Files
peft/examples/sequence_classification/LoRA-torchao-8bit-dynamic-activation.ipynb
Shantanu Gupta 1a1f97263d CHORE Replace deprecated torch_dtype with dtype (#2837)
Note: Diffusers is left as is for now, might need an update later.
2025-10-16 14:59:09 +02:00

527 lines
25 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "900b542d-0249-453c-a915-a061b80af69f",
"metadata": {},
"source": [
"# PyTorch AO (torchao) with int8_dynamic_activation_int8_weight"
]
},
{
"cell_type": "markdown",
"id": "10e1acc3-50b8-4d40-bdf3-0133c113cc4b",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a9935ae2",
"metadata": {},
"outputs": [],
"source": [
"import argparse\n",
"import os\n",
"\n",
"import torch\n",
"from torch.optim import AdamW\n",
"from torch.utils.data import DataLoader\n",
"from peft import (\n",
" get_peft_config,\n",
" get_peft_model,\n",
" get_peft_model_state_dict,\n",
" set_peft_model_state_dict,\n",
" LoraConfig,\n",
" PeftType,\n",
" PrefixTuningConfig,\n",
" PromptEncoderConfig,\n",
")\n",
"\n",
"import evaluate\n",
"from datasets import load_dataset\n",
"from transformers import AutoModelForSequenceClassification, AutoTokenizer, TorchAoConfig, get_linear_schedule_with_warmup, set_seed\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "markdown",
"id": "eafdd532-b1eb-4aac-8077-3386a84c7cdb",
"metadata": {},
"source": [
"## Parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e3b13308",
"metadata": {},
"outputs": [],
"source": [
"batch_size = 16\n",
"model_name_or_path = \"google/gemma-2-2b\"\n",
"task = \"mrpc\"\n",
"device = torch.accelerator.current_accelerator().type if hasattr(torch, \"accelerator\") else \"cuda\"\n",
"num_epochs = 5\n",
"lr = 2e-5\n",
"\n",
"lora_rank = 16\n",
"lora_alpha = 32\n",
"lora_dropout = 0.1"
]
},
{
"cell_type": "markdown",
"id": "c7fb69bf-0182-4111-b715-e2e659b42b1d",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d2f4d25e-30b9-431f-95c3-adb390dc6fcd",
"metadata": {},
"outputs": [],
"source": [
"if any(k in model_name_or_path for k in (\"gpt\", \"opt\", \"bloom\")):\n",
" padding_side = \"left\"\n",
"else:\n",
" padding_side = \"right\"\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side)\n",
"if getattr(tokenizer, \"pad_token_id\") is None:\n",
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
"\n",
"datasets = load_dataset(\"glue\", task)\n",
"metric = evaluate.load(\"glue\", task)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1ea852bc-a040-4244-8fd3-516307cecd14",
"metadata": {},
"outputs": [],
"source": [
"def tokenize_function(examples):\n",
" # max_length=None => use the model max length (it's actually the default)\n",
" outputs = tokenizer(examples[\"sentence1\"], examples[\"sentence2\"], truncation=True, max_length=None)\n",
" return outputs"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "cf5ef289-f42f-4582-bd5e-9852ad8beff2",
"metadata": {},
"outputs": [],
"source": [
"tokenized_datasets = datasets.map(\n",
" tokenize_function,\n",
" batched=True,\n",
" remove_columns=[\"idx\", \"sentence1\", \"sentence2\"],\n",
")\n",
"\n",
"# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the\n",
"# transformers library\n",
"tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "739b3655-9db0-48bc-8542-308c6d5e0b8b",
"metadata": {},
"outputs": [],
"source": [
"def collate_fn(examples):\n",
" return tokenizer.pad(examples, padding=\"longest\", return_tensors=\"pt\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0288f311-8475-4a0e-99af-e4b909d10e01",
"metadata": {},
"outputs": [],
"source": [
"# Instantiate dataloaders.\n",
"train_dataloader = DataLoader(\n",
" tokenized_datasets[\"train\"],\n",
" shuffle=True,\n",
" collate_fn=collate_fn,\n",
" batch_size=batch_size,\n",
")\n",
"eval_dataloader = DataLoader(\n",
" tokenized_datasets[\"validation\"],\n",
" shuffle=False,\n",
" collate_fn=collate_fn,\n",
" batch_size=batch_size,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "fcaf6f9e-c9d1-445a-9f08-18ef462f67ce",
"metadata": {},
"source": [
"## Model"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e5dfff56-ea80-4561-aeaf-43216bbb9af7",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2ac42f98e60d412496fe77ed7eb5c6df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of Gemma2ForSequenceClassification were not initialized from the model checkpoint at google/gemma-2-2b and are newly initialized: ['score.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"quant_config = TorchAoConfig(quant_type=\"int8_dynamic_activation_int8_weight\")\n",
