
assert param.shape[0] == 10 # output shape of conv layer
|
|
|
|
|
|
def test_import_peft_type_to_model_mapping_deprecation_warning(recwarn):
|
|
# This is for backwards compatibility: In #2282, PEFT_TYPE_TO_MODEL_MAPPING was removed as it was redundant with
|
|
# PEFT_TYPE_TO_TUNER_MAPPING. However, third party code could still use this mapping, e.g.:
|
|
# https://github.com/AutoGPTQ/AutoGPTQ/blob/6689349625de973b9ee3016c28c11f32acf7f02c/auto_gptq/utils/peft_utils.py#L8
|
|
# TODO: Remove after 2026-01
|
|
|
|
# first check that there is no warning under normal circumstances
|
|
from peft.peft_model import PeftModel # noqa
|
|
|
|
expected = (
|
|
"PEFT_TYPE_TO_MODEL_MAPPING is deprecated, please use `from peft import PEFT_TYPE_TO_TUNER_MAPPING` instead"
|
|
)
|
|
warnings = (w.message.args[0] for w in recwarn.list)
|
|
assert not any(w.startswith(expected) for w in warnings)
|
|
|
|
from peft.peft_model import PEFT_TYPE_TO_MODEL_MAPPING # noqa
|
|
|
|
# check that there is a warning with this message after importing the variable
|
|
warnings = (w.message.args[0] for w in recwarn.list)
|
|
assert any(w.startswith(expected) for w in warnings)
|
|
|
|
|
|
class TestScaling:
|
|
"""Tests for scaling and unscaling
|
|
|
|
Those methods are currently only implemented for LoRA and were added for use in diffusers.
|
|
"""
|
|
|
|
@pytest.fixture
|
|
def model(self):
|
|
# tiny opt with 5 attention layers
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
|
return AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
|
def get_scalings(self, model, adapter_name="default"):
|
|
# helper function, returns the scalings of the 5 attention layers
|
|
return [m.scaling[adapter_name] for m in model.modules() if isinstance(m, LoraLayer)]
|
|
|
|
def set_scale(self, model, adapter_name, scale):
|
|
for module in model.modules():
|
|
if isinstance(module, LoraLayer):
|
|
module.set_scale(adapter_name, scale)
|
|
|
|
def scale_layer(self, model, scale):
|
|
for module in model.modules():
|
|
if isinstance(module, LoraLayer):
|
|
module.scale_layer(scale)
|
|
|
|
def unscale_layer(self, model, scale):
|
|
for module in model.modules():
|
|
if isinstance(module, LoraLayer):
|
|
module.unscale_layer(scale)
|
|
|
|
def test_scaling_simple(self, model):
|
|
n_layers = 5
|
|
rank, lora_alpha = 8, 16
|
|
config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["k_proj"],
|
|
)
|
|
model = get_peft_model(model, config)
|
|
scalings = self.get_scalings(model)
|
|
expected = [lora_alpha / rank] * n_layers
|
|
assert scalings == expected
|
|
|
|
# double
|
|
self.scale_layer(model, 2)
|
|
scalings = self.get_scalings(model)
|
|
expected = [4.0] * n_layers
|
|
assert scalings == expected
|
|
|
|
# back to original
|
|
self.unscale_layer(model, None)
|
|
scalings = self.get_scalings(model)
|
|
expected = [2.0] * n_layers
|
|
assert scalings == expected
|
|
|
|
# triple
|
|
self.set_scale(model, "default", 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [6.0] * n_layers
|
|
assert scalings == expected
|
|
|
|
# back to original
|
|
self.unscale_layer(model, 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [2.0] * n_layers
|
|
assert scalings == expected
|
|
|
|
def test_scaling_with_rslora(self, model):
|
|
n_layers = 5
|
|
rank, lora_alpha = 8, 16
|
|
config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
use_rslora=True,
|
|
target_modules=["k_proj"],
|
|
)
|
|
model = get_peft_model(model, config)
|
|
scalings = self.get_scalings(model)
|
|
expected = [lora_alpha / math.sqrt(rank)] * n_layers
|
|
assert scalings == expected
|
|
|
|
# double
|
|
self.scale_layer(model, 2)
|
|
scalings = self.get_scalings(model)
|
|
expected = [2 * lora_alpha / math.sqrt(rank)] * n_layers
