Files
peft/tests/test_decoder_models.py
Massimo Bini 2813b9c4bf FEAT Add DeLoRA (#2780)
Implements DeLoRA: "Decoupling Angles and Strength in Low-rank
Adaptation" (https://huggingface.co/papers/2503.18225).

Similar to DoRA, DeLoRA decouples the angular learning from the
adaptation strength, but it also allows to limit the norm of the change.
This way, DeLoRA promises to reduce the risk of catastrophic forgetting
and to be more robust to hyper-parameter settings such as the learning
rate.
2025-10-17 16:24:46 +02:00

890 lines
38 KiB
Python

# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
import tempfile
from unittest.mock import Mock, call, patch
import pytest
import torch
from safetensors.torch import load_file as safe_load_file
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
)
from peft import (
AdaLoraConfig,
BOFTConfig,
BoneConfig,
C3AConfig,
CPTConfig,
DeloraConfig,
FourierFTConfig,
HRAConfig,
IA3Config,
LoraConfig,
MissConfig,
OFTConfig,
PrefixTuningConfig,
PromptEncoderConfig,
PromptTuningConfig,
PromptTuningInit,
RoadConfig,
ShiraConfig,
VBLoRAConfig,
VeraConfig,
WaveFTConfig,
get_peft_model,
)
from .testing_common import PeftCommonTester
from .testing_utils import device_count, hub_online_once, load_dataset_english_quotes, set_init_weights_false
PEFT_DECODER_MODELS_TO_TEST = [
"hf-internal-testing/tiny-random-OPTForCausalLM",
"hf-internal-testing/tiny-random-GPT2LMHeadModel",
"hf-internal-testing/tiny-random-BloomForCausalLM",
"hf-internal-testing/tiny-random-gpt_neo",
"hf-internal-testing/tiny-random-GPTJForCausalLM",
"hf-internal-testing/tiny-random-GPTBigCodeForCausalLM",
"trl-internal-testing/tiny-random-LlamaForCausalLM",
"peft-internal-testing/tiny-dummy-qwen2",
"hf-internal-testing/tiny-random-Gemma3ForCausalLM",
]
SMALL_GRID_MODELS = [
"hf-internal-testing/tiny-random-gpt2",
"hf-internal-testing/tiny-random-OPTForCausalLM",
"hf-internal-testing/tiny-random-MistralForCausalLM",
"peft-internal-testing/tiny-dummy-qwen2",
"trl-internal-testing/tiny-random-LlamaForCausalLM",
]
# TODO Missing from this list are LoKr, LoHa, LN Tuning, add them
# Note: If the PEFT method offers an initialization option to make it an identity transform (typically via the
# init_weights argument), then this option should be set here, if it's not already the default.
ALL_CONFIGS = [
(
AdaLoraConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"total_step": 1,
},
),
(
BOFTConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
},
),
(
BoneConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"r": 2,
},
),
(
MissConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"r": 2,
},
),
(
CPTConfig,
{
"task_type": "CAUSAL_LM",
"cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing
"cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
"cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
},
),
(
DeloraConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"r": 2,
},
),
(
FourierFTConfig,
{
"task_type": "CAUSAL_LM",
"n_frequency": 10,
"target_modules": None,
},
),
(
HRAConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
},
),
(
IA3Config,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"feedforward_modules": None,
},
),
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
},
),
# Activated LoRA (aLoRA)
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
"alora_invocation_tokens": [1],
},
),
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
# not one test input sequence will ever have this token, this should do nothing at all
"alora_invocation_tokens": [1000],
},
),
# LoRA + trainable tokens
(
LoraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
"trainable_token_indices": [0, 1, 3],
},
),
(
OFTConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
},
),
(
PrefixTuningConfig,
{
"task_type": "CAUSAL_LM",
"num_virtual_tokens": 10,
},
),
(
PromptEncoderConfig,
{
"task_type": "CAUSAL_LM",
"num_virtual_tokens": 10,
"encoder_hidden_size": 32,
},
),
(
PromptTuningConfig,
{
"task_type": "CAUSAL_LM",
"num_virtual_tokens": 10,
},
),
(
RoadConfig,
{
"task_type": "CAUSAL_LM",
"variant": "road_1",
"group_size": 2,
},
),
(
ShiraConfig,
{
"r": 1,
"task_type": "CAUSAL_LM",
"target_modules": None,
"init_weights": False,
},
),
(
VBLoRAConfig,
{
"task_type": "CAUSAL_LM",
"target_modules": None,
"vblora_dropout": 0.05,
"vector_length": 1,
"num_vectors": 2,
},
),
(
VeraConfig,
{
"task_type": "CAUSAL_LM",
"r": 8,
"target_modules": None,
"vera_dropout": 0.05,
"projection_prng_key": 0xFF,
"d_initial": 0.1,
"save_projection": True,
"bias": "none",
},
),
(
C3AConfig,
{
"task_type": "CAUSAL_LM",
"block_size": 1, # Some test cases contain shapes of prime numbers where `block_size` must be 1
