mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
153 lines
4.7 KiB
Python
153 lines
4.7 KiB
Python
# Copyright 2025-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
import math
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from peft import LoraConfig, get_peft_model
|
|
from peft.optimizers import create_lorafa_optimizer
|
|
|
|
from .testing_utils import torch_device
|
|
|
|
|
|
class SimpleNet(nn.Module):
|
|
def __init__(self, bias=True):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(100, 20)
|
|
self.layer_norm = nn.LayerNorm(20)
|
|
self.lin0 = nn.Linear(20, 20, bias=bias)
|
|
self.relu = nn.ReLU()
|
|
self.lin1 = nn.Linear(20, 16, bias=bias)
|
|
|
|
def forward(self, X):
|
|
X = self.lin0(self.layer_norm(self.embedding(X)))
|
|
X = self.relu(X)
|
|
X = self.lin1(X)
|
|
return X
|
|
|
|
|
|
def test_lorafa_init_default():
|
|
"""
|
|
Test if the optimizer is correctly created
|
|
"""
|
|
lora_rank = 16
|
|
lora_alpha = 32
|
|
lr = 7e-5
|
|
|
|
model = SimpleNet()
|
|
config = LoraConfig(
|
|
r=lora_rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["lin0", "lin1"],
|
|
bias="none",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
optimizer = create_lorafa_optimizer(model=model, r=lora_rank, lora_alpha=lora_alpha, lr=lr)
|
|
|
|
assert math.isclose(optimizer.param_groups[0]["scaling_factor"], lora_alpha / lora_rank, rel_tol=1e-9, abs_tol=0.0)
|
|
|
|
all_A_fixed = True
|
|
all_B_trainable = True
|
|
|
|
assert optimizer is not None
|
|
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
all_A_fixed &= not param.requires_grad
|
|
elif "lora_B" in name:
|
|
all_B_trainable &= param.requires_grad
|
|
|
|
assert all_A_fixed and all_B_trainable
|
|
|
|
|
|
def test_lorafa_init_rslora():
|
|
"""
|
|
Test if the optimizer is correctly created when use_rslora = True
|
|
"""
|
|
lora_rank = 16
|
|
lora_alpha = 32
|
|
lr = 7e-5
|
|
|
|
model = SimpleNet()
|
|
config = LoraConfig(
|
|
r=lora_rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["lin0", "lin1"],
|
|
bias="none",
|
|
)
|
|
model = get_peft_model(model, config)
|
|
optimizer = create_lorafa_optimizer(model=model, r=lora_rank, lora_alpha=lora_alpha, lr=lr, use_rslora=True)
|
|
assert math.isclose(
|
|
optimizer.param_groups[0]["scaling_factor"], lora_alpha / math.sqrt(lora_rank), rel_tol=1e-9, abs_tol=0.0
|
|
)
|
|
|
|
|
|
def test_LoraFAOptimizer_step():
|
|
"""
|
|
Test if the optimizer's step function runs without any exception and checks specific conditions on lora_A and
|
|
lora_B weights.
|
|
"""
|
|
lora_rank = 16
|
|
lora_alpha = 32
|
|
lr = 7e-5
|
|
num_steps = 5
|
|
|
|
model = SimpleNet()
|
|
config = LoraConfig(
|
|
r=lora_rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["lin0", "lin1"],
|
|
bias="none",
|
|
)
|
|
model = get_peft_model(model, config).to(torch_device)
|
|
optimizer = create_lorafa_optimizer(model=model, r=16, lora_alpha=32, lr=7e-5)
|
|
loss = torch.nn.CrossEntropyLoss()
|
|
|
|
# Save initial weights of lora_A
|
|
initial_lora_A_weights = {name: param.clone() for name, param in model.named_parameters() if "lora_A" in name}
|
|
# Ensure lora_B is initialized to zero
|
|
for name, param in model.named_parameters():
|
|
if "lora_B" in name:
|
|
assert torch.all(param == 0), f"lora_B weights not initialized to zero for {name}"
|
|
|
|
for _ in range(num_steps): # Run the optimizer step multiple times
|
|
# Generate random input and label for each step
|
|
x = torch.randint(100, (2, 4, 10)).to(torch_device)
|
|
output = model(x).permute(0, 3, 1, 2)
|
|
label = torch.randint(16, (2, 4, 10)).to(torch_device)
|
|
|
|
# Calculate loss and perform backward pass
|
|
loss_value = loss(output, label)
|
|
loss_value.backward()
|
|
|
|
# Perform optimizer step
|
|
optimizer.step()
|
|
|
|
# Zero the gradients after each step to prevent accumulation
|
|
optimizer.zero_grad()
|
|
|
|
# Check if lora_A weights have not changed
|
|
for name, param in model.named_parameters():
|
|
if "lora_A" in name:
|
|
assert torch.equal(param, initial_lora_A_weights[name]), f"lora_A weights changed for {name}"
|
|
|
|
# Check if lora_B weights are non-zero
|
|
for name, param in model.named_parameters():
|
|
if "lora_B" in name:
|
|
assert torch.any(param != 0), f"lora_B weights are still zero for {name}"
|