|
|
assert scalings == expected
|
|
|
|
# back to original
|
|
self.unscale_layer(model, None)
|
|
scalings = self.get_scalings(model)
|
|
expected = [lora_alpha / math.sqrt(rank)] * n_layers
|
|
assert scalings == expected
|
|
|
|
# triple
|
|
self.set_scale(model, "default", 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [3 * lora_alpha / math.sqrt(rank)] * n_layers
|
|
assert scalings == expected
|
|
|
|
# back to original
|
|
self.unscale_layer(model, 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [lora_alpha / math.sqrt(rank)] * n_layers
|
|
assert scalings == expected
|
|
|
|
def test_scaling_rank_pattern_alpha_pattern(self, model):
|
|
# layer 0: 8 / 8
|
|
# layer 1: 8 / 16
|
|
# layer 2: 4 / 32
|
|
# layer 3: 16 / 8
|
|
# layer 4: 8 / 8
|
|
config = LoraConfig(
|
|
r=8,
|
|
lora_alpha=8,
|
|
target_modules=["k_proj"],
|
|
rank_pattern={"layers.1.self_attn.k_proj": 16, "layers.2.self_attn.k_proj": 32},
|
|
alpha_pattern={"layers.2.self_attn.k_proj": 4, "layers.3.self_attn.k_proj": 16},
|
|
)
|
|
model = get_peft_model(model, config)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
assert scalings == expected
|
|
|
|
# double
|
|
self.scale_layer(model, 2)
|
|
scalings = self.get_scalings(model)
|
|
expected = [2.0, 1.0, 0.25, 4.0, 2.0]
|
|
assert scalings == expected
|
|
|
|
# back to original
|
|
self.unscale_layer(model, None)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
assert scalings == expected
|
|
|
|
# triple
|
|
self.set_scale(model, "default", 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [3.0, 1.5, 0.375, 6.0, 3.0]
|
|
assert scalings == expected
|
|
|
|
# back to original
|
|
self.unscale_layer(model, 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
assert scalings == expected
|
|
|
|
def test_scaling_multiple_times(self, model):
|
|
# same as previous test, but scale and unscale multiple times in a row
|
|
# layer 0: 8 / 8
|
|
# layer 1: 8 / 16
|
|
# layer 2: 4 / 32
|
|
# layer 3: 16 / 8
|
|
# layer 4: 8 / 8
|
|
config = LoraConfig(
|
|
r=8,
|
|
lora_alpha=8,
|
|
target_modules=["k_proj"],
|
|
rank_pattern={"layers.1.self_attn.k_proj": 16, "layers.2.self_attn.k_proj": 32},
|
|
alpha_pattern={"layers.2.self_attn.k_proj": 4, "layers.3.self_attn.k_proj": 16},
|
|
)
|
|
model = get_peft_model(model, config)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
assert scalings == expected
|
|
|
|
# scale of 1 makes no difference
|
|
self.scale_layer(model, 1)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
|
|
# double
|
|
self.scale_layer(model, 2)
|
|
scalings = self.get_scalings(model)
|
|
expected = [2.0, 1.0, 0.25, 4.0, 2.0]
|
|
assert scalings == expected
|
|
|
|
# triple, on top of previous double
|
|
self.scale_layer(model, 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [6.0, 3.0, 0.75, 12.0, 6.0]
|
|
assert scalings == expected
|
|
|
|
# half
|
|
self.unscale_layer(model, 2)
|
|
scalings = self.get_scalings(model)
|
|
expected = [3.0, 1.5, 0.375, 6.0, 3.0]
|
|
assert scalings == expected
|
|
|
|
# divide by 3, on top of previous half
|
|
self.unscale_layer(model, 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
assert scalings == expected
|
|
|
|
# set scale to 2
|
|
self.set_scale(model, "default", 2)
|
|
scalings = self.get_scalings(model)
|
|
expected = [2.0, 1.0, 0.25, 4.0, 2.0]
|
|
assert scalings == expected
|
|
|
|
# set scale to 3, it is cumulative but based on the initial scaling, so factor 3, not 6
|
|
self.set_scale(model, "default", 3)
|
|
scalings = self.get_scalings(model)
|
|
expected = [3.0, 1.5, 0.375, 6.0, 3.0]
|
|
assert scalings == expected
|
|
|
|
# back to original
|
|
self.unscale_layer(model, None)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
