Compare commits

...

102 Commits

Author SHA1 Message Date
e6cd24c907 Release v0.12.0 (#1946)
Also: Fix small error in doc: mentions wrong version
2024-07-24 13:13:40 +02:00
05f57e94ef PiSSA, OLoRA: Delete initial adapter after conversion instead of the active adapter (#1933)
Resolves #1860

As discussed in that issue, it's not user friendly to delete the default
adapter of a PiSSA/OLoRA model after calling save_pretrained with weight
conversion. Instead, it is much more intuitive to delete the initial
adapter instead, since it is loaded inside the method and not by the
user, so it's really an implementation detail.

Apart from this, I made the following related changes:

- Put everything in a try ... finally to ensure that the initial adapter
  does not hang around if there is an error (thus not hogging memory).
- Renamed initial_adapter to initial_adapter_name, to make it clear that
  this is the name and not the adapter itself.
2024-07-24 12:55:56 +02:00
2ce83e05c1 FIX Decrease memory overhead of merging (#1944) 2024-07-23 20:24:05 +02:00
ebcd0792b8 [WIP] ENH Add support for Qwen2 (#1906)
* [WIP] ENH Add support for Qwen2

Add Qwen2 to default target modules, use tiny Qwen2 in tests.

* Add target_modules for FourierFT

* Skip Qwen2 + weighted combination test

It fails when SVD is involved. See:
https://github.com/huggingface/peft/pull/1901#issuecomment-2235731685

---------

Co-authored-by: BenjaminBossan <b.bossan@gmail.com>
2024-07-23 15:04:13 +05:30
ba75bb14d1 FIX: More VeRA tests, fix tests, more checks (#1900)
* FIX More VeRA tests, fix tests, more checks

- Fixes incorrect config for VeRA in a test
- Add VeRA to multi-adapter tests
- Add more checks on the VeRA A/B shapes

The latter becomes necessary when we add more than one VeRA adapter. The
shapes for VeRA A and B are only determined once, when the first VeRA
adapter is created. After that, they are fixed. However, users may add a
second VeRA adapter. As long as that adapter targets the same layers and
has the same rank, we're good. But if it targets other, bigger layers,
or if it has increased rank, the shapes of VeRA A and/or VeRA B will be
too small, resulting in an error during the forward pass. To prevent
this, we already check the shapes during initialization of the new
adapter and raise an error right away.

* Revier feedback: wording, better error message

* Reviewer feedback: Clarify tests

---------

Co-authored-by: BenjaminBossan <b.bossan@gmail.com>
2024-07-22 19:12:15 +05:30
6472061a76 FIX Prefix tuning Grouped-Query Attention (#1901)
Fix prefix tuning when GQA is being used.
2024-07-22 11:46:24 +02:00
e02b938e02 FIX PiSSA & OLoRA with rank/alpha pattern, rslora (#1930)
* FIX PiSSA & OLoRA with rank/alpha pattern, rslora

See https://github.com/huggingface/peft/issues/1929#issuecomment-2230780802

At the moment, when using PiSSA or OLoRA with weight conversion to
restore the original base weights, there is an error when either of
rank_pattern, alpha_pattern, or rslora is being used. This PR fixes
this.

The issue is that we need to double the rank of the LoRA adapter. Right
now, this is done by simply doubling r and alpha. But if rank_pattern
and alpha_pattern are being used, those need to be doubled too.

Furthermore, when using rslora, the scaling is again different, namely
alpha / sqrt(r). This also needs to be adjusted.

Unfortunately, when using rslora with rank_pattern and alpha_pattern,
this gets way more complicated. Since we don't store the scaling in the
state_dict, we would have to resolve all the patterns here to determine
the correct scaling, i.e. reimplement the whole matching and init logic.
This is a lot of work for a very edgy edge case.

Therefore, I opted to raise an error instead. This is not super nice, as
the error is only raised when trying to save the model, i.e. a lot of
time may already have been spent to train the model. But we cannot know
this earlier, so not much can be done.

Overall, this fix is ugly because it further couples unrelated code. For
instance, if we add new init methods that affect the scaling, we need to
remember to change the saving logic accordingly. If anyone has a better
idea, LMK.

