mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
Add support for gptqmodel quantization. This is a replacement for auto-gptq. For now, both packages are supported, but since auto-gptq is no longer being developed, it will be deprecated and removed at some point in the future. --------- Signed-off-by: jiqing-feng <jiqing.feng@intel.com> Co-authored-by: LRL-ModelCloud <165116337+LRL-ModelCloud@users.noreply.github.com> Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai> Co-authored-by: ZX-ModelCloud <165115237+ZX-ModelCloud@users.noreply.github.com> Co-authored-by: LRL <lrl@lbx.dev> Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
184 lines
5.7 KiB
Python
184 lines
5.7 KiB
Python
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
from contextlib import contextmanager
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from accelerate.test_utils.testing import get_backend
|
|
|
|
from peft.import_utils import (
|
|
is_aqlm_available,
|
|
is_auto_awq_available,
|
|
is_auto_gptq_available,
|
|
is_eetq_available,
|
|
is_gptqmodel_available,
|
|
is_hqq_available,
|
|
is_optimum_available,
|
|
is_torchao_available,
|
|
)
|
|
|
|
|
|
torch_device, device_count, memory_allocated_func = get_backend()
|
|
|
|
|
|
def require_non_cpu(test_case):
|
|
"""
|
|
Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no
|
|
hardware accelerator available.
|
|
"""
|
|
return unittest.skipUnless(torch_device != "cpu", "test requires a hardware accelerator")(test_case)
|
|
|
|
|
|
def require_non_xpu(test_case):
|
|
"""
|
|
Decorator marking a test that should be skipped for XPU.
|
|
"""
|
|
return unittest.skipUnless(torch_device != "xpu", "test requires a non-XPU")(test_case)
|
|
|
|
|
|
def require_torch_gpu(test_case):
|
|
"""
|
|
Decorator marking a test that requires a GPU. Will be skipped when no GPU is available.
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
return unittest.skip("test requires GPU")(test_case)
|
|
else:
|
|
return test_case
|
|
|
|
|
|
def require_torch_multi_gpu(test_case):
|
|
"""
|
|
Decorator marking a test that requires multiple GPUs. Will be skipped when less than 2 GPUs are available.
|
|
"""
|
|
if not torch.cuda.is_available() or torch.cuda.device_count() < 2:
|
|
return unittest.skip("test requires multiple GPUs")(test_case)
|
|
else:
|
|
return test_case
|
|
|
|
|
|
def require_multi_accelerator(test_case):
|
|
"""
|
|
Decorator marking a test that requires multiple hardware accelerators. These tests are skipped on a machine without
|
|
multiple accelerators.
|
|
"""
|
|
return unittest.skipUnless(
|
|
torch_device != "cpu" and device_count > 1, "test requires multiple hardware accelerators"
|
|
)(test_case)
|
|
|
|
|
|
def require_bitsandbytes(test_case):
|
|
"""
|
|
Decorator marking a test that requires the bitsandbytes library. Will be skipped when the library is not installed.
|
|
"""
|
|
try:
|
|
import bitsandbytes # noqa: F401
|
|
|
|
test_case = pytest.mark.bitsandbytes(test_case)
|
|
except ImportError:
|
|
test_case = pytest.mark.skip(reason="test requires bitsandbytes")(test_case)
|
|
return test_case
|
|
|
|
|
|
def require_auto_gptq(test_case):
|
|
"""
|
|
Decorator marking a test that requires auto-gptq. These tests are skipped when auto-gptq isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_gptqmodel_available() or is_auto_gptq_available(), "test requires auto-gptq")(
|
|
test_case
|
|
)
|
|
|
|
|
|
def require_gptqmodel(test_case):
|
|
"""
|
|
Decorator marking a test that requires gptqmodel. These tests are skipped when gptqmodel isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_gptqmodel_available(), "test requires gptqmodel")(test_case)
|
|
|
|
|
|
def require_aqlm(test_case):
|
|
"""
|
|
Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_aqlm_available(), "test requires aqlm")(test_case)
|
|
|
|
|
|
def require_hqq(test_case):
|
|
"""
|
|
Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_hqq_available(), "test requires hqq")(test_case)
|
|
|
|
|
|
def require_auto_awq(test_case):
|
|
"""
|
|
Decorator marking a test that requires auto-awq. These tests are skipped when auto-awq isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_auto_awq_available(), "test requires auto-awq")(test_case)
|
|
|
|
|
|
def require_eetq(test_case):
|
|
"""
|
|
Decorator marking a test that requires eetq. These tests are skipped when eetq isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_eetq_available(), "test requires eetq")(test_case)
|
|
|
|
|
|
def require_optimum(test_case):
|
|
"""
|
|
Decorator marking a test that requires optimum. These tests are skipped when optimum isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_optimum_available(), "test requires optimum")(test_case)
|
|
|
|
|
|
def require_torchao(test_case):
|
|
"""
|
|
Decorator marking a test that requires torchao. These tests are skipped when torchao isn't installed.
|
|
"""
|
|
return unittest.skipUnless(is_torchao_available(), "test requires torchao")(test_case)
|
|
|
|
|
|
@contextmanager
|
|
def temp_seed(seed: int):
|
|
"""Temporarily set the random seed. This works for python numpy, pytorch."""
|
|
|
|
np_state = np.random.get_state()
|
|
np.random.seed(seed)
|
|
|
|
torch_state = torch.random.get_rng_state()
|
|
torch.random.manual_seed(seed)
|
|
|
|
if torch.cuda.is_available():
|
|
torch_cuda_states = torch.cuda.get_rng_state_all()
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
try:
|
|
yield
|
|
finally:
|
|
np.random.set_state(np_state)
|
|
|
|
torch.random.set_rng_state(torch_state)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state_all(torch_cuda_states)
|
|
|
|
|
|
def get_state_dict(model, unwrap_compiled=True):
|
|
"""
|
|
Get the state dict of a model. If the model is compiled, unwrap it first.
|
|
"""
|
|
if unwrap_compiled:
|
|
model = getattr(model, "_orig_mod", model)
|
|
return model.state_dict()
|