mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
Make OFT faster and more memory efficient. This new version of OFT is not backwards compatible with older checkpoints and vice versa. To load older checkpoints, downgrade PEFT to 0.15.2 or lower.
388 lines
14 KiB
Python
388 lines
14 KiB
Python
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
from dataclasses import asdict, replace
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from diffusers import StableDiffusionPipeline
|
|
|
|
from peft import (
|
|
BOFTConfig,
|
|
HRAConfig,
|
|
LoHaConfig,
|
|
LoKrConfig,
|
|
LoraConfig,
|
|
OFTConfig,
|
|
get_peft_model,
|
|
get_peft_model_state_dict,
|
|
inject_adapter_in_model,
|
|
set_peft_model_state_dict,
|
|
)
|
|
from peft.tuners.tuners_utils import BaseTunerLayer
|
|
|
|
from .testing_common import PeftCommonTester
|
|
from .testing_utils import set_init_weights_false, temp_seed
|
|
|
|
|
|
PEFT_DIFFUSERS_SD_MODELS_TO_TEST = ["hf-internal-testing/tiny-sd-pipe"]
|
|
DIFFUSERS_CONFIGS = [
|
|
(
|
|
LoraConfig,
|
|
{
|
|
"text_encoder": {
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
|
"lora_dropout": 0.0,
|
|
"bias": "none",
|
|
"init_lora_weights": False,
|
|
},
|
|
"unet": {
|
|
"r": 8,
|
|
"lora_alpha": 32,
|
|
"target_modules": [
|
|
"proj_in",
|
|
"proj_out",
|
|
"to_k",
|
|
"to_q",
|
|
"to_v",
|
|
"to_out.0",
|
|
"ff.net.0.proj",
|
|
"ff.net.2",
|
|
],
|
|
"lora_dropout": 0.0,
|
|
"bias": "none",
|
|
"init_lora_weights": False,
|
|
},
|
|
},
|
|
),
|
|
(
|
|
LoHaConfig,
|
|
{
|
|
"text_encoder": {
|
|
"r": 8,
|
|
"alpha": 32,
|
|
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
|
"rank_dropout": 0.0,
|
|
"module_dropout": 0.0,
|
|
"init_weights": False,
|
|
},
|
|
"unet": {
|
|
"r": 8,
|
|
"alpha": 32,
|
|
"target_modules": [
|
|
"proj_in",
|
|
"proj_out",
|
|
"to_k",
|
|
"to_q",
|
|
"to_v",
|
|
"to_out.0",
|
|
"ff.net.0.proj",
|
|
"ff.net.2",
|
|
],
|
|
"rank_dropout": 0.0,
|
|
"module_dropout": 0.0,
|
|
"init_weights": False,
|
|
},
|
|
},
|
|
),
|
|
(
|
|
LoKrConfig,
|
|
{
|
|
"text_encoder": {
|
|
"r": 8,
|
|
"alpha": 32,
|
|
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
|
"rank_dropout": 0.0,
|
|
"module_dropout": 0.0,
|
|
"init_weights": False,
|
|
},
|
|
"unet": {
|
|
"r": 8,
|
|
"alpha": 32,
|
|
"target_modules": [
|
|
"proj_in",
|
|
"proj_out",
|
|
"to_k",
|
|
"to_q",
|
|
"to_v",
|
|
"to_out.0",
|
|
"ff.net.0.proj",
|
|
"ff.net.2",
|
|
],
|
|
"rank_dropout": 0.0,
|
|
"module_dropout": 0.0,
|
|
"init_weights": False,
|
|
},
|
|
},
|
|
),
|
|
(
|
|
OFTConfig,
|
|
{
|
|
"text_encoder": {
|
|
"r": 1,
|
|
"oft_block_size": 0,
|
|
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
|
"module_dropout": 0.0,
|
|
"init_weights": False,
|
|
"use_cayley_neumann": False,
|
|
},
|
|
"unet": {
|
|
"r": 1,
|
|
"oft_block_size": 0,
|
|
"target_modules": [
|
|
"proj_in",
|
|
"proj_out",
|
|
"to_k",
|
|
"to_q",
|
|
"to_v",
|
|
"to_out.0",
|
|
"ff.net.0.proj",
|
|
"ff.net.2",
|
|
],
|
|
"module_dropout": 0.0,
|
|
"init_weights": False,
|
|
"use_cayley_neumann": False,
|
|
},
|
|
},
|
|
),
|
|
(
|
|
BOFTConfig,
|
|
{
|
|
"text_encoder": {
|
|
"boft_block_num": 1,
|
|
"boft_block_size": 0,
|
|
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
|
"boft_dropout": 0.0,
|
|
"init_weights": False,
|
|
},
|
|
"unet": {
|
|
"boft_block_num": 1,
|
|
"boft_block_size": 0,
|
|
"target_modules": [
|
|
"proj_in",
|
|
"proj_out",
|
|
"to_k",
|
|
"to_q",
|
|
"to_v",
|
|
"to_out.0",
|
|
"ff.net.0.proj",
|
|
"ff.net.2",
|
|
],
|
|
"boft_dropout": 0.0,
|
|
"init_weights": False,
|
|
},
|
|
},
|
|
),
|
|
(
|
|
HRAConfig,
|
|
{
|
|
"text_encoder": {
|
|
"r": 8,
|
|
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
|
"init_weights": False,
