mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
#!/usr/bin/env python3
|
|
|
|
# coding=utf-8
|
|
# Copyright 2023-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from peft import LoraConfig, get_peft_model_state_dict, inject_adapter_in_model
|
|
from peft.utils import ModulesToSaveWrapper
|
|
|
|
|
|
class DummyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.embedding = torch.nn.Embedding(10, 10)
|
|
self.linear = torch.nn.Linear(10, 10)
|
|
self.linear2 = torch.nn.Linear(10, 10, bias=True)
|
|
self.lm_head = torch.nn.Linear(10, 10)
|
|
|
|
def forward(self, input_ids):
|
|
x = self.embedding(input_ids)
|
|
x = self.linear(x)
|
|
x = self.lm_head(x)
|
|
return x
|
|
|
|
|
|
class TestPeft(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model = DummyModel()
|
|
|
|
lora_config = LoraConfig(
|
|
lora_alpha=16,
|
|
lora_dropout=0.1,
|
|
r=64,
|
|
bias="none",
|
|
target_modules=["linear"],
|
|
)
|
|
|
|
self.model = inject_adapter_in_model(lora_config, self.model)
|
|
|
|
def test_inject_adapter_in_model(self):
|
|
dummy_inputs = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]])
|
|
_ = self.model(dummy_inputs)
|
|
|
|
for name, module in self.model.named_modules():
|
|
if name == "linear":
|
|
assert hasattr(module, "lora_A")
|
|
assert hasattr(module, "lora_B")
|
|
|
|
def test_get_peft_model_state_dict(self):
|
|
peft_state_dict = get_peft_model_state_dict(self.model)
|
|
|
|
for key in peft_state_dict.keys():
|
|
assert "lora" in key
|
|
|
|
def test_modules_to_save(self):
|
|
self.model = DummyModel()
|
|
|
|
lora_config = LoraConfig(
|
|
lora_alpha=16,
|
|
lora_dropout=0.1,
|
|
r=64,
|
|
bias="none",
|
|
target_modules=["linear"],
|
|
modules_to_save=["embedding", "linear2"],
|
|
)
|
|
|
|
self.model = inject_adapter_in_model(lora_config, self.model)
|
|
|
|
for name, module in self.model.named_modules():
|
|
if name == "linear":
|
|
assert hasattr(module, "lora_A")
|
|
assert hasattr(module, "lora_B")
|
|
elif name in ["embedding", "linear2"]:
|
|
assert isinstance(module, ModulesToSaveWrapper)
|
|
|
|
state_dict = get_peft_model_state_dict(self.model)
|
|
|
|
assert "embedding.weight" in state_dict.keys()
|
|
|
|
assert hasattr(self.model.embedding, "weight")
|
|
|
|
assert hasattr(self.model.linear2, "weight")
|
|
assert hasattr(self.model.linear2, "bias")
|