mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
Small adjustments to tests to make them pass on Cambricon MLUs (mostly tolerances). Note that we have no MLU test runners for PEFT, so have to rely on others to run these tests.
172 lines
6.3 KiB
Python
172 lines
6.3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
# coding=utf-8
|
|
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import importlib
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn.init as init
|
|
|
|
from peft import LoraConfig, PeftModel, get_peft_model, get_peft_model_state_dict
|
|
|
|
from .testing_utils import require_torch_gpu
|
|
|
|
|
|
def is_megatron_available() -> bool:
|
|
return importlib.util.find_spec("megatron") is not None
|
|
|
|
|
|
if is_megatron_available():
|
|
from megatron.core import parallel_state, tensor_parallel
|
|
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
|
|
from megatron.core.transformer.module import MegatronModule
|
|
from megatron.core.transformer.transformer_config import TransformerConfig
|
|
|
|
world_size = 1
|
|
rank = 0
|
|
|
|
def initialize_distributed():
|
|
print(f"Initializing torch.distributed with rank: {rank}, world_size: {world_size}")
|
|
torch.cuda.set_device(0)
|
|
init_method = "tcp://"
|
|
master_ip = os.getenv("MASTER_ADDR", "localhost")
|
|
master_port = os.getenv("MASTER_PORT", "6001")
|
|
init_method += master_ip + ":" + master_port
|
|
torch.distributed.init_process_group(backend="nccl", world_size=world_size, rank=rank, init_method=init_method)
|
|
|
|
def destroy_model_parallel():
|
|
parallel_state.destroy_model_parallel()
|
|
torch.distributed.barrier()
|
|
|
|
def initialize_model_parallel(
|
|
tensor_model_parallel_size=1,
|
|
pipeline_model_parallel_size=1,
|
|
virtual_pipeline_model_parallel_size=None,
|
|
pipeline_model_parallel_split_rank=None,
|
|
):
|
|
parallel_state.destroy_model_parallel()
|
|
if not torch.distributed.is_initialized():
|
|
initialize_distributed()
|
|
parallel_state.initialize_model_parallel(
|
|
tensor_model_parallel_size,
|
|
pipeline_model_parallel_size,
|
|
virtual_pipeline_model_parallel_size,
|
|
pipeline_model_parallel_split_rank,
|
|
)
|
|
|
|
class DummyModule(MegatronModule):
|
|
def __init__(self, config: TransformerConfig):
|
|
super().__init__(config)
|
|
self.linear = tensor_parallel.ColumnParallelLinear(
|
|
input_size=10,
|
|
output_size=10,
|
|
config=config,
|
|
init_method=init.xavier_normal_,
|
|
bias=False,
|
|
gather_output=False,
|
|
)
|
|
self.lm_head = tensor_parallel.RowParallelLinear(
|
|
input_size=10,
|
|
output_size=10,
|
|
config=config,
|
|
init_method=init.xavier_normal_,
|
|
bias=False,
|
|
input_is_parallel=True,
|
|
skip_bias_add=True,
|
|
)
|
|
|
|
def forward(self, input):
|
|
x = self.linear(input)[0]
|
|
x = self.lm_head(x)[0]
|
|
return x
|
|
|
|
@require_torch_gpu
|
|
class TestMegatronLora(unittest.TestCase):
|
|
def setUp(self):
|
|
initialize_model_parallel(1, 1)
|
|
model_parallel_cuda_manual_seed(123)
|
|
transformer_config = {
|
|
"num_layers": 2,
|
|
"hidden_size": 12,
|
|
"num_attention_heads": 4,
|
|
"use_cpu_initialization": True,
|
|
}
|
|
config = TransformerConfig(**transformer_config)
|
|
self.megatron_module = DummyModule(config=config).cuda()
|
|
self.dummy_module = copy.deepcopy(self.megatron_module).cuda()
|
|
|
|
lora_config = LoraConfig(
|
|
lora_alpha=16,
|
|
lora_dropout=0.1,
|
|
r=64,
|
|
bias="none",
|
|
target_modules=["linear", "lm_head"],
|
|
megatron_config=config,
|
|
megatron_core="megatron.core",
|
|
)
|
|
self.megatron_module = get_peft_model(self.megatron_module, lora_config)
|
|
|
|
def tearDown(self):
|
|
destroy_model_parallel()
|
|
|
|
def test_megatron_lora_module(self):
|
|
megatron_module = self.megatron_module
|
|
assert isinstance(megatron_module, PeftModel)
|
|
|
|
for name, module in megatron_module.named_modules():
|
|
if name.endswith("linear"):
|
|
assert hasattr(module, "lora_A")
|
|
assert hasattr(module, "lora_B")
|
|
if name.endswith("linear.lora_A.default"):
|
|
assert isinstance(module, torch.nn.Linear)
|
|
if name.endswith("linear.lora_B.default"):
|
|
assert isinstance(module, tensor_parallel.ColumnParallelLinear)
|
|
|
|
if name.endswith("lm_head.lora_A.default"):
|
|
assert isinstance(module, tensor_parallel.RowParallelLinear)
|
|
if name.endswith("lm_head.lora_B.default"):
|
|
assert isinstance(module, torch.nn.Linear)
|
|
|
|
def test_forward(self):
|
|
x = torch.ones((2, 4, 10)).cuda()
|
|
megatron_module_result = self.megatron_module(x)
|
|
dummt_module_result = self.dummy_module(x)
|
|
|
|
# Because lora_B is initialized with 0, the forward results of two models should be equal before backward.
|
|
assert megatron_module_result.equal(dummt_module_result)
|
|
|
|
def test_backward(self):
|
|
optimizer = torch.optim.AdamW(self.megatron_module.parameters())
|
|
loss_fn = torch.nn.CrossEntropyLoss()
|
|
|
|
x = torch.randn(2, 4, 10, requires_grad=True).cuda()
|
|
label = torch.randint(10, (2 * 4,)).cuda()
|
|
|
|
output = self.megatron_module(x)
|
|
output = output.reshape(2 * 4, 10)
|
|
loss = loss_fn(output, label)
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
def test_get_peft_model_state_dict(self):
|
|
peft_state_dict = get_peft_model_state_dict(self.megatron_module)
|
|
|
|
for key in peft_state_dict.keys():
|
|
assert "lora" in key
|