|
|
},
|
|
"unet": {
|
|
"r": 8,
|
|
"target_modules": [
|
|
"proj_in",
|
|
"proj_out",
|
|
"to_k",
|
|
"to_q",
|
|
"to_v",
|
|
"to_out.0",
|
|
"ff.net.0.proj",
|
|
"ff.net.2",
|
|
],
|
|
"init_weights": False,
|
|
},
|
|
},
|
|
),
|
|
]
|
|
|
|
|
|
def skip_if_not_lora(config_cls):
|
|
if config_cls != LoraConfig:
|
|
pytest.skip("Skipping test because it is only applicable to LoraConfig")
|
|
|
|
|
|
class TestStableDiffusionModel(PeftCommonTester):
|
|
r"""
|
|
Tests that diffusers StableDiffusion model works with PEFT as expected.
|
|
"""
|
|
|
|
transformers_class = StableDiffusionPipeline
|
|
sd_model = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe")
|
|
|
|
def instantiate_sd_peft(self, model_id, config_cls, config_kwargs):
|
|
# Instantiate StableDiffusionPipeline
|
|
if model_id == "hf-internal-testing/tiny-sd-pipe":
|
|
# in CI, this model often times out on the hub, let's cache it
|
|
model = copy.deepcopy(self.sd_model)
|
|
else:
|
|
model = self.transformers_class.from_pretrained(model_id)
|
|
|
|
config_kwargs = config_kwargs.copy()
|
|
text_encoder_kwargs = config_kwargs.pop("text_encoder")
|
|
unet_kwargs = config_kwargs.pop("unet")
|
|
# the remaining config kwargs should be applied to both configs
|
|
for key, val in config_kwargs.items():
|
|
text_encoder_kwargs[key] = val
|
|
unet_kwargs[key] = val
|
|
|
|
# Instantiate text_encoder adapter
|
|
config_text_encoder = config_cls(**text_encoder_kwargs)
|
|
model.text_encoder = get_peft_model(model.text_encoder, config_text_encoder)
|
|
|
|
# Instantiate unet adapter
|
|
config_unet = config_cls(**unet_kwargs)
|
|
model.unet = get_peft_model(model.unet, config_unet)
|
|
|
|
# Move model to device
|
|
model = model.to(self.torch_device)
|
|
|
|
return model
|
|
|
|
def prepare_inputs_for_testing(self):
|
|
return {
|
|
"prompt": "a high quality digital photo of a cute corgi",
|
|
"num_inference_steps": 3,
|
|
}
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
|
|
def test_merge_layers(self, model_id, config_cls, config_kwargs):
|
|
if (config_cls == LoKrConfig) and (self.torch_device not in ["cuda", "xpu"]):
|
|
pytest.skip("Merging test with LoKr fails without GPU")
|
|
|
|
# Instantiate model & adapters
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
|
|
|
|
# Generate output for peft modified StableDiffusion
|
|
dummy_input = self.prepare_inputs_for_testing()
|
|
with temp_seed(seed=42):
|
|
peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
|
|
|
|
# Merge adapter and model
|
|
if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]:
|
|
# TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1
|
|
model.text_encoder = model.text_encoder.merge_and_unload()
|
|
model.unet = model.unet.merge_and_unload()
|
|
|
|
# Generate output for peft merged StableDiffusion
|
|
with temp_seed(seed=42):
|
|
merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
|
|
|
|
# Images are in uint8 drange, so use large atol
|
|
assert np.allclose(peft_output, merged_output, atol=1.0)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
|
|
def test_merge_layers_safe_merge(self, model_id, config_cls, config_kwargs):
|
|
if (config_cls == LoKrConfig) and (self.torch_device not in ["cuda", "xpu"]):
|
|
pytest.skip("Merging test with LoKr fails without GPU")
|
|
|
|
# Instantiate model & adapters
|
|
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
|
|
|
|
# Generate output for peft modified StableDiffusion
|
|
dummy_input = self.prepare_inputs_for_testing()
|
|
with temp_seed(seed=42):
|
|
peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
|
|
|
|
# Merge adapter and model
|
|
if config_cls not in [LoHaConfig, OFTConfig, HRAConfig]:
|
|