* Make style

* Also warn during init if there is a potential

... for saving not to work

* Ensure that GPU tests are run for PiSSA+OLoRA

* Use renamed argument name

* Make style

* Reviewer feedback: Better document the change

* Add clarifying comments to tests
2024-07-19 14:53:38 +05:30
5268495213 FEAT Add HRA: Householder Reflection Adaptation (#1864)
Implements method from https://arxiv.org/abs/2405.17484.
2024-07-16 14:37:32 +02:00
2aaf9cedbb ENH Sync LoRA tp_layer methods with vanilla LoRA (#1919) 2024-07-16 10:39:36 +02:00
a019f8690d FIX sft script print_trainable_parameters attr lookup (#1928) 2024-07-15 17:09:14 +02:00
2a6402f4b2 DOC Fix typo of encoder_reparameterization_type (#1926) 2024-07-15 12:06:12 +02:00
e72a96f7cf FEAT Add FourierFT Support (#1838)
Add Parameter-Efficient Fine-Tuning with Discrete Fourier Transform

https://arxiv.org/abs/2405.03003

---------

Co-authored-by: zqgao22 <zgaoat@connect.ust.hk>
Co-authored-by: Chaos96 <wangqch7@mail2.sysu.edu.cn>
Co-authored-by: DSAILatHKUST <dsailathkust@163.com>
2024-07-09 12:20:01 +02:00
48e136d9bd FIX: Flaky multitask prompt tuning test fixed by setting the seed (#1908)
Set the seed for test test_generate_text_with_other_init and 
test_generate_text_with_random_init because otherwise they are
flaky and fail with ~5% probability. Explanation in comment.
2024-07-09 10:05:10 +02:00
58afb34ea0 FEAT Integrate X-LoRA (#1491)
Implements X-LoRA: Mixture of Low-Rank Adapter Experts
Paper: https://arxiv.org/abs/2402.07148
2024-07-05 12:38:18 +02:00
01f1b992eb Example: DNA Language Model. (#1873) 2024-07-05 11:55:26 +02:00
09358aad30 Chore: Docs markdown formatting (#1899) 2024-07-03 18:12:53 +02:00
31c0d85755 FIX DeepSpeed recursion error (#1892)
Happened when accessing attribute before init.
2024-07-03 18:07:31 +02:00
018a1f49c4 FIX TEST Even higher tolerance for AdaLoRA in test (#1898)
See #1897 for more context. The test is still flaky, increasing
tolerance further.
2024-07-02 12:36:03 +02:00
1e2258d7f7 ENH Ephemeral GPU offload support for DoRA (#1857)
Adds the concept of ephemeral GPU offloading, i.e. where data in compute
intense operations is copied onto the GPU before the operation is
performed, after which the result is put back on CPU memory.

This PR adds support in the DoRA initialization code, but the approach
can be applied in a number of places: when the size of the data compared
to the time to perform the operation on CPU memory is heavily time
dominant, using ephemeral transfers has a fairly small VRAM overhead
(depending on the size of the model/adapter) with orders of magnitude
speed-up in certain operations.

For example, a Llama3-8B DoRA adapter with r=64 would put an overhead of
2 x (64 x 4096 x 2 + 4096 x 4096) bytes (assuming fp16), i.e. 33 MB or
so. A Llama3-70B adapter with r=32 would have 2 x (32 x 8192 x 2 + 8192
x 8192) bytes =130 MB.

By making use of ephemeral GPU offloading, more efficient juggling of
data between GPU and CPU may become possible, i.e. where instead of
always loading as much as we can onto the GPU and then endure the CPU
slowness for whatever happens to not fit in there, we intentionally
leave a (modest) chunk of VRAM for optimizations like these, and the end
result is a much (MUCH) faster experience.
2024-07-02 12:17:45 +02:00
1e5227ff90 TST Bump absolute tolerance for test (#1891)
The test test_4bit_lora_mixed_adapter_batches_lora allclose can fail on
some systems, even though it passes on others (like CI). Increase the
tolerance slightly to get rid of this.
2024-07-02 11:37:43 +02:00
62122b5add FIX TEST Higher tolerance for AdaLoRA in test (#1897)
The test is flaky on CI, so this PR increases the tolerance to hopefully
fix the flakines. I cannot reproduce the error locally (neither on GPU
nor CPU), so I'm not 100% sure if this tolerance is enough to make the
test reliable.
2024-07-01 15:42:10 +02:00
9dc53b8fd5 CI Don't fail fast in test matrix (#1896)
Currently, we have fail-fast enabled (the default). Although this is
generally reasonable -- if a test fails in one setting, we probably get
the same failure in other settings -- it is currently an impediment.
This is because we get occasional timeouts when loading models from the
Hub. With fail-fast enabled, if a single setting fails because of
timeouts, all other runs are cancelled, even if they would have passed.
Then we need to retrigger all of them again, creating even more pressure
on the Hub. With fail-fast disabled, we give those other runs a chance
to pass successfully.
2024-07-01 15:04:02 +02:00
db8b76fdb5 DOC DoRA example script & notebook (#1885) 2024-06-28 12:05:53 +02:00
7ffa43b16e FIX Avoid early import of torch extension by BOFT (#1879) 2024-06-26 17:25:26 +02:00
27bc3054a3 FIX sft script: only print trainable params if peft (#1888) 2024-06-26 12:02:35 +02:00
184beaf1d6 FIX Make special LoRA inits DeepSpeed compatible (#1887)
Resolves https://github.com/huggingface/accelerate/issues/2886

Possibly resolves
https://github.com/huggingface/peft/issues/896#issuecomment-2172455458

Some LoRA init methods need to access the base layer weight. Getting
this access can fail or stall in distributed settings. For DeepSpeed,
the weight is now gathered before trying to access it.

