# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import torch from torch import nn from peft.import_utils import is_bnb_available from peft.optimizers import create_loraplus_optimizer from .testing_utils import require_bitsandbytes, torch_device if is_bnb_available(): import bitsandbytes as bnb class SimpleNet(nn.Module): def __init__(self, bias=True): super().__init__() self.embedding = nn.Embedding(100, 20) self.layer_norm = nn.LayerNorm(20) self.lin0 = nn.Linear(20, 20, bias=bias) self.relu = nn.ReLU() self.lin1 = nn.Linear(20, 16, bias=bias) def forward(self, X): X = self.lin0(self.layer_norm(self.embedding(X))) X = self.relu(X) X = self.lin1(X) return X @require_bitsandbytes def test_lora_plus_helper_sucess(): model = SimpleNet() optimizer_cls = bnb.optim.Adam8bit lr = 5e-5 optim_config = { "eps": 1e-6, "betas": (0.9, 0.999), "loraplus_weight_decay": 0.0, } loraplus_lr_ratio = 1.2 loraplus_lr_embedding = 1e-6 optim = create_loraplus_optimizer( model=model, optimizer_cls=optimizer_cls, lr=lr, loraplus_lr_ratio=loraplus_lr_ratio, loraplus_lr_embedding=loraplus_lr_embedding, **optim_config, ) assert optim is not None assert len(optim.param_groups) == 4 assert optim.param_groups[0]["lr"] == lr assert optim.param_groups[1]["lr"] == loraplus_lr_embedding assert optim.param_groups[2]["lr"] == optim.param_groups[3]["lr"] == (lr * loraplus_lr_ratio) @require_bitsandbytes def test_lora_plus_optimizer_sucess(): """ Test if the optimizer is correctly created and step function runs without any exception """ optimizer_cls = bnb.optim.Adam8bit optim_config = { "eps": 1e-6, "betas": (0.9, 0.999), "loraplus_weight_decay": 0.0, } model: SimpleNet = SimpleNet().to(torch_device) optim = create_loraplus_optimizer( model=model, optimizer_cls=optimizer_cls, lr=5e-5, loraplus_lr_ratio=1.2, loraplus_lr_embedding=1e-6, **optim_config, ) loss = torch.nn.CrossEntropyLoss() bnb.optim.GlobalOptimManager.get_instance().register_parameters(model.parameters()) x = torch.randint(100, (2, 4, 10)).to(torch_device) output = model(x).permute(0, 3, 1, 2) label = torch.randint(16, (2, 4, 10)).to(torch_device) loss_value = loss(output, label) loss_value.backward() optim.step()