mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
While memory usage correlates with the number of trainable params, having this number directly makes it easier to see that methods are using similar numbers of trainable params and outliers can be inspected easily.
380 lines
14 KiB
Python
380 lines
14 KiB
Python
# Copyright 2025-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Gradio app to show the results"""
|
|
|
|
import os
|
|
import tempfile
|
|
|
|
import gradio as gr
|
|
import plotly.express as px
|
|
import plotly.graph_objects as go
|
|
from processing import load_df
|
|
from sanitizer import parse_and_filter
|
|
|
|
|
|
metric_preferences = {
|
|
"accelerator_memory_reserved_avg": "lower",
|
|
"accelerator_memory_max": "lower",
|
|
"accelerator_memory_reserved_99th": "lower",
|
|
"total_time": "lower",
|
|
"train_time": "lower",
|
|
"file_size": "lower",
|
|
"test_accuracy": "higher",
|
|
"train_loss": "lower",
|
|
"num_trainable_params": "lower",
|
|
}
|
|
|
|
|
|
def get_model_ids(task_name, df):
|
|
filtered = df[df["task_name"] == task_name]
|
|
return sorted(filtered["model_id"].unique())
|
|
|
|
|
|
def filter_data(task_name, model_id, df):
|
|
filtered = df[(df["task_name"] == task_name) & (df["model_id"] == model_id)]
|
|
return filtered
|
|
|
|
|
|
# Compute the Pareto frontier for two selected metrics.
|
|
def compute_pareto_frontier(df, metric_x, metric_y):
|
|
if df.empty:
|
|
return df
|
|
|
|
df = df.copy()
|
|
points = df[[metric_x, metric_y]].values
|
|
selected_indices = []
|
|
|
|
def dominates(a, b, metric_x, metric_y):
|
|
# Check for each metric whether b is as good or better than a
|
|
if metric_preferences[metric_x] == "higher":
|
|
cond_x = b[0] >= a[0]
|
|
better_x = b[0] > a[0]
|
|
else:
|
|
cond_x = b[0] <= a[0]
|
|
better_x = b[0] < a[0]
|
|
if metric_preferences[metric_y] == "higher":
|
|
cond_y = b[1] >= a[1]
|
|
better_y = b[1] > a[1]
|
|
else:
|
|
cond_y = b[1] <= a[1]
|
|
better_y = b[1] < a[1]
|
|
return cond_x and cond_y and (better_x or better_y)
|
|
|
|
for i, point in enumerate(points):
|
|
dominated = False
|
|
for j, other_point in enumerate(points):
|
|
if i == j:
|
|
continue
|
|
if dominates(point, other_point, metric_x, metric_y):
|
|
dominated = True
|
|
break
|
|
if not dominated:
|
|
selected_indices.append(i)
|
|
pareto_df = df.iloc[selected_indices]
|
|
return pareto_df
|
|
|
|
|
|
def generate_pareto_plot(df, metric_x, metric_y):
|
|
if df.empty:
|
|
return {}
|
|
|
|
# Compute Pareto frontier and non-frontier points.
|
|
pareto_df = compute_pareto_frontier(df, metric_x, metric_y)
|
|
non_pareto_df = df.drop(pareto_df.index)
|
|
|
|
# Create an empty figure.
|
|
fig = go.Figure()
|
|
|
|
# Draw the line connecting Pareto frontier points.
|
|
if not pareto_df.empty:
|
|
# Sort the Pareto frontier points by metric_x for a meaningful connection.
|
|
pareto_sorted = pareto_df.sort_values(by=metric_x)
|
|
line_trace = go.Scatter(
|
|
x=pareto_sorted[metric_x],
|
|
y=pareto_sorted[metric_y],
|
|
mode="lines",
|
|
line={"color": "rgba(0,0,255,0.3)", "width": 4},
|
|
name="Pareto Frontier",
|
|
)
|
|
fig.add_trace(line_trace)
|
|
|
|
# Add non-frontier points in gray with semi-transparency.
|
|
if not non_pareto_df.empty:
|
|
non_frontier_trace = go.Scatter(
|
|
x=non_pareto_df[metric_x],
|
|
y=non_pareto_df[metric_y],
|
|
mode="markers",
|
|
marker={"color": "rgba(128,128,128,0.5)", "size": 12},
|
|
hoverinfo="text",
|
|
text=non_pareto_df.apply(
|
|
lambda row: f"experiment_name: {row['experiment_name']}<br>"
|
|
f"peft_type: {row['peft_type']}<br>"
|
|
f"{metric_x}: {row[metric_x]}<br>"
|
|
f"{metric_y}: {row[metric_y]}",
|
|
axis=1,
|
|
),
|
|
showlegend=False,
|
|
)
|
|
fig.add_trace(non_frontier_trace)
|
|
|
|
# Add Pareto frontier points with legend
|
|
if not pareto_df.empty:
|
|
pareto_scatter = px.scatter(
|
|
pareto_df,
|
|
x=metric_x,
|
|
y=metric_y,
|
|
color="experiment_name",
|
|
hover_data={"experiment_name": True, "peft_type": True, metric_x: True, metric_y: True},
|
|
)
|
|
for trace in pareto_scatter.data:
|
|
trace.marker = {"size": 12}
|
|
fig.add_trace(trace)
