Files
peft/tests/test_stablediffusion.py
Zeju Qiu d936478f07 ENH Make OFT faster and more memory efficient (#2575)
Make OFT faster and more memory efficient. This new version of OFT is
not backwards compatible with older checkpoints and vice versa. To load
older checkpoints, downgrade PEFT to 0.15.2 or lower.
2025-06-26 14:27:03 +02:00

388 lines
14 KiB
Python

# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from dataclasses import asdict, replace
import numpy as np
import pytest
from diffusers import StableDiffusionPipeline
from peft import (
BOFTConfig,
HRAConfig,
LoHaConfig,
LoKrConfig,
LoraConfig,
OFTConfig,
get_peft_model,
get_peft_model_state_dict,
inject_adapter_in_model,
set_peft_model_state_dict,
)
from peft.tuners.tuners_utils import BaseTunerLayer
from .testing_common import PeftCommonTester
from .testing_utils import set_init_weights_false, temp_seed
PEFT_DIFFUSERS_SD_MODELS_TO_TEST = ["hf-internal-testing/tiny-sd-pipe"]
DIFFUSERS_CONFIGS = [
(
LoraConfig,
{
"text_encoder": {
"r": 8,
"lora_alpha": 32,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"lora_dropout": 0.0,
"bias": "none",
"init_lora_weights": False,
},
"unet": {
"r": 8,
"lora_alpha": 32,
"target_modules": [
"proj_in",
"proj_out",
"to_k",
"to_q",
"to_v",
"to_out.0",
"ff.net.0.proj",
"ff.net.2",
],
"lora_dropout": 0.0,
"bias": "none",
"init_lora_weights": False,
},
},
),
(
LoHaConfig,
{
"text_encoder": {
"r": 8,
"alpha": 32,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"rank_dropout": 0.0,
"module_dropout": 0.0,
"init_weights": False,
},
"unet": {
"r": 8,
"alpha": 32,
"target_modules": [
"proj_in",
"proj_out",
"to_k",
"to_q",
"to_v",
"to_out.0",
"ff.net.0.proj",
"ff.net.2",
],
"rank_dropout": 0.0,
"module_dropout": 0.0,
"init_weights": False,
},
},
),
(
LoKrConfig,
{
"text_encoder": {
"r": 8,
"alpha": 32,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"rank_dropout": 0.0,
"module_dropout": 0.0,
"init_weights": False,
},
"unet": {
"r": 8,
"alpha": 32,
"target_modules": [
"proj_in",
"proj_out",
"to_k",
"to_q",
"to_v",
"to_out.0",
"ff.net.0.proj",
"ff.net.2",
],
"rank_dropout": 0.0,
"module_dropout": 0.0,
"init_weights": False,
},
},
),
(
OFTConfig,
{
"text_encoder": {
"r": 1,
"oft_block_size": 0,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"module_dropout": 0.0,
"init_weights": False,
"use_cayley_neumann": False,
},
"unet": {
"r": 1,
"oft_block_size": 0,
"target_modules": [
"proj_in",
"proj_out",
"to_k",
"to_q",
"to_v",
"to_out.0",
"ff.net.0.proj",
"ff.net.2",
],
"module_dropout": 0.0,
"init_weights": False,
"use_cayley_neumann": False,
},
},
),
(
BOFTConfig,
{
"text_encoder": {
"boft_block_num": 1,
"boft_block_size": 0,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"boft_dropout": 0.0,
"init_weights": False,
},
"unet": {
"boft_block_num": 1,
"boft_block_size": 0,
"target_modules": [
"proj_in",
"proj_out",
"to_k",
"to_q",
"to_v",
"to_out.0",
"ff.net.0.proj",
"ff.net.2",
],
"boft_dropout": 0.0,
"init_weights": False,
},
},
),
(
HRAConfig,
{
"text_encoder": {
"r": 8,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"init_weights": False,
},
"unet": {
"r": 8,
"target_modules": [
"proj_in",
"proj_out",
"to_k",
"to_q",
"to_v",
"to_out.0",
"ff.net.0.proj",
"ff.net.2",
],
"init_weights": False,
},
},
),
]
def skip_if_not_lora(config_cls):
if config_cls != LoraConfig:
pytest.skip("Skipping test because it is only applicable to LoraConfig")
class TestStableDiffusionModel(PeftCommonTester):
r"""
Tests that diffusers StableDiffusion model works with PEFT as expected.
