mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
Implements DeLoRA: "Decoupling Angles and Strength in Low-rank Adaptation" (https://huggingface.co/papers/2503.18225). Similar to DoRA, DeLoRA decouples the angular learning from the adaptation strength, but it also allows to limit the norm of the change. This way, DeLoRA promises to reduce the risk of catastrophic forgetting and to be more robust to hyper-parameter settings such as the learning rate.
417 lines
16 KiB
Python
417 lines
16 KiB
Python
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification
|
|
|
|
from peft import (
|
|
AdaLoraConfig,
|
|
BOFTConfig,
|
|
BoneConfig,
|
|
C3AConfig,
|
|
DeloraConfig,
|
|
FourierFTConfig,
|
|
HRAConfig,
|
|
IA3Config,
|
|
LoraConfig,
|
|
MissConfig,
|
|
OFTConfig,
|
|
PrefixTuningConfig,
|
|
PromptEncoderConfig,
|
|
PromptTuningConfig,
|
|
RoadConfig,
|
|
ShiraConfig,
|
|
TaskType,
|
|
VBLoRAConfig,
|
|
VeraConfig,
|
|
WaveFTConfig,
|
|
get_peft_model,
|
|
)
|
|
|
|
from .testing_common import PeftCommonTester
|
|
from .testing_utils import set_init_weights_false
|
|
|
|
|
|
PEFT_ENCODER_DECODER_MODELS_TO_TEST = [
|
|
"ybelkada/tiny-random-T5ForConditionalGeneration-calibrated",
|
|
"hf-internal-testing/tiny-random-BartForConditionalGeneration",
|
|
]
|
|
|
|
# TODO Missing from this list are LoKr, LoHa, LN Tuning, add them
|
|
ALL_CONFIGS = [
|
|
(
|
|
AdaLoraConfig,
|
|
{
|
|
"target_modules": None,
|
|
"total_step": 1,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
BOFTConfig,
|
|
{
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
BoneConfig,
|
|
{
|
|
"target_modules": None,
|
|
"r": 2,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
MissConfig,
|
|
{
|
|
"target_modules": None,
|
|
"r": 2,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
DeloraConfig,
|
|
{
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"target_modules": None,
|
|
"r": 2,
|
|
},
|
|
),
|
|
(
|
|
FourierFTConfig,
|
|
{
|
|
"n_frequency": 10,
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
HRAConfig,
|
|
{
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
IA3Config,
|
|
{
|
|
"target_modules": None,
|
|
"feedforward_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
LoraConfig,
|
|
{
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": None,
|
|
"lora_dropout": 0.05,
|
|
"bias": "none",
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
LoraConfig,
|
|
{
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": None,
|
|
"lora_dropout": 0.05,
|
|
"bias": "none",
|
|
"trainable_token_indices": [0, 1, 3],
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
OFTConfig,
|
|
{
|
|
"target_modules": None,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
PrefixTuningConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
PromptEncoderConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"encoder_hidden_size": 32,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
PromptTuningConfig,
|
|
{
|
|
"num_virtual_tokens": 10,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
RoadConfig,
|
|
{
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"variant": "road_1",
|
|
"group_size": 2,
|
|
},
|
|
),
|
|
(
|
|
ShiraConfig,
|
|
{
|
|
"r": 1,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"target_modules": None,
|
|
"init_weights": False,
|
|
},
|
|
),
|
|
(
|
|
VBLoRAConfig,
|
|
{
|
|
"target_modules": None,
|
|
"vblora_dropout": 0.05,
|
|
"vector_length": 1,
|
|
"num_vectors": 2,
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
VeraConfig,
|
|
{
|
|
"r": 8,
|
|
"target_modules": None,
|
|
"vera_dropout": 0.05,
|
|
"projection_prng_key": 0xFF,
|
|
"d_initial": 0.1,
|
|
"save_projection": True,
|
|
"bias": "none",
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
},
|
|
),
|
|
(
|
|
C3AConfig,
|
|
{
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"block_size": 1,
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
(
|
|
WaveFTConfig,
|
|
{
|
|
"task_type": "SEQ_2_SEQ_LM",
|
|
"n_frequency": 8,
|
|
"target_modules": None,
|
|
},
|
|
),
|
|
]
|
|
|
|
|
|
class TestEncoderDecoderModels(PeftCommonTester):
|
|
transformers_class = AutoModelForSeq2SeqLM
|
|
|
|
def skipTest(self, reason=""):
|
|
# for backwards compatibility with unittest style test classes
|
|
pytest.skip(reason)
|
|
|
|
def prepare_inputs_for_testing(self):
|
|
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
|
|
decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
|
|
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
|
|
|
|
input_dict = {
|
|
"input_ids": input_ids,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
|
|
return input_dict
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
|
|
self._test_model_attr(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_adapter_name(self, model_id, config_cls, config_kwargs):
|
|
self._test_adapter_name(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
|
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False)
|
|
|
|
def test_load_model_low_cpu_mem_usage(self):
|
|
# Using the first model with LoraConfig and an empty config_kwargs.
|
|
self._test_load_model_low_cpu_mem_usage(PEFT_ENCODER_DECODER_MODELS_TO_TEST[0], LoraConfig, {})
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
|
|
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_merge_layers(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_merge_layers(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate(self, model_id, config_cls, config_kwargs):
|
|
self._test_generate(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_pos_args(self, model_id, config_cls, config_kwargs):
|
|
self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_generate_half_prec(self, model_id, config_cls, config_kwargs):
|
|
self._test_generate_half_prec(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
|
|
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_encoder_decoders(self, model_id, config_cls, config_kwargs):
|
|
self._test_training(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_encoder_decoders_layer_indexing(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_layer_indexing(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_encoder_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_inference_safetensors(self, model_id, config_cls, config_kwargs):
|
|
self._test_inference_safetensors(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
|
|
self._test_peft_model_device_map(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_delete_adapter(self, model_id, config_cls, config_kwargs):
|
|
self._test_delete_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
|
|
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
|
|
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_unload_adapter(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_unload_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
|
|
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
|
|
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_disable_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
def test_active_adapters_prompt_learning(self):
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
"hf-internal-testing/tiny-random-BartForConditionalGeneration"
|
|
).to(self.torch_device)
|
|
# any prompt learning method would work here
|
|
config = PromptEncoderConfig(task_type=TaskType.SEQ_2_SEQ_LM, num_virtual_tokens=10)
|
|
model = get_peft_model(model, config)
|
|
assert model.active_adapters == ["default"]
|
|
|
|
def test_save_shared_tensors(self):
|
|
model_id = "hf-internal-testing/tiny-random-RobertaModel"
|
|
peft_config = LoraConfig(
|
|
task_type=TaskType.TOKEN_CLS,
|
|
inference_mode=False,
|
|
r=16,
|
|
lora_alpha=16,
|
|
lora_dropout=0.1,
|
|
bias="all",
|
|
)
|
|
model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11)
|
|
model = get_peft_model(model, peft_config)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# This should work fine
|
|
model.save_pretrained(tmp_dir, safe_serialization=True)
|