|
|
|
|
# Update layout with axes labels.
|
|
fig.update_layout(
|
|
title=f"Pareto Frontier for {metric_x} vs {metric_y}",
|
|
template="seaborn",
|
|
height=700,
|
|
autosize=True,
|
|
xaxis_title=metric_x,
|
|
yaxis_title=metric_y,
|
|
)
|
|
|
|
return fig
|
|
|
|
|
|
def compute_pareto_summary(filtered, pareto_df, metric_x, metric_y):
|
|
if filtered.empty:
|
|
return "No data available."
|
|
|
|
stats = filtered[[metric_x, metric_y]].agg(["min", "max", "mean"]).to_string()
|
|
total_points = len(filtered)
|
|
pareto_points = len(pareto_df)
|
|
excluded_points = total_points - pareto_points
|
|
summary_text = (
|
|
f"{stats}\n\n"
|
|
f"Total points: {total_points}\n"
|
|
f"Pareto frontier points: {pareto_points}\n"
|
|
f"Excluded points: {excluded_points}"
|
|
)
|
|
return summary_text
|
|
|
|
|
|
def export_csv(df):
|
|
if df.empty:
|
|
return None
|
|
csv_data = df.to_csv(index=False)
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as tmp:
|
|
tmp.write(csv_data)
|
|
tmp_path = tmp.name
|
|
return tmp_path
|
|
|
|
|
|
def format_df(df):
|
|
return df.style.format(precision=3, thousands=",", decimal=".")
|
|
|
|
|
|
def build_app(df):
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
gr.Markdown("# PEFT method comparison")
|
|
gr.Markdown(
|
|
"Find more information [on the PEFT GitHub repo](https://github.com/huggingface/peft/tree/main/method_comparison)"
|
|
)
|
|
|
|
# Hidden state to store the current filter query.
|
|
filter_state = gr.State("")
|
|
|
|
gr.Markdown("## Choose the task and base model")
|
|
with gr.Row():
|
|
task_dropdown = gr.Dropdown(
|
|
label="Select Task",
|
|
choices=sorted(df["task_name"].unique()),
|
|
value=sorted(df["task_name"].unique())[0],
|
|
)
|
|
model_dropdown = gr.Dropdown(
|
|
label="Select Model ID", choices=get_model_ids(sorted(df["task_name"].unique())[0], df)
|
|
)
|
|
|
|
# Make dataframe columns all equal in width so that they are good enough for numbers but don't
|
|
# get hugely extended by columns like `train_config`.
|
|
column_widths = ["150px" for _ in df.columns]
|
|
column2index = dict(zip(df.columns, range(len(df.columns))))
|
|
column_widths[column2index['experiment_name']] = '300px'
|
|
|
|
data_table = gr.DataFrame(
|
|
label="Results",
|
|
value=format_df(df),
|
|
interactive=False,
|
|
max_chars=100,
|
|
wrap=False,
|
|
column_widths=column_widths,
|
|
)
|
|
|
|
with gr.Row():
|
|
filter_textbox = gr.Textbox(
|
|
label="Filter DataFrame",
|
|
placeholder="Enter filter (e.g.: peft_type=='LORA')",
|
|
interactive=True,
|
|
)
|
|
apply_filter_button = gr.Button("Apply Filter")
|
|
reset_filter_button = gr.Button("Reset Filter")
|
|
|
|
gr.Markdown("## Pareto plot")
|
|
gr.Markdown(
|
|
"Select 2 criteria to plot the Pareto frontier. This will show the best PEFT methods along this axis and "
|
|
"the trade-offs with the other axis. The PEFT methods that Pareto-dominate are shown in colors. All other "
|
|
"methods are inferior with regard to these two metrics. Hover over a point to show details."
