mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 23:43:47 +08:00
This PR migrates Activated LoRA (aLoRA) support from a standalone Github (see above) to PEFT itself. Note there is also an active PR for vLLM inference support for Activated LoRA: vllm-project/vllm#19710 . There are also collections of aLoRA models on huggingface (in the ibm-granite org), note that these preexisting models run off of the standalone github repo and will be updated to work with this new PEFT feature if merged. Description of changes: Activated LoRA is a modification of the LoRA architecture to "activate" the adapter weights only on tokens coming after a specified invocation_string. This fact makes it so that KV values for the string coming before the activation matches KV values for the base model. This allows KV cache for the input to be interchangeable between the base model and adapter model, and allows for major speedups in inference pipelines (e.g. agentic pipelines) that want to use both base models and adapter models. See the paper for detailed exploration of use cases and further elaboration. Other notes: The crux of the changes are really in layer.py. Everything else is simply managing the alora_offsets quantity which defines where the weights start to be activated. This is determined by scanning input strings for the invocation_string defined in the aLoraConfig. I believe that aLoRA really only makes sense for CausalLMs, hence I've only implemented this for that model type. Merging doesn't make sense for aLoRA adapters since the weights are not universally applied to all tokens. I used the LoRA code as a starting point, but did not implement various seemingly extra features in that code. As of now, invocation_string should probably start and end with special tokens, to avoid tokenizer issues at the boundary. Open to suggestions on how to make this more general if needed. --------- Co-authored-by: githubnemo <githubnemo@users.noreply.github.com>
268 lines
11 KiB
Python
268 lines
11 KiB
Python
# Copyright 2025-present the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
|
|
from peft import LoraConfig, get_peft_model
|
|
from peft.tuners.lora.layer import Conv1d as LoraConv1d
|
|
from peft.tuners.lora.layer import Conv2d as LoraConv2d
|
|
from peft.tuners.lora.layer import Embedding as LoraEmbedding
|
|
from peft.tuners.lora.layer import Linear as LoraLinear
|
|
from peft.tuners.lora.variants import (
|
|
ALoraLinearVariant,
|
|
DoraConv1dVariant,
|
|
DoraConv2dVariant,
|
|
DoraEmbeddingVariant,
|
|
DoraLinearVariant,
|
|
calculate_alora_offsets,
|
|
get_alora_offsets_for_forward,
|
|
get_alora_offsets_for_generate,
|
|
)
|
|
|
|
|
|
# Custom model featuring embeddings and a 'visual stack'
|
|
class CustomModel(nn.Module):
|
|
"""pytorch module that contains common targetable layers (linear, embedding, conv, ...)"""
|
|
|
|
def __init__(self, num_embeddings=100, embedding_dim=16, num_classes=10):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
|
self.conv1d = nn.Conv1d(in_channels=embedding_dim, out_channels=32, kernel_size=3, padding=1)
|
|
self.conv2d = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
|
|
self.flatten = nn.Flatten()
|
|
self.dummy_conv1d_output_dim = 32 * 10
|
|
self.dummy_conv2d_output_dim = 16 * 10 * 10
|
|
self.linear1 = nn.Linear(self.dummy_conv1d_output_dim + self.dummy_conv2d_output_dim, 64)
|
|
self.linear2 = nn.Linear(64, num_classes)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, input_ids, dummy_image_input):
|
|
# Path 1: Embedding -> Conv1d
|
|
x1 = self.embedding(input_ids) # (batch_size, seq_len, embedding_dim)
|
|
x1 = x1.transpose(1, 2) # (batch_size, embedding_dim, seq_len)
|
|
x1 = self.relu(self.conv1d(x1)) # (batch_size, 32, seq_len)
|
|
x1_flat = self.flatten(x1)
|
|
# Path 2: Conv2d -> Linear
|
|
x2 = self.relu(self.conv2d(dummy_image_input)) # (batch_size, 16, H, W)
|
|
x2_flat = self.flatten(x2) # (batch_size, 16*H*W)
|
|
# Combine or select paths if making a functional model.
|
|
# For this test, we mainly care about layer types, so forward might not be fully executed.
|
|
# Let's use x2_flat for subsequent linear layers.
|
|
output = self.relu(self.linear1(torch.concat([x1_flat, x2_flat], dim=1)))
|
|
output = self.linear2(output)
|
|
return output
|
|
|
|
|
|
# Used for testing alora_offsets for aLoRA
|
|
class DummyLM(nn.Module):
|
|
def __init__(self, vocab_size: int = 10, hidden_dim: int = 8):
|
|
super().__init__()
|
|
self.embed = nn.Embedding(vocab_size, hidden_dim)
|
|
self.linear = nn.Linear(hidden_dim, vocab_size)
|
|
|
|
def forward(self, X=None, embeds=None, num_beams=None, alora_offsets=None):
|
|
if X is not None:
|
|
embeds = self.embed(X)
|
|
return self.linear(embeds)
|
|
|
|
|
|
class MockTransformerWrapper:
|
|
"""Mock class to behave like a transformers model.