# TODO: Merging the text_encoder is leading to issues on CPU with PyTorch 2.1
|
|
model.text_encoder = model.text_encoder.merge_and_unload(safe_merge=True)
|
|
model.unet = model.unet.merge_and_unload(safe_merge=True)
|
|
|
|
# Generate output for peft merged StableDiffusion
|
|
with temp_seed(seed=42):
|
|
merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
|
|
|
|
# Images are in uint8 drange, so use large atol
|
|
assert np.allclose(peft_output, merged_output, atol=1.0)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
|
|
def test_add_weighted_adapter_base_unchanged(self, model_id, config_cls, config_kwargs):
|
|
skip_if_not_lora(config_cls)
|
|
# Instantiate model & adapters
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
|
|
|
|
# Get current available adapter config
|
|
text_encoder_adapter_name = next(iter(model.text_encoder.peft_config.keys()))
|
|
unet_adapter_name = next(iter(model.unet.peft_config.keys()))
|
|
text_encoder_adapter_config = replace(model.text_encoder.peft_config[text_encoder_adapter_name])
|
|
unet_adapter_config = replace(model.unet.peft_config[unet_adapter_name])
|
|
|
|
# Create weighted adapters
|
|
model.text_encoder.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")
|
|
model.unet.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")
|
|
|
|
# Assert that base adapters config did not change
|
|
assert asdict(text_encoder_adapter_config) == asdict(model.text_encoder.peft_config[text_encoder_adapter_name])
|
|
assert asdict(unet_adapter_config) == asdict(model.unet.peft_config[unet_adapter_name])
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
|
|
def test_disable_adapter(self, model_id, config_cls, config_kwargs):
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs)
|
|
self._test_disable_adapter(model_id, config_cls, config_kwargs)
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_DIFFUSERS_SD_MODELS_TO_TEST)
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", DIFFUSERS_CONFIGS)
|
|
def test_load_model_low_cpu_mem_usage(self, model_id, config_cls, config_kwargs):
|
|
# Instantiate model & adapters
|
|
pipe = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
|
|
|
|
te_state_dict = get_peft_model_state_dict(pipe.text_encoder)
|
|
unet_state_dict = get_peft_model_state_dict(pipe.unet)
|
|
|
|
del pipe
|
|
pipe = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
|
|
|
|
config_kwargs = config_kwargs.copy()
|
|
text_encoder_kwargs = config_kwargs.pop("text_encoder")
|
|
unet_kwargs = config_kwargs.pop("unet")
|
|
# the remaining config kwargs should be applied to both configs
|
|
for key, val in config_kwargs.items():
|
|
text_encoder_kwargs[key] = val
|
|
unet_kwargs[key] = val
|
|
|
|
config_text_encoder = config_cls(**text_encoder_kwargs)
|
|
config_unet = config_cls(**unet_kwargs)
|
|
|
|
# check text encoder
|
|
inject_adapter_in_model(config_text_encoder, pipe.text_encoder, low_cpu_mem_usage=True)
|
|
# sanity check that the adapter was applied:
|
|
assert any(isinstance(module, BaseTunerLayer) for module in pipe.text_encoder.modules())
|
|
|
|
assert "meta" in {p.device.type for p in pipe.text_encoder.parameters()}
|
|
set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
|
|
assert "meta" not in {p.device.type for p in pipe.text_encoder.parameters()}
|
|
|
|
# check unet
|
|
inject_adapter_in_model(config_unet, pipe.unet, low_cpu_mem_usage=True)
|
|
# sanity check that the adapter was applied:
|
|
assert any(isinstance(module, BaseTunerLayer) for module in pipe.unet.modules())
|
|
|
|
assert "meta" in {p.device.type for p in pipe.unet.parameters()}
|
|
set_peft_model_state_dict(pipe.unet, unet_state_dict, low_cpu_mem_usage=True)
|
|
assert "meta" not in {p.device.type for p in pipe.unet.parameters()}
|