assert scalings == expected
|
|
|
|
# back to original again
|
|
self.unscale_layer(model, None)
|
|
scalings = self.get_scalings(model)
|
|
expected = [1.0, 0.5, 0.125, 2.0, 1.0]
|
|
assert scalings == expected
|
|
|
|
def test_scaling_multiple_adapters(self, model):
|
|
# ensure that scaling works with multiple adapters
|
|
n_layers = 5
|
|
rank0, lora_alpha0 = 8, 16
|
|
config0 = LoraConfig(
|
|
r=rank0,
|
|
lora_alpha=lora_alpha0,
|
|
target_modules=["k_proj"],
|
|
)
|
|
rank1, lora_alpha1 = 16, 8
|
|
config1 = LoraConfig(
|
|
r=rank1,
|
|
lora_alpha=lora_alpha1,
|
|
target_modules=["k_proj"],
|
|
)
|
|
model = get_peft_model(model, config0)
|
|
model.add_adapter("other", config1)
|
|
|
|
scalings_default = self.get_scalings(model, "default")
|
|
scalings_other = self.get_scalings(model, "other")
|
|
expected_default = [lora_alpha0 / rank0] * n_layers
|
|
expected_other = [lora_alpha1 / rank1] * n_layers
|
|
assert scalings_default == expected_default
|
|
assert scalings_other == expected_other
|
|
|
|
# double the scale for other
|
|
self.set_scale(model, "other", 2)
|
|
scalings_default = self.get_scalings(model, "default")
|
|
scalings_other = self.get_scalings(model, "other")
|
|
expected_default = [lora_alpha0 / rank0] * n_layers
|
|
expected_other = [2 * lora_alpha1 / rank1] * n_layers
|
|
assert scalings_default == expected_default
|
|
assert scalings_other == expected_other
|
|
|
|
# quarter the scale for default
|
|
self.set_scale(model, "default", 0.25)
|
|
scalings_default = self.get_scalings(model, "default")
|
|
scalings_other = self.get_scalings(model, "other")
|
|
expected_default = [lora_alpha0 / rank0 / 4] * n_layers
|
|
expected_other = [2 * lora_alpha1 / rank1] * n_layers
|
|
assert scalings_default == expected_default
|
|
assert scalings_other == expected_other
|
|
|
|
# unscale resets for all *active* adapters
|
|
self.unscale_layer(model, None)
|
|
scalings_default = self.get_scalings(model, "default")
|
|
scalings_other = self.get_scalings(model, "other")
|
|
expected_default = [lora_alpha0 / rank0] * n_layers
|
|
expected_other = [2 * lora_alpha1 / rank1] * n_layers # stays the same as 'other' is not active
|
|
assert scalings_default == expected_default
|
|
assert scalings_other == expected_other
|
|
|
|
# scale all *active* adapters by 2
|
|
self.scale_layer(model, 2)
|
|
scalings_default = self.get_scalings(model, "default")
|
|
scalings_other = self.get_scalings(model, "other")
|
|
expected_default = [2 * lora_alpha0 / rank0] * n_layers
|
|
expected_other = [2 * lora_alpha1 / rank1] * n_layers # stays the same as 'other' is not active
|
|
assert scalings_default == expected_default
|
|
assert scalings_other == expected_other
|
|
|
|
# switch to 'other'
|
|
model.set_adapter("other")
|
|
|
|
# unscale, this time 'other'
|
|
self.unscale_layer(model, None)
|
|
scalings_default = self.get_scalings(model, "default")
|
|
scalings_other = self.get_scalings(model, "other")
|
|
expected_default = [2 * lora_alpha0 / rank0] * n_layers # stays the same as 'other' is not active
|
|
expected_other = [lora_alpha1 / rank1] * n_layers
|
|
assert scalings_default == expected_default
|
|
assert scalings_other == expected_other
|
|
|
|
# scale all *active* adapters by 3
|
|
self.scale_layer(model, 3)
|
|
scalings_default = self.get_scalings(model, "default")
|
|
scalings_other = self.get_scalings(model, "other")
|
|
expected_default = [2 * lora_alpha0 / rank0] * n_layers # stays the same as 'other' is not active
|
|
expected_other = [3 * lora_alpha1 / rank1] * n_layers
|
|
assert scalings_default == expected_default
|
|
assert scalings_other == expected_other
|
|
|
|
|
|
class TestLoadPeftKeyMapping:
|
|
# See discussion in https://github.com/huggingface/transformers/pull/38627
|
|
|
|
# transformers PR #37033 re-arranges the way visual language models are built by moving the LM head from the
|
|
# language model to the top-level VLM (among other things). A consequence of this is that the keys in the PEFT
|
|
# state_dict now also follow the new architecture. This test class serves to ensure that old checkpoints can be
|
|
# loaded with the changed architecture. Unfortunately, new checkpoints cannot be loaded with the old architecture,
|
|
# the corresponding test is marked as xfail.
|
|
|
|
# Note: We only test prefix tuning (prompt learning method), LoRA (non-prompt learning method), and VBLoRA (shared
|
|
# parameters) as the other PEFT methods should work the same way. It would be excessive to test all of them here.
|
|
|
|
@pytest.fixture
|
|
def fake_model_config(self):
|
|
# mimics a transformers model config
|
|
class FakeConfig(dict):
|
|
def __init__(self):
|
|
self.vocab_size = 10
|
|
|
|
def __getattr__(self, item):
|
|
if item in self:
|
|
return self[item]
|
|
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{item}'")
|
|
|
|
return FakeConfig()
|
|
|
|
@pytest.fixture
|
|
def old_model(self, fake_model_config):
|
|
# create a small model that mimics the old architecture of, for instance, Qwen/Qwen2-VL-2B-Instruct
|
|
# Qwen2VLForConditionalGeneration(
|
|
# (visual): Qwen2VisionTransformerPretrainedModel(
|
|
# (patch_embed): PatchEmbed(
|
|
# (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
|
|
# )
|
|
# (rotary_pos_emb): VisionRotaryEmbedding()
|
|
# (blocks): ModuleList(
|
|
# (0-31): 32 x Qwen2VLVisionBlock(
|
|
# (norm1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
|
# (norm2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
|
# (attn): VisionSdpaAttention(
|
|
# (qkv): Linear(in_features=1280, out_features=3840, bias=True)
|
|
# (proj): Linear(in_features=1280, out_features=1280, bias=True)
|
|
# )
|
|
# (mlp): VisionMlp(
|
|
# (fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
|
# (act): QuickGELUActivation()
|
|
# (fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
|
# )
|
|
# )
|
|
# )
|
|
# (merger): PatchMerger(
|
|
# (ln_q): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
|
# (mlp): Sequential(
|
|
# (0): Linear(in_features=5120, out_features=5120, bias=True)
|
|
# (1): GELU(approximate='none')
|
|
# (2): Linear(in_features=5120, out_features=1536, bias=True)
|
|
# )
|
|
# )
|
|
# )
|
|
# (model): Qwen2VLModel(
|
|
# (embed_tokens): Embedding(151936, 1536)
|
|
# (layers): ModuleList(
|
|
# (0-27): 28 x Qwen2VLDecoderLayer(
|
|
# (self_attn): Qwen2VLSdpaAttention(
|
|
# (q_proj): Linear(in_features=1536, out_features=1536, bias=True)
|
|
# (k_proj): Linear(in_features=1536, out_features=256, bias=True)
|
|
# (v_proj): Linear(in_features=1536, out_features=256, bias=True)
|
|
# (o_proj): Linear(in_features=1536, out_features=1536, bias=False)
|
|
# (rotary_emb): Qwen2VLRotaryEmbedding()
|
|
# )
|
|
# (mlp): Qwen2MLP(
|
|
# (gate_proj): Linear(in_features=1536, out_features=8960, bias=False)
|
|
# (up_proj): Linear(in_features=1536, out_features=8960, bias=False)
|
|
# (down_proj): Linear(in_features=8960, out_features=1536, bias=False)
|
|
# (act_fn): SiLU()
|
|
# )
|
|
# (input_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
|
|
# (post_attention_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
|
|
# )
|
|
# )
|
|
# (norm): Qwen2RMSNorm((1536,), eps=1e-06)
|
|
# (rotary_emb): Qwen2VLRotaryEmbedding()
|
|
# )
|
|
# (lm_head): Linear(in_features=1536, out_features=151936, bias=False)
|