Note: Without DeepSpeed, this is a no-op and should thus not have any
disadvantage. We don't have DS in our CI, so this is not tested.

I also made some small changes to OLoRA init to use
self.get_base_layer() instead of self.base_layer.
2024-06-26 11:25:54 +02:00
c9b19bb8f3 FIX Init AdaLoRA to be identity transform (#1884)
Resolves #1836

There was an accidental change in a previous PR that initialized lora_E
as normal, when it should be zeros.
2024-06-25 13:33:28 +02:00
ef23712b13 ENH: LoRA support for dynamically dispatching to custom layers (#1875)
Description

This is an experimental feature with a private API for now. If this
feature finds adoption, I will work on adding an official API.

With this PR, we allow users to register their own LoRA layer types.
This way, they can add their own support for hitherto unsupported layer
types, say nn.Conv3d or nn.LSTM. Without this PR, they can only do that
by creating a PR on PEFT with support for this new type and getting it
merged.

The custom dispatch mechanism also allows users to override existing
layer type mapping. This way, they can, for instance, provide their own
lora.Linear layer type, instead of using the one from PEFT, to adapt
nn.Linear layers.

Implementation

The implementation required only very few changes because we already
have a mechanism for dynamic dispatching for LoRA. It is currently used,
for instance, to dynamically add quantized target layers in case the
right quantization library is installed.

This existing mechanism is now extended to include user provided LoRA
layers if those were passed. These are checked first before checking the
default PEFT supported layers.

What's missing for this to become an official API?

Right now, the main reason why this cannot be an official API is the
question of how to persist the config. In the current implementation, we
add an attribute that is a mapping from target layer type to LoRA layer
type:

config._custom_modules == {CustomBaseLayer: CustomLoraLayer}

The entries of this dict are Python classes. Therefore, they cannot be
json-serialized. We could think of possible solutions how to serialize
and deserialize custom Python objects, but this is not trivial and
potentially a security risk. Thus I would only really start working on
this if the demand is sufficiently high. At that point, I would also add
a public API instead of requiring the use of a private API.

As is, users can still save and load PEFT models with custom LoRA
layers, they only need to add two lines of code to their scripts, as
documented.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-06-25 11:02:43 +02:00
d716adf31c Update bug-report.yml (#1882) 2024-06-21 16:45:44 +02:00
d37dde61e1 FIX Error when using VeRA with fp16 or bf16 (#1874)
The issue was that we didn't consider BufferDict when auto-casting the
adapter weights to float32 in PR #1706. This has now been addressed.

As #1706 was merged after the latest release, this bug should only
affect users who install from main, so a patch release should not be
needed.

As part of this PR, I also moved the buffer_dict.py up from
peft/tuners/vera to peft/tuners/ (with underscore to make it super clear
that this is not for public usage). This is because we need to use it
several times on a higher level than VeRA.
2024-06-19 13:21:17 +02:00
5364351446 CI Downgrade numpy to <2.0 for Mac and Windows (#1871) 2024-06-18 13:47:29 +02:00
717db6e1c2 CI testing BNB: remove single GPU tests (#1866)
CI testing BNB: remove single GPU tests

In #1859, we checked removing the import checks, but the single-GPU BNB
multi-backend branch is still stuck. Therefore, check commenting the next
step instead.

Also, add timeout of 60 min. Successful jobs currently take ~30 min. Default
timeout is 360 minutes.
2024-06-18 10:34:24 +02:00
5194aef509 Attempt to fix the red messages (#1868) 2024-06-17 15:34:31 +02:00
25c0fe9a55 FIX fix multitask prompt tuning paper link (#1862) 2024-06-17 10:57:34 +02:00
e0e8204bc3 Update lora_based_methods.md (#1861)
fixed typo in instructions for peft inference
2024-06-17 10:57:27 +02:00
076561bbd3 CI Testing: Remove bnb import check (#1859) 2024-06-14 18:02:27 +02:00
efda766f51 DOC Move helpers section to dev developer guide (#1856)
It was in the "Adapters" section, which doesn't really fit.
2024-06-13 12:44:25 +02:00
d608f8329a DOC FIX Comment about init of LoRA Embedding (#1855)
Fixes #1728
2024-06-13 11:58:26 +02:00
19461353aa Update nightly-bnb.yml (#1854) 2024-06-13 11:40:40 +02:00
3831e06ab5 FIX: Adalora ranknum loaded on wrong device (#1852)
Locally, multiple AdaLoRA-related tests are failing. We did not catch
this in the nightly run because the tests were missing the necessary
pytest marker.