|
|
|
|
This is needed because the tests initialize the model by calling transformers_class.from_pretrained.
|
|
|
|
"""
|
|
|
|
@classmethod
|
|
def from_pretrained(cls):
|
|
# set the seed so that from_pretrained always returns the same model
|
|
torch.manual_seed(0)
|
|
|
|
torch_dtype = torch.float32
|
|
|
|
return DummyLM().to(torch_dtype)
|
|
|
|
|
|
VARIANT_MAP = {
|
|
"dora": {
|
|
LoraLinear: DoraLinearVariant,
|
|
LoraEmbedding: DoraEmbeddingVariant,
|
|
LoraConv1d: DoraConv1dVariant,
|
|
LoraConv2d: DoraConv2dVariant,
|
|
},
|
|
"alora": {
|
|
LoraLinear: ALoraLinearVariant,
|
|
},
|
|
}
|
|
|
|
|
|
TEST_CASES = [
|
|
(
|
|
"dora",
|
|
LoraConfig,
|
|
{"target_modules": ["linear1", "linear2", "conv1d", "conv2d", "embedding"], "use_dora": True},
|
|
),
|
|
(
|
|
"alora",
|
|
LoraConfig,
|
|
{"target_modules": ["linear1", "linear2"], "alora_invocation_tokens": [1]},
|
|
),
|
|
]
|
|
|
|
|
|
class TestLoraVariants:
|
|
@pytest.mark.parametrize("variant_name, config_cls, config_kwargs", TEST_CASES)
|
|
def test_variant_is_applied_to_layers(self, variant_name, config_cls, config_kwargs):
|
|
# This test assumes that targeting and replacing layers works and that after `get_peft_model` we
|
|
# have a model with LoRA layers. We just make sure that each LoRA layer has its variant set and
|
|
# it is also the correct variant for that layer.
|
|
base_model = CustomModel()
|
|
peft_config = config_cls(**config_kwargs)
|
|
peft_model = get_peft_model(base_model, peft_config)
|
|
|
|
layer_type_map = VARIANT_MAP[variant_name]
|
|
|
|
for _, module in peft_model.named_modules():
|
|
if not hasattr(module, "lora_variant"):
|
|
continue
|
|
|
|
# Note that not every variant supports every layer. If it is not mapped it is deemed unsupported and
|
|
# will not be tested.
|
|
expected_variant_type = layer_type_map.get(type(module), None)
|
|
if not expected_variant_type:
|
|
continue
|
|
|
|
assert isinstance(module.lora_variant["default"], expected_variant_type)
|
|
|
|
def custom_model_with_loss_backpropagated(self, peft_config):
|
|
"""Returns the CustomModel + PEFT model instance with a dummy loss that was backpropagated once."""
|
|
base_model = CustomModel()
|
|
peft_model = get_peft_model(base_model, peft_config)
|
|
|
|
x, y = torch.ones(10, 10).long(), torch.ones(10, 1, 10, 10)
|
|
out = peft_model(x, y)
|
|
loss = out.sum()
|
|
loss.backward()
|
|
|
|
return base_model, peft_model
|
|
|
|
def test_dora_params_have_gradients(self):
|
|
"""Ensure that the parameters added by the DoRA variant are participating in the output computation."""