|
# )
|
|
class Block(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.attn = nn.Linear(10, 10)
|
|
|
|
class OldModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.config = fake_model_config
|
|
self.device = "cpu"
|
|
self.proj = nn.Conv3d(3, 10, 3)
|
|
self.visual = nn.ModuleDict(
|
|
{
|
|
"blocks": nn.ModuleList([Block() for _ in range(2)]),
|
|
}
|
|
)
|
|
self.model = nn.ModuleDict(
|
|
{
|
|
"layers": nn.ModuleList([Block() for _ in range(2)]),
|
|
}
|
|
)
|
|
self.lm_head = nn.Linear(10, 10)
|
|
|
|
def prepare_inputs_for_generation(self):
|
|
return
|
|
|
|
model = OldModel()
|
|
return model
|
|
|
|
@pytest.fixture
|
|
def new_model(self, fake_model_config):
|
|
# create a small model that mimics the new architecture of, for instance, Qwen/Qwen2-VL-2B-Instruct
|
|
# Qwen2VLForConditionalGeneration(
|
|
# (model): Qwen2VLModel(
|
|
# (visual): Qwen2VisionTransformerPretrainedModel(
|
|
# (patch_embed): PatchEmbed(
|
|
# (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
|
|
# )
|
|
# (rotary_pos_emb): VisionRotaryEmbedding()
|
|
# (blocks): ModuleList(
|
|
# (0-31): 32 x Qwen2VLVisionBlock(
|
|
# (norm1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
|
# (norm2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
|
# (attn): VisionSdpaAttention(
|
|
# (qkv): Linear(in_features=1280, out_features=3840, bias=True)
|
|
# (proj): Linear(in_features=1280, out_features=1280, bias=True)
|
|
# )
|
|
# (mlp): VisionMlp(
|
|
# (fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
|
# (act): QuickGELUActivation()
|
|
# (fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
|
# )
|
|
# )
|
|
# )
|
|
# (merger): PatchMerger(
|
|
# (ln_q): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
|
# (mlp): Sequential(
|
|
# (0): Linear(in_features=5120, out_features=5120, bias=True)
|
|
# (1): GELU(approximate='none')
|
|
# (2): Linear(in_features=5120, out_features=1536, bias=True)
|
|
# )
|
|
# )
|
|
# )
|
|
# (language_model): Qwen2VLTextModel(
|
|
# (embed_tokens): Embedding(151936, 1536)
|
|
# (layers): ModuleList(
|
|
# (0-27): 28 x Qwen2VLDecoderLayer(
|
|
# (self_attn): Qwen2VLAttention(
|
|
# (q_proj): Linear(in_features=1536, out_features=1536, bias=True)
|
|
# (k_proj): Linear(in_features=1536, out_features=256, bias=True)
|
|
# (v_proj): Linear(in_features=1536, out_features=256, bias=True)
|
|
# (o_proj): Linear(in_features=1536, out_features=1536, bias=False)
|
|
# (rotary_emb): Qwen2VLRotaryEmbedding()
|
|
# )
|
|
# (mlp): Qwen2MLP(
|
|
# (gate_proj): Linear(in_features=1536, out_features=8960, bias=False)
|
|
# (up_proj): Linear(in_features=1536, out_features=8960, bias=False)
|
|
# (down_proj): Linear(in_features=8960, out_features=1536, bias=False)
|
|
# (act_fn): SiLU()
|
|
# )
|
|
# (input_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
|
|
# (post_attention_layernorm): Qwen2RMSNorm((1536,), eps=1e-06)
|
|
# )
|
|
# )
|
|
# (norm): Qwen2RMSNorm((1536,), eps=1e-06)
|
|
# (rotary_emb): Qwen2VLRotaryEmbedding()
|
|
# )
|
|
# )
|
|
# (lm_head): Linear(in_features=1536, out_features=151936, bias=False)
|
|
# )
|
|
class Block(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.attn = nn.Linear(10, 10)
|
|
|
|
class InnerModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.visual = nn.ModuleDict(
|
|
{
|
|
"blocks": nn.ModuleList([Block() for _ in range(2)]),
|
|
}
|
|
)
|
|
self.language_model = nn.ModuleDict(
|
|
{
|
|
"layers": nn.ModuleList([Block() for _ in range(2)]),
|
|
}
|
|
)
|
|
|
|
class NewModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.config = fake_model_config
|
|
self.device = "cpu"
|
|