The issue is related to the change in #1742, which made it possible to
load different adapters on different devices.

Although that PR itself was sound, the issue is that for AdaLoRA, one of
its parameters, ranknum, was not listed in the other_param_names and was
thus not moved to the correct device. This oversight is now fixed and
the GPU tests are now passing locally for me.

This PR also adds the missing pytest marker to the test class that was
missing it, so that these errors should be caught by our nightly CI in
the future.
2024-06-13 10:47:49 +02:00
2f5360a7da FEAT Add OLoRA initialization strategy to LoRA (#1828) 2024-06-12 17:46:43 +02:00
8843a767da MNT Upgrade ruff version to ~0.4.8 (#1851)
We currently use ruff v0.2.2, which is quite far behind the latest
version. This has the disadvantage that new contributors will often
install the latest version of ruff and then get CI errors, even though
they ran `make style`.

Here is the full list of changes:

- bump ruff version to ~0.4.8
- update the ruff commands in Makefile (ruff foo/ -> ruff check foo/)
- update coding style of two files that changed with the new ruff
  version
2024-06-12 15:01:45 +02:00
b6af7feb34 DOC Fix PeftMixedModel docstring example #1824 (#1850) 2024-06-12 14:27:14 +02:00
47b3d7422a CI Activate env to prevent bnb import error (#1845)
All bitsandbytes nightly CI runs are currently failing with:

Run python3 -m bitsandbytes
/opt/conda/bin/python3: No module named bitsandbytes

This fix should hopefully solve this, but it's untested.
2024-06-11 10:59:32 +02:00
7b1c08d2b5 ENH Support different layer shapes for VeRA (#1817) 2024-06-10 17:10:56 +02:00
a8286a7bff DOC Describe torch_device in from_pretrained docs (#1843) 2024-06-10 16:01:00 +02:00
683db0fa2c feat(ci): add trufflehog secrets detection (#1841)
* feat(ci): add trufflehog secrets detection

* fix(ci): remove unnecessary permissions
2024-06-10 11:40:36 +02:00
0f89d34d82 Fix broken messages (#1842) 2024-06-10 11:21:48 +02:00
0b40d1a304 Workflow / Bnb: Add a mechanism to inform us if the import fails (#1830)
* Update nightly-bnb.yml

* Update nightly-bnb.yml

* Update .github/workflows/nightly-bnb.yml

* Update .github/workflows/nightly-bnb.yml
2024-06-07 16:38:10 +02:00
03798a9143 FIX Failing Llama tests due to new kv cache (#1832)
The issue is that past_key_values can now be an instance of
DynamicCache. Therefore, just indexing into it won't work anymore. The
solution is to check the type and if it's not a tuple/list, use the methods
on the cache object instead.
2024-06-06 15:49:59 +02:00
d33c1f118e fix doc typo (#1833) 2024-06-06 15:34:10 +02:00
63a536b18e TST Make tests pass on Cambricon MLUs (#1747)
Small adjustments to tests to make them pass on Cambricon MLUs (mostly
tolerances). Note that we have no MLU test runners for PEFT, so have to
rely on others to run these tests.
2024-06-06 10:44:03 +02:00
ad8f7cb59e Update build_docker_images.yml (#1823) 2024-06-04 13:34:37 +02:00
3538e8ac7d FIX CI: Install pytest-reportlog package (#1822) 2024-06-04 13:09:09 +02:00
b213ea5fb9 Update tests-main.yml (#1821) 2024-06-04 12:31:31 +02:00
7ed94f3269 FIX CI: Remove potentially problematic git command (#1820)
See if this fixes the error in the workflow.

> fatal: detected dubious ownership in repository at '/__w/peft/peft'
2024-06-04 12:18:37 +02:00
a0788a3f92 Refactor to make DoRA and QDoRA work with FSDP (#1806)
This PR moves all the DoRA functionality into a separate module class.
Essentially, this is necessary because otherwise, the DoRA parameter
lives on the lora.Linear layer as a parameter, not a separate module.
Since FSDP auto wrap policy operates on the level of modules, not
parameters, there is no way to modify the auto wrap policy to wrap the
DoRA parameter, it must be its own module.

If not for this reason, #1797 would be preferable, since the number of
code changes is smaller overall. In this PR, there are more numerous
changes, but the majority only involves moving code around, not any
actual code changes.

Since we introduce a new submodule, an extra steps are required to
ensure that old DoRA state dicts can still be loaded correctly. This
involves a fairly trivial extra remapping step in
set_peft_model_state_dict. The test for this is performed via the new
regression DoRA tests introduced in #1792.