"""
transformers_class = StableDiffusionPipeline
sd_model = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe")
def instantiate_sd_peft(self, model_id, config_cls, config_kwargs):
# Instantiate StableDiffusionPipeline
if model_id == "hf-internal-testing/tiny-sd-pipe":
# in CI, this model often times out on the hub, let's cache it
model = copy.deepcopy(self.sd_model)
else:
model = self.transformers_class.from_pretrained(model_id)
config_kwargs = config_kwargs.copy()
text_encoder_kwargs = config_kwargs.pop("text_encoder")
unet_kwargs = config_kwargs.pop("unet")
# the remaining config kwargs should be applied to both configs
for key, val in config_kwargs.items():
text_encoder_kwargs[key] = val
unet_kwargs[key] = val
# Instantiate text_encoder adapter
config_text_encoder = config_cls(**text_encoder_kwargs)
model.text_encoder = get_peft_model(model.text_encoder, config_text_encoder)
# Instantiate unet adapter
config_unet = config_cls(**unet_kwargs)
model.unet = get_peft_model(model.unet, config_unet)
# Move model to device
model = model.to(self.torch_device)
return model
def prepare_inputs_for_testing(self):
return {
"prompt": "a high quality digital photo of a cute corgi",
"num_inference_steps": 3,
}
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
def test_merge_layers(self, model_id, config_cls, config_kwargs):
if (config_cls == LoKrConfig) and (self.torch_device not in ["cuda", "xpu"]):
pytest.skip("Merging test with LoKr fails without GPU")
# Instantiate model & adapters
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
# Generate output for peft modified StableDiffusion
dummy_input = self.prepare_inputs_for_testing()
with temp_seed(seed=42):
peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
# Merge adapter and model
if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]:
# TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1
model.text_encoder = model.text_encoder.merge_and_unload()
model.unet = model.unet.merge_and_unload()
# Generate output for peft merged StableDiffusion
with temp_seed(seed=42):
merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
# Images are in uint8 drange, so use large atol
assert np.allclose(peft_output, merged_output, atol=1.0)
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
def test_merge_layers_safe_merge(self, model_id, config_cls, config_kwargs):
if (config_cls == LoKrConfig) and (self.torch_device not in ["cuda", "xpu"]):
pytest.skip("Merging test with LoKr fails without GPU")
# Instantiate model & adapters
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
# Generate output for peft modified StableDiffusion
dummy_input = self.prepare_inputs_for_testing()
with temp_seed(seed=42):
peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
# Merge adapter and model
if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]:
# TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1
model.text_encoder = model.text_encoder.merge_and_unload(safe_merge=True)
model.unet = model.unet.merge_and_unload(safe_merge=True)
# Generate output for peft merged StableDiffusion
with temp_seed(seed=42):
merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
# Images are in uint8 drange, so use large atol
assert np.allclose(peft_output, merged_output, atol=1.0)
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
def test_add_weighted_adapter_base_unchanged(self, model_id, config_cls, config_kwargs):
skip_if_not_lora(config_cls)
# Instantiate model & adapters
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
# Get current available adapter config
text_encoder_adapter_name = next(iter(model.text_encoder.peft_config.keys()))
unet_adapter_name = next(iter(model.unet.peft_config.keys()))
text_encoder_adapter_config = replace(model.text_encoder.peft_config[text_encoder_adapter_name])
unet_adapter_config = replace(model.unet.peft_config[unet_adapter_name])
# Create weighted adapters
model.text_encoder.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")
model.unet.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")
# Assert that base adapters config did not change
assert asdict(text_encoder_adapter_config) == asdict(model.text_encoder.peft_config[text_encoder_adapter_name])
assert asdict(unet_adapter_config) == asdict(model.unet.peft_config[unet_adapter_name])
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
self._test_disable_adapter(model_id, config_cls, config_kwargs)
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
def test_load_model_low_cpu_mem_usage(self, model_id, config_cls, config_kwargs):
# Instantiate model & adapters
pipe = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
te_state_dict = get_peft_model_state_dict(pipe.text_encoder)
unet_state_dict = get_peft_model_state_dict(pipe.unet)
del pipe
pipe = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
config_kwargs = config_kwargs.copy()
text_encoder_kwargs = config_kwargs.pop("text_encoder")
unet_kwargs = config_kwargs.pop("unet")
# the remaining config kwargs should be applied to both configs
for key, val in config_kwargs.items():
text_encoder_kwargs[key] = val
unet_kwargs[key] = val
config_text_encoder = config_cls(**text_encoder_kwargs)
config_unet = config_cls(**unet_kwargs)
# check text encoder
inject_adapter_in_model(config_text_encoder, pipe.text_encoder, low_cpu_mem_usage=True)
# sanity check that the adapter was applied:
assert any(isinstance(module, BaseTunerLayer) for module in pipe.text_encoder.modules())
assert "meta" in {p.device.type for p in pipe.text_encoder.parameters()}
set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
assert "meta" not in {p.device.type for p in pipe.text_encoder.parameters()}
# check unet
inject_adapter_in_model(config_unet, pipe.unet, low_cpu_mem_usage=True)
# sanity check that the adapter was applied:
assert any(isinstance(module, BaseTunerLayer) for module in pipe.unet.modules())
assert "meta" in {p.device.type for p in pipe.unet.parameters()}
set_peft_model_state_dict(pipe.unet, unet_state_dict, low_cpu_mem_usage=True)
assert "meta" not in {p.device.type for p in pipe.unet.parameters()}