mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
100 lines
3.1 KiB
Python
100 lines
3.1 KiB
Python
# Copyright 2024-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import annotations
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from peft.import_utils import is_bnb_available
|
|
from peft.optimizers import create_loraplus_optimizer
|
|
|
|
from .testing_utils import require_bitsandbytes, torch_device
|
|
|
|
|
|
if is_bnb_available():
|
|
import bitsandbytes as bnb
|
|
|
|
|
|
class SimpleNet(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(100, 20)
|
|
self.layer_norm = nn.LayerNorm(20)
|
|
self.lin0 = nn.Linear(20, 20, bias=bias)
|
|
self.relu = nn.ReLU()
|
|
self.lin1 = nn.Linear(20, 16, bias=bias)
|
|
|
|
def forward(self, X):
|
|
X = self.lin0(self.layer_norm(self.embedding(X)))
|
|
X = self.relu(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
|
|
@require_bitsandbytes
|
|
def test_lora_plus_helper_sucess():
|
|
model = SimpleNet()
|
|
optimizer_cls = bnb.optim.Adam8bit
|
|
lr = 5e-5
|
|
optim_config = {
|
|
"eps": 1e-6,
|
|
"betas": (0.9, 0.999),
|
|
"loraplus_weight_decay": 0.0,
|
|
}
|
|
loraplus_lr_ratio = 1.2
|
|
loraplus_lr_embedding = 1e-6
|
|
optim = create_loraplus_optimizer(
|
|
model=model,
|
|
optimizer_cls=optimizer_cls,
|
|
lr=lr,
|
|
loraplus_lr_ratio=loraplus_lr_ratio,
|
|
loraplus_lr_embedding=loraplus_lr_embedding,
|
|
**optim_config,
|
|
)
|
|
assert optim is not None
|
|
assert len(optim.param_groups) == 4
|
|
assert optim.param_groups[0]["lr"] == lr
|
|
assert optim.param_groups[1]["lr"] == loraplus_lr_embedding
|
|
assert optim.param_groups[2]["lr"] == optim.param_groups[3]["lr"] == (lr * loraplus_lr_ratio)
|
|
|
|
|
|
@require_bitsandbytes
|
|
def test_lora_plus_optimizer_sucess():
|
|
"""
|
|
Test if the optimizer is correctly created and step function runs without any exception
|
|
"""
|
|
optimizer_cls = bnb.optim.Adam8bit
|
|
optim_config = {
|
|
"eps": 1e-6,
|
|
"betas": (0.9, 0.999),
|
|
"loraplus_weight_decay": 0.0,
|
|
}
|
|
model: SimpleNet = SimpleNet().to(torch_device)
|
|
optim = create_loraplus_optimizer(
|
|
model=model,
|
|
optimizer_cls=optimizer_cls,
|
|
lr=5e-5,
|
|
loraplus_lr_ratio=1.2,
|
|
loraplus_lr_embedding=1e-6,
|
|
**optim_config,
|
|
)
|
|
loss = torch.nn.CrossEntropyLoss()
|
|
bnb.optim.GlobalOptimManager.get_instance().register_parameters(model.parameters())
|
|
x = torch.randint(100, (2, 4, 10)).to(torch_device)
|
|
output = model(x).permute(0, 3, 1, 2)
|
|
label = torch.randint(16, (2, 4, 10)).to(torch_device)
|
|
loss_value = loss(output, label)
|
|
loss_value.backward()
|
|
optim.step()
|