Similarly, there is a remapping step involved in
get_peft_model_state_dict to ensure that when new state dicts with DoRA
are saved, they still conform to the old format.

An additional required change was to make a defensive copy of the base
layer before dequantizing its weight in order to calculate the weight
norm for DoRA. Without this defensive copy, some side-effect is
triggered in FSDP that results in

> ValueError: Cannot flatten integer dtype tensors

even though the compute dtype of bnb is correctly set to float.

Creating a fully functioning deepcopy does currently not work with 8bit
BNB but there is a fix. Once the next BNB release is out, 8bit BNB will
be tested and enabled.

While working on this, I also noticed a small bug that dropout was not
correctly applied when using QDoRA. This is now also fixed.

This PR was tested successfully with FSDP and (Q)DoRA using the scripts
in examples/sft/ with a modification to enable DoRA.
2024-05-31 16:56:21 +02:00
cb0bf07774 MNT Remove deprecated use of load_in_8bit (#1811)
Don't pass load_in_8bit to AutoModel.from_pretrained, instead use
BitsAndBytesConfig.

There was already a PR to clean this up (#1552) but a slightly later
PR (#1518) re-added this usage.

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-30 15:39:26 +02:00
8cd2cb613b CI Make torch compile tests run on GPU (#1808)
Many of these tests require a GPU to run, so use custom runners.

Code was mostly copied from existing workflows.

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-30 12:37:18 +02:00
e7b75070c7 TST: Add simple BNB regression tests (#1602)
These are very basic and simplistic regression tests for bnb. Their
purpose is to ensure that there is no unnoticed change in bnb that leads
to different outputs. There is no check for "correctness", just that the
results haven't changed.

Eventually, this workflow should be improved and moved to the bnb repo.

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-28 11:36:38 +02:00
1b262167f3 Docs / LoRA: Add more information on merge_and_unload docs (#1805)
* put back lora merging diagram

* push

* Update docs/source/developer_guides/lora.md

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-05-28 11:13:44 +02:00
39c60ffca9 TST Add regression test for DoRA, VeRA, BOFT, LNT (#1792)
These new methods were added but the regression tests were not extended
yet. This PR adds regression tests for these methods. The regression
artifacts have been pushed based on PEFT v0.11.1. The new tests pass
locally.
2024-05-27 12:00:47 +02:00
8304017a9a FIX BOFT device error after PR 1742 (#1799)
PR #1742 introduced the feature that adapters of the same layer can be
on different devices. A new method was introduced that is responsible
for moving the parameters related to a specific adapter in a consistent
way.

In BOFT, however, one parameter was overlooked, boft_P. This parameter
is not stored inside a ParameterDict or ModuleDict, hence it was not
moved. The reason is (presumably) that this parameter is shared between
all BOFT adapters, as it's always identical. However, this clashes with
having different adapters on different devices.

To solve this, the parameter is now moved on the fly to the correct
device during the forward pass.
2024-05-27 10:12:22 +02:00
b2922565c4 TST Install bitsandbytes for compile tests (#1796)
Also, remove outdated comment.
2024-05-23 16:12:57 +02:00
3cf5359f11 FIX Allow same layer adapters on different devices (#1742)
The issue is that so far, we made the assumption in PEFT that all
adapter weights of a specific layer are on the same device. There can be
cases where it is useful to have adapters on different devices. E.g.
when a user loads a lot of LoRA adapters and wants to offload those not
currently in use to CPU, they would not currently be able to do so.

With this PR, we add this possibility. To achieve this, when we update
an adapter layer with a new adapter, we only move that specific adapter
to the device of the base layer, will not touching the other loaded
adapters.

While working on this, I discovered a small bug in VeRA when adding
multiple adapters, which is now also fixed.
2024-05-23 10:54:40 +02:00
cb7aedd9ba fix docs (#1793) 2024-05-23 11:37:30 +05:30
47745d57c2 FIX Use correct attribute name for HQQ in merge (#1791)
Without this fix, test_hqq_lora_model_outputs currently fails.
2024-05-22 16:35:27 +02:00
1fec23152a DOC TST Reproducibility of models using batch norm (#1734)
Fixes #1732

After loading a model that was trained with PEFT on a base model with
some kind of batch norm layer, the loaded model should produce the same
output. Right now, this does not happen.

The reason is that during training, buffers for running mean etc. are
updated, but they are not saved when calling save_pretrained on the
PeftModel instance. Normally in PEFT, we assume that during training,
the base model parameters are kept constant, which is not the case with
batch norm. We only save the PEFT parameters and assume that when the
user loads the base model, all parameters are restored exactly. That
way, the information in the buffers is lost completely.