"model = AutoModelForSequenceClassification.from_pretrained(\n",
" model_name_or_path, return_dict=True, device_map=0, dtype=torch.bfloat16, quantization_config=quant_config\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0526f571",
"metadata": {},
"outputs": [],
"source": [
"peft_config = LoraConfig(\n",
" task_type=\"SEQ_CLS\",\n",
" r=lora_rank,\n",
" lora_alpha=lora_alpha,\n",
" lora_dropout=lora_dropout,\n",
" target_modules=[\"q_proj\", \"v_proj\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ceeae329-e931-4d52-8a28-9c87e5cdb4cf",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"trainable params: 3,199,488 || all params: 2,617,545,984 || trainable%: 0.1222\n"
]
}
],
"source": [
"model = get_peft_model(model, peft_config)\n",
"model.print_trainable_parameters()"
]
},
{
"cell_type": "markdown",
"id": "1b3d2544-3028-4e2a-9c56-d4d7d9d674de",
"metadata": {},
"source": [
"## Training"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "0d2d0381",
"metadata": {},
"outputs": [],
"source": [
"optimizer = AdamW(params=model.parameters(), lr=lr)\n",
"\n",
"# Instantiate scheduler\n",
"lr_scheduler = get_linear_schedule_with_warmup(\n",
" optimizer=optimizer,\n",
" num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs),\n",
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f04c88ca-84eb-4184-afe6-3869b6f96b76",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PeftModelForSequenceClassification(\n",
" (base_model): LoraModel(\n",
" (model): Gemma2ForSequenceClassification(\n",
" (model): Gemma2Model(\n",
" (embed_tokens): Embedding(256000, 2304, padding_idx=0)\n",
" (layers): ModuleList(\n",
" (0-25): 26 x Gemma2DecoderLayer(\n",
" (self_attn): Gemma2Attention(\n",
" (q_proj): lora.TorchaoLoraLinear(\n",
" (base_layer): Linear(in_features=2304, out_features=2048, weight=LinearActivationQuantizedTensor(activation=<function _int8_symm_per_token_reduced_range_quant at 0x7a846f516520>, weight=AffineQuantizedTensor(shape=torch.Size([2048, 2304]), block_size=(1, 2304), device=cuda:0, layout_type=PlainLayoutType(), layout_tensor_dtype=torch.int8, quant_min=None, quant_max=None)))\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=2048, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (k_proj): Linear(in_features=2304, out_features=1024, weight=LinearActivationQuantizedTensor(activation=<function _int8_symm_per_token_reduced_range_quant at 0x7a846f516520>, weight=AffineQuantizedTensor(shape=torch.Size([1024, 2304]), block_size=(1, 2304), device=cuda:0, layout_type=PlainLayoutType(), layout_tensor_dtype=torch.int8, quant_min=None, quant_max=None)))\n",
" (v_proj): lora.TorchaoLoraLinear(\n",
" (base_layer): Linear(in_features=2304, out_features=1024, weight=LinearActivationQuantizedTensor(activation=<function _int8_symm_per_token_reduced_range_quant at 0x7a846f516520>, weight=AffineQuantizedTensor(shape=torch.Size([1024, 2304]), block_size=(1, 2304), device=cuda:0, layout_type=PlainLayoutType(), layout_tensor_dtype=torch.int8, quant_min=None, quant_max=None)))\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=1024, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (o_proj): Linear(in_features=2048, out_features=2304, weight=LinearActivationQuantizedTensor(activation=<function _int8_symm_per_token_reduced_range_quant at 0x7a846f516520>, weight=AffineQuantizedTensor(shape=torch.Size([2304, 2048]), block_size=(1, 2048), device=cuda:0, layout_type=PlainLayoutType(), layout_tensor_dtype=torch.int8, quant_min=None, quant_max=None)))\n",
" (rotary_emb): Gemma2RotaryEmbedding()\n",
" )\n",
" (mlp): Gemma2MLP(\n",
" (gate_proj): Linear(in_features=2304, out_features=9216, weight=LinearActivationQuantizedTensor(activation=<function _int8_symm_per_token_reduced_range_quant at 0x7a846f516520>, weight=AffineQuantizedTensor(shape=torch.Size([9216, 2304]), block_size=(1, 2304), device=cuda:0, layout_type=PlainLayoutType(), layout_tensor_dtype=torch.int8, quant_min=None, quant_max=None)))\n",