self.model = InnerModel()
|
|
self.lm_head = nn.Linear(10, 10)
|
|
# new transformers models have this attribute to map old checkpoints to new ones:
|
|
self._checkpoint_conversion_mapping = {
|
|
"^visual": "model.visual",
|
|
"^model(?!\\.(language_model|visual))": "model.language_model",
|
|
}
|
|
|
|
def prepare_inputs_for_generation(self):
|
|
return
|
|
|
|
model = NewModel()
|
|
return model
|
|
|
|
def check_lora_load_no_warning(self, model1, model2, path):
|
|
# helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
|
|
# the parameters are loaded correctly
|
|
model1 = copy.deepcopy(model1)
|
|
model2 = copy.deepcopy(model2)
|
|
config = LoraConfig(target_modules=["attn"])
|
|
peft_model = get_peft_model(copy.deepcopy(model1), config)
|
|
|
|
# set all values to 1.0 or 2.0 so we can check that they are loaded correctly
|
|
for name, param in peft_model.named_parameters():
|
|
if name.endswith("lora_A.default.weight"):
|
|
param.data.fill_(1.0)
|
|
elif name.endswith("lora_B.default.weight"):
|
|
param.data.fill_(2.0)
|
|
|
|
peft_model.save_pretrained(path)
|
|
del peft_model
|
|
|
|
# ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
|
|
assert not any("Found missing adapter keys" in str(warning.message) for warning in w)
|
|
|
|
# sanity check on parameter values to not only rely on the absence of warnings
|
|
for name, param in loaded.named_parameters():
|
|
if name.endswith("lora_A.default.weight"):
|
|
assert torch.allclose(param, torch.full_like(param, 1.0))
|
|
elif name.endswith("lora_B.default.weight"):
|
|
assert torch.allclose(param, torch.full_like(param, 2.0))
|
|
|
|
def check_prefix_tuning_load_no_warning(self, model1, model2, path):
|
|
# helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
|
|
# the parameters are loaded correctly.
|
|
model1 = copy.deepcopy(model1)
|
|
model2 = copy.deepcopy(model2)
|
|
config = PrefixTuningConfig(
|
|
task_type="CAUSAL_LM", num_virtual_tokens=5, num_layers=2, token_dim=10, num_attention_heads=2
|
|
)
|
|
peft_model = get_peft_model(copy.deepcopy(model1), config)
|
|
|
|
# set all values to 1.0 so we can check that they are loaded correctly
|
|
peft_model.prompt_encoder.default.embedding.weight.data.fill_(1.0)
|
|
|
|
peft_model.save_pretrained(path)
|
|
del peft_model
|
|
|
|
# ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
|
|
assert not any("Found missing adapter keys" in str(warning.message) for warning in w)
|
|
|
|
# sanity check on parameter values to not only rely on the absence of warnings
|
|
weight = loaded.prompt_encoder.default.embedding.weight
|
|
assert torch.allclose(weight, torch.full_like(weight, 1.0))
|
|
|
|
def check_vblora_load_no_warning(self, model1, model2, path):
|
|
# helper method: save with model1, load with model2, ensure that there is no warning about missing keys and that
|
|
# the parameters are loaded correctly
|
|
model1 = copy.deepcopy(model1)
|
|
model2 = copy.deepcopy(model2)
|
|
|
|
config = VBLoRAConfig(target_modules=["attn"], vector_length=2, num_vectors=4)
|
|
peft_model = get_peft_model(copy.deepcopy(model1), config)
|
|
|
|
# set all values to 1.0 or 2.0 so we can check that they are loaded correctly
|
|
peft_model.base_model.vblora_vector_bank["default"].data.fill_(1.0)
|
|
for name, param in peft_model.named_parameters():
|
|
if "logits" in name:
|
|
param.data.fill_(2.0)
|
|
|
|
peft_model.save_pretrained(path)
|
|
del peft_model
|
|
|
|
# ensure that there is no warning: UserWarning: Found missing adapter keys while loading the checkpoint
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
loaded = PeftModel.from_pretrained(copy.deepcopy(model2), path)