The fix is to add the batch norm layers to modules_to_save. This fix is
now documented and tested.
2024-05-22 10:43:29 +02:00
bc6a99906c FIX Warning abt config.json when the base model is local. (#1668)
Fix incorrect warning when loading local model.
2024-05-21 15:45:06 +02:00
691bc22ea6 ENH Layer/model status shows devices now (#1743)
For each adapter, show all the devices of this adapter's parameters.

Also, while working on this, found a very minor bug in VeRA as its
linear layer didn't implement its own __repr__.
2024-05-21 15:35:51 +02:00
fb7f2796e5 Add add_weighted_adapter to IA3 adapters (#1701)
* Add add_weighted_adapter to IA3 adapters

* Refactor to simplify code

* refactor test

* Add IA3 merging docs

* Update docs/source/developer_guides/model_merging.md

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update docs/source/developer_guides/model_merging.md

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* address PR feedback

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-05-17 22:29:22 +05:30
4e32679f37 TST: torch compile tests (#1725)
Right now, we don't have specific tests for torch.compile. Instead, we
have a "hack" that allows to run _all_ tests with torch.compile if we
set the environment variable PEFT_DEBUG_WITH_TORCH_COMPILE=1.

This is not very practical because it takes a lot of time to run all
these tests with compilation enabled. Also, currently hundreds of tests
are failing, which makes it impossible to understand more closely what
does or does not work.

This PR removes the aforementioned "hack" and instead replaces it with a
list of explicit torch.compile tests. Currently, these tests cover
training/inference with a bunch of different tuner types, as well as
more advanced features with LoRA (e.g. quantization, multiple adapters,
etc.).

Some of these tests pass and some of them fail. This is documented now,
so that users can quickly look up if their use case would be compatible
with torch.compile. This is very useful to have, because sometimes
torch.compile may appear to work but actually returns the wrong result.
For users, it's not immediately obvious when this happens.

The test suite is not exhaustive, there are many combinations of
features that could be added. However, it should be a good starting
point and can be extended later.

The test suite does _not_ cover whether torch.compile actually
accelerates the code. This may not be the case even if it works
correctly (e.g. because of graph breaks). Testing this would require
bigger models and more data, which is prohibitively slow to test.

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-05-17 18:03:27 +02:00
3f7aacd601 Bump version to 0.11.2.dev0 (#1741)
After patch release of 0.11.1.
2024-05-17 15:37:30 +02:00
e3eeabfad2 FIX BOFT setting env vars breaks C++ compilation (#1739)
Resolves #1738
2024-05-17 12:43:03 +02:00
ae1ae20b76 Autocast adapter weights if fp16/bf16 (#1706)
As discussed internally, we want to automatically cast the weights of
the adapter to float32 when using float16. Float16 is not conducive to
stable training and raises errors when used with AMP.

Previously, we had to recommend to users to manually cast the weights
if they loaded the base model in float16, because PEFT would choose the
same dtype for the adapter as for the base weights. Forgetting this is a
common source of errors, so we choose to automate this.

If this causes trouble, users can prevent the behavior by passing
autocast_adapter_dtype=False to get_peft_model,
PeftModel.from_pretrained, or PeftModel.load_adapter.

This PR should be reviewed carefully, as it has the potential to break
existing code if something important was missed. We also need to add a
note for the upcoming release text about this change in behavior.
2024-05-16 17:11:36 +02:00
2535036c24 ENH Save and load base model with revision (#1658) 2024-05-16 16:27:53 +02:00
e003ae7850 Bump version to 0.11.1.dev0 (#1736) 2024-05-16 12:34:29 +02:00
0649947396 Release: v0.11.0 (#1733) 2024-05-16 11:41:41 +02:00
b5acf5d6be Add PiSSA as an initialization method of LoRA (#1626)
Implements https://huggingface.co/papers/2404.02948.
2024-05-15 11:35:39 +02:00
748f7968f3 FIX Allow DoRA init on CPU when using BNB (#1724)
Resolves #1674

For some users, it is necessary to initialize the model on CPU, even
when using BitsAndBytes, which requires a GPU eventually. Since DoRA
requires to dequantize the BNB weights at initialization, we need to
temporarily move the model corresponding weights to GPU. After
dequantization, the weights are moved back to CPU.
2024-05-14 17:10:23 +02:00
47b3712898 DOC Document the PEFT checkpoint format (#1717)
Description of the PEFT checkpoint format and what it takes to convert
to it.