"target_modules": None,
},
),
(
WaveFTConfig,
{
"task_type": "CAUSAL_LM",
"n_frequency": 8,
"target_modules": None,
},
),
]
def _skip_if_not_conv1d_supported(model_id, config_cls):
if "GPT2LMHeadModel" in model_id and config_cls in [
BOFTConfig,
BoneConfig,
HRAConfig,
OFTConfig,
RoadConfig,
ShiraConfig,
C3AConfig,
MissConfig,
DeloraConfig,
]:
pytest.skip("Skipping BOFT/HRA/OFT/Bone/Road/SHiRA/C3A/MiSS/DeLoRA for GPT2LMHeadModel")
def _skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls):
if "GPT2LMHeadModel" in model_id and config_cls in [
AdaLoraConfig,
BOFTConfig,
HRAConfig,
OFTConfig,
BoneConfig,
C3AConfig,
RoadConfig,
MissConfig,
DeloraConfig,
]:
pytest.skip("Skipping AdaLora/BOFT/HRA/OFT/Bone/MiSS/DeLoRA for GPT2LMHeadModel")
def _skip_alora_no_activation(config_cls, config_kwargs):
if config_cls is LoraConfig and config_kwargs.get("alora_invocation_tokens") == [1000]:
pytest.skip("Skipping aLoRA no-activation-case because the test expects changed output which there won't be.")
class TestDecoderModels(PeftCommonTester):
transformers_class = AutoModelForCausalLM
def skipTest(self, reason=""):
# for backwards compatibility with unittest style test classes
pytest.skip(reason)
def prepare_inputs_for_testing(self):
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_model_attr(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_adapter_name(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_adapter_name(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prompt_tuning_text_prepare_for_training(self, model_id, config_cls, config_kwargs):
if config_cls != PromptTuningConfig:
pytest.skip(f"This test does not apply to {config_cls}")
config_kwargs = config_kwargs.copy()
config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT
config_kwargs["prompt_tuning_init_text"] = "This is a test prompt."
config_kwargs["tokenizer_name_or_path"] = model_id
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
def test_prompt_tuning_text_tokenizer_kwargs(self):
# Allow users to pass additional arguments to Tokenizer.from_pretrained
# Fix for #1032
mock = Mock()
orig_from_pretrained = AutoTokenizer.from_pretrained
def mock_autotokenizer_from_pretrained(*args, **kwargs):
mock(*args, **kwargs)
return orig_from_pretrained(config.tokenizer_name_or_path)
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
config = PromptTuningConfig(
base_model_name_or_path=model_id,
tokenizer_name_or_path=model_id,
num_virtual_tokens=10,
prompt_tuning_init=PromptTuningInit.TEXT,
task_type="CAUSAL_LM",
prompt_tuning_init_text="This is a test prompt.",
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
)
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
with patch("transformers.AutoTokenizer.from_pretrained", mock_autotokenizer_from_pretrained):
_ = get_peft_model(model, config)
expected_call = call(model_id, trust_remote_code=True, foo="bar")
assert mock.call_args == expected_call
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prompt_tuning_sample_vocab_prepare_for_training(self, model_id, config_cls, config_kwargs):
if config_cls != PromptTuningConfig:
pytest.skip(f"This test does not apply to {config_cls}")
config_kwargs = config_kwargs.copy()
config_kwargs["prompt_tuning_init"] = PromptTuningInit.SAMPLE_VOCAB
config_kwargs["tokenizer_name_or_path"] = model_id
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
def test_prompt_tuning_config_invalid_args(self):
# Raise an error when tokenizer_kwargs is used with prompt_tuning_init!='TEXT', because this argument has no
# function in that case
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
with pytest.raises(ValueError, match="tokenizer_kwargs only valid when using prompt_tuning_init='TEXT'."):
PromptTuningConfig(
base_model_name_or_path=model_id,
tokenizer_name_or_path=model_id,
num_virtual_tokens=10,
task_type="CAUSAL_LM",
prompt_tuning_init_text="This is a test prompt.",
prompt_tuning_init=PromptTuningInit.RANDOM, # <= should not be used together with tokenizer_kwargs
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_save_pretrained_selected_adapters(
model_id, config_cls, config_kwargs.copy(), safe_serialization=False
)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_merge_layers(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers_multi(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_merge_layers_multi(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers_nan(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_merge_layers_nan(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
if config_cls != LoraConfig:
pytest.skip("Mixed adapter batches not supported for this config.")