|
|
)
|
|
|
|
with gr.Row():
|
|
x_default = (
|
|
"accelerator_memory_max"
|
|
if "accelerator_memory_max" in metric_preferences
|
|
else list(metric_preferences.keys())[0]
|
|
)
|
|
y_default = (
|
|
"test_accuracy" if "test_accuracy" in metric_preferences else list(metric_preferences.keys())[1]
|
|
)
|
|
metric_x_dropdown = gr.Dropdown(
|
|
label="1st metric for Pareto plot",
|
|
choices=list(metric_preferences.keys()),
|
|
value=x_default,
|
|
)
|
|
metric_y_dropdown = gr.Dropdown(
|
|
label="2nd metric for Pareto plot",
|
|
choices=list(metric_preferences.keys()),
|
|
value=y_default,
|
|
)
|
|
|
|
pareto_plot = gr.Plot(label="Pareto Frontier Plot")
|
|
summary_box = gr.Textbox(label="Summary Statistics", lines=6)
|
|
csv_output = gr.File(label="Export Filtered Data as CSV")
|
|
|
|
def update_on_task(task_name, current_filter):
|
|
new_models = get_model_ids(task_name, df)
|
|
filtered = filter_data(task_name, new_models[0] if new_models else "", df)
|
|
if current_filter.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, current_filter)
|
|
df_queried = filtered[mask]
|
|
if not df_queried.empty:
|
|
filtered = df_queried
|
|
except Exception:
|
|
# invalid filter query
|
|
pass
|
|
return gr.update(choices=new_models, value=new_models[0] if new_models else None), format_df(filtered)
|
|
|
|
task_dropdown.change(
|
|
fn=update_on_task, inputs=[task_dropdown, filter_state], outputs=[model_dropdown, data_table]
|
|
)
|
|
|
|
def update_on_model(task_name, model_id, current_filter):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
if current_filter.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, current_filter)
|
|
filtered = filtered[mask]
|
|
except Exception:
|
|
pass
|
|
return format_df(filtered)
|
|
|
|
model_dropdown.change(
|
|
fn=update_on_model, inputs=[task_dropdown, model_dropdown, filter_state], outputs=data_table
|
|
)
|
|
|
|
def update_pareto_plot_and_summary(task_name, model_id, metric_x, metric_y, current_filter):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
if current_filter.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, current_filter)
|
|
filtered = filtered[mask]
|
|
except Exception as e:
|
|
return generate_pareto_plot(filtered, metric_x, metric_y), f"Filter error: {e}"
|
|
|
|
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
|
|
fig = generate_pareto_plot(filtered, metric_x, metric_y)
|
|
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
|
|
return fig, summary
|
|
|
|
for comp in [model_dropdown, metric_x_dropdown, metric_y_dropdown]:
|
|
comp.change(
|
|
fn=update_pareto_plot_and_summary,
|
|
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
|
|
outputs=[pareto_plot, summary_box],
|
|
)
|
|
|
|
def apply_filter(filter_query, task_name, model_id, metric_x, metric_y):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
if filter_query.strip():
|
|
try:
|
|
mask = parse_and_filter(filtered, filter_query)
|
|
filtered = filtered[mask]
|
|
except Exception as e:
|
|
# Update the table, plot, and summary even if there is a filter error.
|
|
return (
|
|
filter_query,
|
|
filtered,
|
|
generate_pareto_plot(filtered, metric_x, metric_y),
|
|
f"Filter error: {e}",
|
|
)
|
|
|
|
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
|
|
fig = generate_pareto_plot(filtered, metric_x, metric_y)
|
|
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
|
|
return filter_query, format_df(filtered), fig, summary
|
|
|
|
apply_filter_button.click(
|
|
fn=apply_filter,
|
|
inputs=[filter_textbox, task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
|
|
outputs=[filter_state, data_table, pareto_plot, summary_box],
|
|
)
|
|
|
|
def reset_filter(task_name, model_id, metric_x, metric_y):
|
|
filtered = filter_data(task_name, model_id, df)
|
|
pareto_df = compute_pareto_frontier(filtered, metric_x, metric_y)
|
|
fig = generate_pareto_plot(filtered, metric_x, metric_y)
|
|
summary = compute_pareto_summary(filtered, pareto_df, metric_x, metric_y)
|
|
# Return empty strings to clear the filter state and textbox.
|
|
return "", "", format_df(filtered), fig, summary
|
|
|
|
reset_filter_button.click(
|
|
fn=reset_filter,
|
|
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown],
|
|
outputs=[filter_state, filter_textbox, data_table, pareto_plot, summary_box],
|
|
)
|
|
|
|
gr.Markdown("## Export data")
|
|
# Export button for CSV download.
|
|
export_button = gr.Button("Export Filtered Data")
|
|
export_button.click(
|
|
fn=lambda task, model: export_csv(filter_data(task, model, df)),
|
|
inputs=[task_dropdown, model_dropdown],
|
|
outputs=csv_output,
|
|
)
|
|
|
|
demo.load(
|
|
fn=update_pareto_plot_and_summary,
|
|
inputs=[task_dropdown, model_dropdown, metric_x_dropdown, metric_y_dropdown, filter_state],
|
|
outputs=[pareto_plot, summary_box],
|
|
)
|
|
|
|
return demo
|
|
|
|
|
|
path = os.path.join(os.path.dirname(__file__), "MetaMathQA", "results")
|
|
df = load_df(path, task_name="MetaMathQA")
|
|
demo = build_app(df)
|
|
demo.launch()
|