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-05-14 11:38:02 +02:00
2558dd872d Workflow: Add slack messages workflow (#1723)
* add slack messages workflow

* Update .github/workflows/build_docker_images.yml

* Update .github/workflows/build_docker_images.yml

* fix
2024-05-13 17:27:01 +02:00
6f41990da4 FIX Trailing ws in revise run_peft_multigpu.sh (#1722) 2024-05-10 11:47:52 +02:00
d8fec400c7 DOC Fix incorrect method name (#1719) 2024-05-09 12:19:50 +02:00
32f3878870 DOC Some small cleanups in docstrings, copyright note (#1714) 2024-05-07 12:50:19 +02:00
cb08d095a5 support Cambricon MLUs device (#1687)
* support mlu device

* rollback

* up

* add version check for mlu

* better accelerate version check for mlu device

* fix error with make style
2024-05-07 12:40:46 +02:00
86d086ec37 FEAT Helper to check if a model is a PEFT model (#1713) 2024-05-07 11:06:03 +02:00
02ae6bcb37 Add LoRA support to HQQ Quantization (#1618)
* Add HQQ Lora

* fix error weight load

* Remove unused

* Add quantized lora

* fix make HQQLinear

* Fix dtype

* Revert back quantize lora

* Add prepare training for hqq quantization

* Forget revert hqq

* Remove warnings

* Other ways to check hqq quantization

* Add unit test for training

* change bfloat16 to float16

* Fix load weight when applied dora

* Move import hqq inside if clause

* Naming using CamelCase

* Remove unused function and fix naming convention

* Pop offload_meta

* Add use_dora params

* Remove confusing comments

* Additional test for checking output from HQQ

* Add license notice

* Add parameter decorator

* Redundant calling get_base_layer

* do make style

* Remove unused comments

* Move dispatch_hqq out of if clause

* make style all scripts

* Add comment for explanation

* Mention HQQ to docs

* Add HQQ to Dockerfile

* Fix styling

* Styling scripts

* Comply with transformers HQQ integration

* Test fully using transformers

* Add comments handling HQQ

* Fix naming problem
2024-05-03 15:43:26 +02:00
77b7238b90 fix the fsdp peft autowrap policy (#1694)
* fix the fsdp peft autowrap policy

* address comment wrt backwards compatibility
2024-05-01 09:08:55 +05:30
3edcebf713 Set experimental dynamo config for compile tests (#1698)
Right now, a lot of tests fail when applying torch.compile to PEFT
models. One of the main reasons is that attribute checks (self.foo) on
nn.Modules are not correctly considered.

This PR sets an experimental flag that should fix this. However, this is
not public PyTorch API (yet) and incurs a performance penalty. Still,
it's interesting to see how this affects our tests.

More context:
https://github.com/pytorch/pytorch/issues/124717#issuecomment-2083235776
2024-04-30 14:32:20 +02:00
e0cb15e2ee FIX Use different doc builder docker image (#1697)
Same as in:

c712d05aa8/.github/workflows/build_documentation.yml (L19)
2024-04-30 13:30:07 +02:00
3ec55f4ac4 FEAT Add LayerNorm tuning (#1301)
LN tuning based on: https://arxiv.org/abs/2312.11420
2024-04-30 12:21:38 +02:00
608a90ded9 TST: Skiping AWQ tests for now .. (#1690)
* Update test_gpu_examples.py

* Update tests/test_gpu_examples.py
2024-04-29 18:27:13 +02:00
e19f7bf424 FIX Doc error prompt tuning seq len calc (#1686)
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
2024-04-29 16:23:46 +02:00
250b7eb85f FEAT Show adapter layer and model status (#1663)
This PR adds a new feature to PEFT models that allows to better
understand the status of adapter(s) on the model. Quoting from the doc
entry that I added:

Sometimes, the PEFT model can end up in a bad state, especially when
handling multiple adapters. There can be some confusion around what
adapters exist, which one is active, which one is merged, etc. To help
investigate this issue, you can call the
get_layer_status and the
get_model_status methods. The first one gives you a
detailed overview about the adapters for each targeted layer. The latter
one gives you a high-level overview about the model status.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-04-29 13:31:23 +02:00
f5f7b67d60 FIX Issues with AdaLora initialization (#1652)
Resolves #1647

- AdaLoraConfig now converts target_modules to set, same as LoRA
- AdaLoraConfig now raises when used with DoRA
- AdaLoraConfig now raises when used with LoftQ
- AdaLoraModel now raises when trying to call add_weighted_adapter
- Add tests for those in test_initialization.py
- Small clean ups in test_initialization.py
2024-04-29 13:09:34 +02:00
7a22b7daf0 FIX bf16 dtype issue for IA3 (#1634)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2024-04-29 11:50:42 +02:00
e7b47ac01d FIX Init DoRA weights in float32 if float16 used (#1653)
When DoRA weights are initialized in float16 on CPU and when an older
PyTorch version is being used (<2.2), there is an error because the the
operation is not supported for float16 on CPU. This commit temporarily
converts the LoRA weights to float32 beforehand if they're in float16.

