Files
peft/tests/test_seq_classifier.py
ppetrushkov ce5c2044f1 FEAT RoAd: 2D Rotary Adaptation (#2678)
Implements RoAd from https://arxiv.org/pdf/2409.00119

Supports mixed adapter batches.
2025-08-19 15:45:38 +02:00

298 lines
9.4 KiB
Python

# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License governing permissions and limitations under the License.
import pytest
import torch
from transformers import AutoModelForSequenceClassification
from peft import (
AdaLoraConfig,
BOFTConfig,
BoneConfig,
C3AConfig,
FourierFTConfig,
HRAConfig,
IA3Config,
LoraConfig,
MissConfig,
OFTConfig,
PrefixTuningConfig,
PromptEncoderConfig,
PromptTuningConfig,
PromptTuningInit,
RoadConfig,
ShiraConfig,
VBLoRAConfig,
VeraConfig,
get_peft_model,
)
from peft.utils.other import ModulesToSaveWrapper
from .testing_common import PeftCommonTester
from .testing_utils import hub_online_once
PEFT_SEQ_CLS_MODELS_TO_TEST = [
"hf-internal-testing/tiny-random-BertForSequenceClassification",
"hf-internal-testing/tiny-random-RobertaForSequenceClassification",
"trl-internal-testing/tiny-LlamaForSequenceClassification-3.2",
]
ALL_CONFIGS = [
(
AdaLoraConfig,
{
"task_type": "SEQ_CLS",
"target_modules": None,
"total_step": 1,
},
),
(
BOFTConfig,
{
"task_type": "SEQ_CLS",
"target_modules": None,
},
),
(
BoneConfig,
{
"task_type": "SEQ_CLS",
"target_modules": None,
"r": 2,
},
),
(
MissConfig,
{
"task_type": "SEQ_CLS",
"target_modules": None,
"r": 2,
},
),
(
FourierFTConfig,
{
"task_type": "SEQ_CLS",
"n_frequency": 10,
"target_modules": None,
},
),
(
HRAConfig,
{
"task_type": "SEQ_CLS",
"target_modules": None,
},
),
(
IA3Config,
{
"task_type": "SEQ_CLS",
"target_modules": None,
"feedforward_modules": None,
},
),
(
LoraConfig,
{
"task_type": "SEQ_CLS",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
},
),
# LoRA + trainable tokens
(
LoraConfig,
{
"task_type": "SEQ_CLS",
"r": 8,
"lora_alpha": 32,
"target_modules": None,
"lora_dropout": 0.05,
"bias": "none",
"trainable_token_indices": [0, 1, 3],
},
),
(
OFTConfig,
{
"task_type": "SEQ_CLS",
"target_modules": None,
},
),
(
PrefixTuningConfig,
{
"task_type": "SEQ_CLS",
"num_virtual_tokens": 10,
},
),
(
PromptEncoderConfig,
{
"task_type": "SEQ_CLS",
"num_virtual_tokens": 10,
"encoder_hidden_size": 32,
},
),
(
PromptTuningConfig,
{
"task_type": "SEQ_CLS",
"num_virtual_tokens": 10,
},
),
(
RoadConfig,
{
"task_type": "SEQ_CLS",
"variant": "road_1",
"group_size": 2,
},
),
(
ShiraConfig,
{
"r": 1,
"task_type": "SEQ_CLS",
"target_modules": None,
"init_weights": False,
},
),
(
VBLoRAConfig,
{
"task_type": "SEQ_CLS",
"target_modules": None,
"vblora_dropout": 0.05,
"vector_length": 1,
"num_vectors": 2,
},
),
(
VeraConfig,
{
"task_type": "SEQ_CLS",
"r": 8,
"target_modules": None,
"vera_dropout": 0.05,
"projection_prng_key": 0xFF,
"d_initial": 0.1,
"save_projection": True,
"bias": "none",
},
),
(
C3AConfig,
{
"task_type": "SEQ_CLS",
"block_size": 1,
"target_modules": None,
},
),
]
class TestSequenceClassificationModels(PeftCommonTester):
r"""
Tests for basic coverage of AutoModelForSequenceClassification and classification-specific cases. Most of the
functionality is probably already covered by other tests.
"""
transformers_class = AutoModelForSequenceClassification
def skipTest(self, reason=""):
# for backwards compatibility with unittest style test classes
pytest.skip(reason)
def prepare_inputs_for_testing(self):
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs):
self._test_model_attr(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_adapter_name(self, model_id, config_cls, config_kwargs):
self._test_adapter_name(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs):
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_prompt_tuning_text_prepare_for_training(self, model_id, config_cls, config_kwargs):
if config_cls != PromptTuningConfig:
pytest.skip(f"This test does not apply to {config_cls}")
config_kwargs = config_kwargs.copy()
config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT
config_kwargs["prompt_tuning_init_text"] = "This is a test prompt."
config_kwargs["tokenizer_name_or_path"] = model_id
self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False)
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(
model_id, config_cls, config_kwargs.copy(), safe_serialization=False
)
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs):
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy())
@pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST)
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS)
def test_modules_to_save_correctly_set(self, model_id, config_cls, config_kwargs):
# tests for a regression, introduced via #2220, where modules_to_save was not applied to prompt learning methods
with hub_online_once(model_id):
model = self.transformers_class.from_pretrained(model_id)
config = config_cls(
base_model_name_or_path=model_id,
**config_kwargs,
)
model = get_peft_model(model, config)
base_model = model.get_base_model()
# classifier layer is called either "classifier" or "score"
classifier = getattr(base_model, "classifier", getattr(base_model, "score", None))
if classifier is None:
raise ValueError(f"Could not determine classifier layer name for {model_id}, please fix the test")
assert isinstance(classifier, ModulesToSaveWrapper)