" (up_proj): Linear(in_features=2304, out_features=9216, weight=LinearActivationQuantizedTensor(activation=<function _int8_symm_per_token_reduced_range_quant at 0x7a846f516520>, weight=AffineQuantizedTensor(shape=torch.Size([9216, 2304]), block_size=(1, 2304), device=cuda:0, layout_type=PlainLayoutType(), layout_tensor_dtype=torch.int8, quant_min=None, quant_max=None)))\n",
" (down_proj): Linear(in_features=9216, out_features=2304, weight=LinearActivationQuantizedTensor(activation=<function _int8_symm_per_token_reduced_range_quant at 0x7a846f516520>, weight=AffineQuantizedTensor(shape=torch.Size([2304, 9216]), block_size=(1, 9216), device=cuda:0, layout_type=PlainLayoutType(), layout_tensor_dtype=torch.int8, quant_min=None, quant_max=None)))\n",
" (act_fn): PytorchGELUTanh()\n",
" )\n",
" (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (post_attention_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" )\n",
" )\n",
" (norm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" )\n",
" (score): ModulesToSaveWrapper(\n",
" (original_module): Linear(in_features=2304, out_features=2, bias=False)\n",
" (modules_to_save): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=2, bias=False)\n",
" )\n",
" )\n",
" )\n",
" )\n",
")"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.config.use_cache = False\n",
"model.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "fa0e73be",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/230 [00:00<?, ?it/s]You're using a GemmaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 230/230 [00:43<00:00, 5.27it/s]\n",
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:04<00:00, 5.33it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 1 | train loss 1.7618 | {'accuracy': 0.46568627450980393, 'f1': 0.5458333333333333}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 230/230 [00:43<00:00, 5.29it/s]\n",
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:04<00:00, 5.47it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 2 | train loss 1.1905 | {'accuracy': 0.5245098039215687, 'f1': 0.6325757575757576}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 230/230 [00:43<00:00, 5.32it/s]\n",
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:04<00:00, 5.34it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 3 | train loss 1.1478 | {'accuracy': 0.5318627450980392, 'f1': 0.6456400742115028}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 230/230 [00:43<00:00, 5.29it/s]\n",
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:04<00:00, 5.36it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 4 | train loss 1.1384 | {'accuracy': 0.5367647058823529, 'f1': 0.6506469500924215}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 230/230 [00:44<00:00, 5.21it/s]\n",
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 26/26 [00:04<00:00, 5.43it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 5 | train loss 1.1365 | {'accuracy': 0.5367647058823529, 'f1': 0.6506469500924215}\n",
"CPU times: user 4min 2s, sys: 399 ms, total: 4min 2s\n",
"Wall time: 4min 2s\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"%%time\n",
"for epoch in range(1, num_epochs + 1):\n",
" model.train()\n",
" train_losses = []\n",
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
" batch.to(device)\n",
" outputs = model(**batch)\n",
" loss = outputs.loss\n",
" if not torch.isfinite(loss):\n",
" raise ValueError(\"non-finite loss encountered\")\n",
"\n",
" loss.backward()\n",
" optimizer.step()\n",
" lr_scheduler.step()\n",
" optimizer.zero_grad()\n",
" train_losses.append(loss.item())\n",
"\n",
" model.eval()\n",
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
" batch.to(device)\n",
" with torch.no_grad():\n",
" outputs = model(**batch)\n",
" predictions = outputs.logits.argmax(dim=-1)\n",
" predictions, references = predictions, batch[\"labels\"]\n",
" metric.add_batch(\n",
" predictions=predictions,\n",
" references=references,\n",
" )\n",
"\n",
" eval_metric = metric.compute()\n",
" train_loss = sum(train_losses) / len(train_losses)\n",
" print(f\"epoch {epoch} | train loss {train_loss:.4f} |\", eval_metric)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "6a1f937b-a0a5-40ec-8e41-5a5a18c6bff6",
"metadata": {},
"outputs": [],
"source": [
"# memory: 4122MiB"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}