|
|
layer_names = ["linear1", "linear2", "conv1d", "conv2d", "embedding"]
|
|
peft_config = LoraConfig(target_modules=layer_names, use_dora=True)
|
|
base_model, peft_model = self.custom_model_with_loss_backpropagated(peft_config)
|
|
|
|
for layer in layer_names:
|
|
assert getattr(peft_model.base_model.model, layer).lora_magnitude_vector["default"].weight.grad is not None
|
|
|
|
|
|
class TestActivatedLora:
|
|
@pytest.mark.parametrize(
|
|
"input_ids, alora_invocation_tokens, expected_offsets",
|
|
[
|
|
([[0, 1, 2, 3], [0, 4, 5, 6]], [1, 2], [3, None]),
|
|
([[1, 2, 1, 2], [0, 4, 1, 2]], [1, 2], [2, 2]),
|
|
([[1, 2, 3, 4], [0, 4, 1, 4]], [1, 2], [4, None]),
|
|
([[1, 2, 3, 4]], None, [None]),
|
|
],
|
|
)
|
|
# Verify alora_offsets are calculated correctly
|
|
def test_calculate_alora_offsets(self, input_ids, alora_invocation_tokens, expected_offsets):
|
|
config = LoraConfig(alora_invocation_tokens=alora_invocation_tokens)
|
|
peft_config = {"default": config}
|
|
|
|
# compute offsets
|
|
offsets = calculate_alora_offsets(peft_config, "default", torch.tensor(input_ids))
|
|
|
|
assert offsets == expected_offsets
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_ids, alora_invocations, expected_offsets",
|
|
[
|
|
([[0, 1, 1], [0, 2, 2]], {"a1": [1], "a2": [2]}, [1, 1]),
|
|
([[0, 1, 1], [0, 2, 2]], {"a1": [1], "a2": None}, [1, None]),
|
|
],
|
|
)
|
|
# Verify alora_offsets are correct with adapter names
|
|
def test_calculate_alora_offsets_with_adapter_names(self, input_ids, alora_invocations, expected_offsets):
|
|
peft_config = {}
|
|
for alora_name in alora_invocations.keys():
|
|
peft_config[alora_name] = LoraConfig(alora_invocation_tokens=alora_invocations[alora_name])
|
|
|
|
adapter_names = list(alora_invocations.keys())
|
|
offsets = calculate_alora_offsets(
|
|
peft_config, adapter_names[0], torch.tensor(input_ids), adapter_names=adapter_names
|
|
)
|
|
|
|
assert offsets == expected_offsets
|
|
|
|
# Verify that the adapter does not modify outputs prior to invocation point
|
|
def test_alora_activation_matches_base_until_invocation(self):
|
|
transformers_class = MockTransformerWrapper
|
|
base_model = transformers_class.from_pretrained()
|
|
cfg = LoraConfig(target_modules=["linear"], alora_invocation_tokens=[2], init_lora_weights=False)
|
|
lora_model = get_peft_model(base_model, cfg)
|
|
lora_model.eval()
|
|
|
|
input_ids = torch.tensor([[0, 1, 2, 3]])
|
|
start = 2
|
|
with lora_model.disable_adapter():
|
|
with torch.no_grad():
|
|
base_out = lora_model(X=input_ids)
|
|
|
|
kwargs = get_alora_offsets_for_forward(lora_model, input_ids)
|
|
with torch.no_grad():
|
|
lora_out = lora_model(X=input_ids, **kwargs)
|
|
assert torch.allclose(lora_out[:, :start], base_out[:, :start])
|
|
assert not torch.allclose(lora_out[:, start:], base_out[:, start:])
|
|
|
|
# Verify that warning is given for alora when providing embeddings only
|
|
def test_input_embeds_warning(self):
|
|
transformers_class = MockTransformerWrapper
|
|
base_model = transformers_class.from_pretrained()
|
|
cfg = LoraConfig(target_modules=["linear"], alora_invocation_tokens=[2], init_lora_weights=False)
|
|
lora_model = get_peft_model(base_model, cfg)
|
|
lora_model.eval()
|
|
|
|
input_ids = torch.tensor([[0, 1, 2, 3]])
|
|
input_embeds = base_model.embed(input_ids)
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="Cannot calculate aLoRA offsets when only inputs_embeds are provided. Disabling aLoRA for this forward pass.",
|
|
):
|
|
kwargs = get_alora_offsets_for_forward(lora_model, inputs_embeds=input_embeds)
|
|
assert kwargs.get("alora_offsets") is None
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="Cannot calculate aLoRA offsets during generate as input_ids are not available. Disabling aLoRA.",
|
|
):
|
|
kwargs = get_alora_offsets_for_generate(lora_model, inputs_embeds=input_embeds)
|
|
assert kwargs.get("alora_offsets") is None
|
|
|
|
# Verify that error is raised when requesting num_beams > 1 for alora
|
|
def test_num_beams_error(self):
|
|
transformers_class = MockTransformerWrapper
|
|
base_model = transformers_class.from_pretrained()
|
|
cfg = LoraConfig(target_modules=["linear"], alora_invocation_tokens=[2], init_lora_weights=False)
|
|
lora_model = get_peft_model(base_model, cfg)
|
|
lora_model.eval()
|
|
|
|
input_ids = torch.tensor([[0, 1, 2, 3]])
|
|
with pytest.raises(ValueError) as e:
|
|
with torch.no_grad():
|
|
lora_out = lora_model(X=input_ids, num_beams=2, alora_offsets=[3])
|
|
assert "Beam search not yet supported for aLoRA." in str(e.value)
|