_skip_alora_no_activation(config_cls, config_kwargs)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs):
if config_cls != LoraConfig:
pytest.skip("Mixed adapter batches not supported for this config.")
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_generate(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_pos_args(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_generate_pos_args(model_id, config_cls, config_kwargs.copy(), raises_err=False)
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_merge_layers_fp16(self, model_id, config_cls, config_kwargs):
self._test_merge_layers_fp16(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_generate_half_prec(self, model_id, config_cls, config_kwargs):
self._test_generate_half_prec(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs):
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_decoders(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_training(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_decoders_layer_indexing(self, model_id, config_cls, config_kwargs):
self._test_training_layer_indexing(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_inference_safetensors(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_inference_safetensors(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs):
self._test_peft_model_device_map(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_delete_adapter(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_delete_adapter(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_unload_adapter(self, model_id, config_cls, config_kwargs):
_skip_adalora_oft_hra_bone_for_gpt2(model_id, config_cls)
_skip_if_not_conv1d_supported(model_id, config_cls)
_skip_alora_no_activation(config_cls, config_kwargs)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_unload_adapter(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs):
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
_skip_alora_no_activation(config_cls, config_kwargs)
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_disable_adapter(model_id, config_cls, config_kwargs.copy())
def test_generate_adalora_no_dropout(self):
# test for issue #730
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
config_kwargs = {
"target_modules": None,
"task_type": "CAUSAL_LM",
"lora_dropout": 0.0,
"total_step": 1,
}
self._test_generate(model_id, AdaLoraConfig, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_DECODER_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_passing_input_embeds_works(self, model_id, config_cls, config_kwargs):
_skip_if_not_conv1d_supported(model_id, config_cls)
if (platform.system() == "Darwin") and (config_cls == PrefixTuningConfig):
# the error is:
# > RuntimeError: unsupported operation: more than one element of the written-to tensor refers to a single
# > memory location. Please clone() the tensor before performing the operation.
# in transformers sdpa_mask_older_torch. As we (currently) cannot upgrade PyTorch on MacOS GH runners, we're
# stuck with this error.
# TODO: remove if torch can be upgraded on MacOS or if MacOS CI is removed
pytest.skip("Prefix tuning fails on MacOS in this case, not worth fixing")
self._test_passing_input_embeds_works("", model_id, config_cls, config_kwargs.copy())
def test_lora_layer_replication(self):
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
config_kwargs = {
"target_modules": ["down_proj", "up_proj"],
"task_type": "CAUSAL_LM",
"lora_dropout": 0.0,
"layer_replication": [[0, 1], [0, 2], [1, 2]],
}
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
config = LoraConfig(base_model_name_or_path=model_id, **config_kwargs)
assert len(model.model.layers), "Expected 2 layers in original model." == 2
model = get_peft_model(model, config)
layers = model.base_model.model.model.layers
assert len(layers) == 4, "Expected 4 layers in adapted model."
assert (
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
== layers[1].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
and layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
== layers[3].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
), "Expected layers 0-1 and 2-3 to share weights"
assert (
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
!= layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
), "Expected layers 0 and 2 to have different weights"
assert (
layers[0].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
!= layers[1].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
and layers[2].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
!= layers[3].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
), "Expected all LoRA adapters to have distinct weights"
assert len([n for n, _ in model.named_parameters() if ".lora_A." in n]) == 8, (
"Expected 8 LoRA adapters since we are adding one each for up and down."