|
|
assert not any("Found missing adapter keys" in str(warning.message) for warning in w)
|
|
|
|
# sanity check on parameter values to not only rely on the absence of warnings
|
|
param = loaded.base_model.vblora_vector_bank["default"]
|
|
assert torch.allclose(param, torch.full_like(param, 1.0))
|
|
for name, param in loaded.named_parameters():
|
|
if "logits" in name:
|
|
assert torch.allclose(param, torch.full_like(param, 2.0))
|
|
|
|
def test_key_mapping_save_new_load_new_lora(self, new_model, tmp_path):
|
|
# save and load the new model, should work without issues
|
|
self.check_lora_load_no_warning(new_model, new_model, tmp_path)
|
|
|
|
def test_key_mapping_save_old_load_old_lora(self, old_model, tmp_path):
|
|
# save and load the old model, should work without issues
|
|
self.check_lora_load_no_warning(old_model, old_model, tmp_path)
|
|
|
|
def test_key_mapping_save_old_load_new_lora(self, old_model, new_model, tmp_path):
|
|
# save the old model, load it into the new model, should work without issues (backwards compatibility)
|
|
self.check_lora_load_no_warning(old_model, new_model, tmp_path)
|
|
|
|
@pytest.mark.xfail(reason="Loading new checkpoints with old transformers is not supported.", strict=True)
|
|
def test_key_mapping_save_new_load_old_lora(self, old_model, new_model, tmp_path):
|
|
# save the new model, load it into the old model, should work without issues (forwards compatibility)
|
|
self.check_lora_load_no_warning(new_model, old_model, tmp_path)
|
|
|
|
def test_key_mapping_save_new_load_new_prefix_tuning(self, new_model, tmp_path):
|
|
# save and load the new model, should work without issues
|
|
self.check_prefix_tuning_load_no_warning(new_model, new_model, tmp_path)
|
|
|
|
def test_key_mapping_save_old_load_old_prefix_tuning(self, old_model, tmp_path):
|
|
# save and load the old model, should work without issues
|
|
self.check_prefix_tuning_load_no_warning(old_model, old_model, tmp_path)
|
|
|
|
def test_key_mapping_save_old_load_new_prefix_tuning(self, old_model, new_model, tmp_path):
|
|
# save the old model, load it into the new model, should work without issues (backwards compatibility)
|
|
self.check_prefix_tuning_load_no_warning(old_model, new_model, tmp_path)
|
|
|
|
def test_key_mapping_save_new_load_old_prefix_tuning(self, old_model, new_model, tmp_path):
|
|
# save the new model, load it into the old model, should work without issues (forwards compatibility)
|
|
self.check_prefix_tuning_load_no_warning(new_model, old_model, tmp_path)
|
|
|
|
def test_key_mapping_save_new_load_new_vblora(self, new_model, tmp_path):
|
|
# save and load the new model, should work without issues
|
|
self.check_vblora_load_no_warning(new_model, new_model, tmp_path)
|
|
|
|
def test_key_mapping_save_old_load_old_vblora(self, old_model, tmp_path):
|
|
# save and load the old model, should work without issues
|
|
self.check_vblora_load_no_warning(old_model, old_model, tmp_path)
|
|
|
|
def test_key_mapping_save_old_load_new_vblora(self, old_model, new_model, tmp_path):
|
|
# save the old model, load it into the new model, should work without issues (backwards compatibility)
|
|
self.check_vblora_load_no_warning(old_model, new_model, tmp_path)
|
|
|
|
@pytest.mark.xfail(reason="Loading new checkpoints with old transformers is not supported.", strict=True)
|
|
def test_key_mapping_save_new_load_old_vblora(self, old_model, new_model, tmp_path):
|
|
# save the new model, load it into the old model, should work without issues (forwards compatibility)
|
|
self.check_vblora_load_no_warning(new_model, old_model, tmp_path)
|