)
self._test_prepare_for_training(model_id, LoraConfig, config_kwargs.copy())
self._test_generate(model_id, LoraConfig, config_kwargs.copy())
def test_prompt_learning_with_grouped_query_attention(self):
# See 1901, fixes a bug with handling GQA
model_id = "peft-internal-testing/tiny-dummy-qwen2"
base_model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
model = get_peft_model(base_model, peft_config)
x = torch.tensor([[1, 2, 3]])
# does not raise
model(x)
def test_prefix_tuning_mistral(self):
# See issue 869, 1962
model_id = "hf-internal-testing/tiny-random-MistralForCausalLM"
base_model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PrefixTuningConfig(num_virtual_tokens=10, task_type="CAUSAL_LM")
model = get_peft_model(base_model, peft_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
def process(samples):
tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
return tokenized
data = load_dataset_english_quotes()
data = data.map(process, batched=True)
with tempfile.TemporaryDirectory() as tmp_dirname:
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
num_train_epochs=1,
max_steps=5,
per_device_train_batch_size=4,
output_dir=tmp_dirname,
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
trainer.train()
@pytest.mark.parametrize("model_id", SMALL_GRID_MODELS)
@pytest.mark.parametrize(
"config_cls,config_kwargs",
[
(
PromptTuningConfig,
{
"num_virtual_tokens": 10,
"task_type": "CAUSAL_LM",
},
),
(
PrefixTuningConfig,
{
"num_virtual_tokens": 10,
"task_type": "CAUSAL_LM",
},
),
(
PromptEncoderConfig,
{
"num_virtual_tokens": 10,
"encoder_hidden_size": 32,
"task_type": "CAUSAL_LM",
},
),
(
CPTConfig,
{
"cpt_token_ids": [0, 1, 2, 3, 4, 5, 6, 7], # Example token IDs for testing
"cpt_mask": [1, 1, 1, 1, 1, 1, 1, 1],
"cpt_tokens_type_mask": [1, 2, 2, 2, 3, 3, 4, 4],
},
),
],
)
def test_prompt_learning_with_gradient_checkpointing(self, model_id, config_cls, config_kwargs):
# See issue 869
# Test prompt learning methods with gradient checkpointing in a semi realistic setting.
# Prefix tuning does not work if the model uses the new caching implementation. In that case, a helpful error
# should be raised.
# skip if multi GPU, since this results in DataParallel usage by Trainer, which fails with "CUDA device
# assertion", breaking subsequent tests
if device_count > 1:
pytest.skip("Skip on multi-GPU setups")
peft_config = config_cls(base_model_name_or_path=model_id, **config_kwargs)
base_model = self.transformers_class.from_pretrained(model_id)
base_model.gradient_checkpointing_enable()
try:
model = get_peft_model(base_model, peft_config)
except ValueError as exc:
# Some methods will raise a helpful error. After this, exit the test, as training would fail.
assert config_cls == PrefixTuningConfig
assert "Prefix tuning does not work with gradient checkpointing" in str(exc)
return
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
def process(samples):
tokenized = tokenizer(samples["quote"], truncation=True, max_length=128)
return tokenized
data = load_dataset_english_quotes()
data = data.map(process, batched=True)
with tempfile.TemporaryDirectory() as tmp_dirname:
trainer = Trainer(
model=model,
train_dataset=data["train"],
args=TrainingArguments(
num_train_epochs=1,
max_steps=3,
per_device_train_batch_size=4,
output_dir=tmp_dirname,
),
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
trainer.train()
@pytest.mark.parametrize("save_embedding_layers", ["auto", True, False])
@pytest.mark.parametrize(
"peft_config",
[
(LoraConfig(target_modules=["lin0", "embed_tokens"], init_lora_weights=False)),
(LoraConfig(target_modules=r".*\.embed_tokens", init_lora_weights=False)),
],
)
def test_save_pretrained_targeting_lora_to_embedding_layer(self, save_embedding_layers, tmp_path, peft_config):
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, peft_config)
if save_embedding_layers == "auto":
# assert warning
msg_start = "Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`."
with pytest.warns(UserWarning, match=msg_start):
model.save_pretrained(tmp_path, save_embedding_layers=save_embedding_layers)
else:
model.save_pretrained(tmp_path, save_embedding_layers=save_embedding_layers)
state_dict = safe_load_file(tmp_path / "adapter_model.safetensors")
contains_embedding = "base_model.model.model.embed_tokens.base_layer.weight" in state_dict
if save_embedding_layers in ["auto", True]:
assert contains_embedding
assert torch.allclose(
model.base_model.model.model.embed_tokens.base_layer.weight,
state_dict["base_model.model.model.embed_tokens.base_layer.weight"],
)
else:
assert not contains_embedding
@pytest.mark.parametrize("use_dora", [False, True])
def test_lora_embed_scale_is_applied(self, use_dora):
"""Test that LoRA correctly handles embeddings with scaling (e.g., Gemma3)."""
model_id = "hf-internal-testing/tiny-random-Gemma3ForCausalLM"
with hub_online_once(model_id):
base_model = AutoModelForCausalLM.from_pretrained(model_id).to(self.torch_device)
orig_embedding = base_model.get_input_embeddings()
peft_config = LoraConfig(target_modules=["embed_tokens"], init_lora_weights=False, use_dora=use_dora)
peft_model = get_peft_model(base_model, peft_config)
x = torch.arange(10).to(self.torch_device)
peft_embedding = peft_model.base_model.model.get_input_embeddings()
embedding_output = peft_embedding(x)
max_embedding_output = embedding_output.abs().max(0)[0]
assert (max_embedding_output < 100.0).all()
peft_model.merge_adapter()
embedding_merged = peft_embedding(x)
assert torch.allclose(embedding_output, embedding_merged, atol=1e-5, rtol=1e-5)
peft_model.unmerge_adapter()
# set embed_scale to an absurdly high value, then check that the embedding output is also scaled to a high
# value
orig_embedding.embed_scale.fill_(10000.0)
max_embedding_output = peft_embedding(x).abs().max(0)[0]
assert (max_embedding_output > 100.0).all()
# set embed_scale to zero, then check that the embedding output is also zero
orig_embedding.embed_scale.fill_(0)
embedding_output = peft_embedding(x)
assert (embedding_output == 0.0).all()
def test_lora_embed_scale_is_applied_mixed_batch(self):
"""Test that LoRA correctly handles embeddings with scaling in mixed batch mode."""
model_id = "hf-internal-testing/tiny-random-Gemma3ForCausalLM"
with hub_online_once(model_id):
base_model = AutoModelForCausalLM.from_pretrained(model_id)
orig_embedding = base_model.get_input_embeddings()
peft_config = LoraConfig(target_modules=["embed_tokens"], init_lora_weights=False)
peft_model = get_peft_model(base_model, peft_config)
peft_model.add_adapter("adapter2", peft_config)
# sanity check: with the default embed_scale, the embedding output should be reasonably sized
peft_embedding = peft_model.base_model.model.get_input_embeddings()
input_ids = torch.arange(10).unsqueeze(0).repeat(2, 1)
adapter_names = ["default", "adapter2"]
max_embedding_output = peft_embedding(input_ids, adapter_names=adapter_names).abs().max()
assert max_embedding_output < 100.0
# set embed_scale to an absurdly high value, then check that the embedding output is also scaled to a high
# value
orig_embedding.embed_scale.fill_(10000.0)
max_embedding_output = peft_embedding(input_ids, adapter_names=adapter_names).abs().max()
assert max_embedding_output > 100.0
# set embed_scale to zero, then check that the embedding output is also zero
orig_embedding.embed_scale.fill_(0)
embedding_output = peft_embedding(input_ids, adapter_names=adapter_names)
assert (embedding_output == 0.0).all()
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_set_requires_grad_prompt_learning_raises(self, config_cls, config_kwargs):
# Test that for prompt learning, calling set_requires_grad raises an error with an appropriate error message.
# Note that for non-prompt learning methods, set_requires_grad is being tested for custom models, so there is no
# specific test here.
model_id = PEFT_DECODER_MODELS_TO_TEST[0] # it's enough to test this with one model
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
if not config.is_prompt_learning:
pytest.skip("This test is only for prompt learning methods.")
with hub_online_once(model_id + config_kwargs.get("tokenizer_name_or_path", "")):
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
model = get_peft_model(model, config)
msg = "Setting `requires_grad` is not supported for prompt learning methods like"
with pytest.raises(TypeError, match=msg):
model.set_requires_grad(adapter_names="adpater0")