Of course, when the user tries to train or predict with this model on
CPU, they will still encounter errors. However, in certain situations,
only the initialization might be on CPU and later it is moved to GPU.
This could be some framework code that the user has no control over, as
in #1597. Therefore, it's good to have this safety hatch.

Note that since our CI uses the latest PyTorch version, we cannot run a
test for this, as the latest PyTorch runs no matter what.
2024-04-29 11:35:47 +02:00
8bc3c0861d Update Dockerfile (#1684) 2024-04-26 15:49:02 +02:00
383e1fab0e Update build_docker_images.yml (#1682) 2024-04-26 10:48:05 +02:00
d0fa70aeb6 FEAT: Add EETQ support in PEFT (#1675)
* v1

* fix tests'

* fix unneeded change

* fix unneeded change

* fix unneeded change

* fix

* fix CI

* fix docker image

* fix docker image

* add docs

* lazy import

* raise when merge

* raise when merge

* Update eetq.py

* merge

* style

* add unmerge

* indent

* Update docs/source/developer_guides/quantization.md

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* add details about transformers

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-04-26 10:20:18 +02:00
b1d6c77108 FIX Don't eagerly import bnb for LoftQ (#1683)
We accidentally added code in loftq_utils.py that eagerly imports bnb,
which we want to avoid to prevent CUDA from being initialized too early.
2024-04-25 20:35:16 +02:00
143 changed files with 28060 additions and 752 deletions

View File

@ -23,7 +23,7 @@ body:
Please tag fewer than 3 people.
Library: @pacman100 @younesbelkada @benjaminbossan @sayakpaul
Library: @benjaminbossan @sayakpaul
Documentation: @stevhliu

View File

@ -45,30 +45,14 @@ jobs:
push: true
tags: huggingface/peft-cpu
- name: Post to a Slack channel
id: slack
#uses: slackapi/slack-github-action@v1.25.0
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ env.CI_SLACK_CHANNEL }}
# For posting a rich message using Block Kit
payload: |
{
"text": "peft-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "peft-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: 🤗 Results of the PEFT-CPU docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-cuda:
name: "Latest Peft GPU [dev]"
@ -100,31 +84,15 @@ jobs:
context: ./docker/peft-gpu
push: true
tags: huggingface/peft-gpu
- name: Post to a Slack channel
id: slack
#uses: slackapi/slack-github-action@v1.25.0
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ env.CI_SLACK_CHANNEL }}
# For posting a rich message using Block Kit
payload: |
{
"text": "peft-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "peft-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: 🤗 Results of the PEFT-GPU docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-cuda-bnb-source:
name: "Latest Peft GPU + bnb source [dev]"
@ -156,33 +124,15 @@ jobs:
context: ./docker/peft-gpu-bnb-source
push: true
tags: huggingface/peft-gpu-bnb-source
- name: Post to a Slack channel
id: slack
#uses: slackapi/slack-github-action@v1.25.0
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ env.CI_SLACK_CHANNEL }}
# For posting a rich message using Block Kit
payload: |
{
"text": "peft-gpu + bnb-source (source) Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "peft-gpu + bnb-source (source) Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: 🤗 Results of the PEFT-GPU (bnb source / HF latest) docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-cuda-bnb-source-latest:
name: "Latest Peft GPU + bnb source [accelerate / peft / transformers latest]"
@ -214,31 +164,15 @@ jobs:
context: ./docker/peft-gpu-bnb-latest
push: true
tags: huggingface/peft-gpu-bnb-latest
- name: Post to a Slack channel
id: slack
#uses: slackapi/slack-github-action@v1.25.0
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ env.CI_SLACK_CHANNEL }}
# For posting a rich message using Block Kit
payload: |
{
"text": "peft-gpu + bnb-source (latest) Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "peft-gpu + bnb-source (latest) Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: 🤗 Results of the PEFT-GPU (bnb source / HF source) docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-cuda-bnb-source-multi:
name: "Latest Peft GPU + bnb (multi-backend) source [accelerate / peft / transformers source]"
@ -270,28 +204,14 @@ jobs:
context: ./docker/peft-gpu-bnb-multi-source
push: true
tags: huggingface/peft-gpu-bnb-multi-source
- name: Post to a Slack channel
id: slack
#uses: slackapi/slack-github-action@v1.25.0
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ env.CI_SLACK_CHANNEL }}
# For posting a rich message using Block Kit
payload: |
{
"text": "peft-gpu + bnb-source (latest) Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "peft-gpu + bnb-source (latest) Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: 🤗 Results of the PEFT-GPU (bnb source multi-backend / HF latest) docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -14,6 +14,7 @@ jobs:
commit_sha: ${{ github.sha }}
package: peft
notebook_folder: peft_docs
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -14,3 +14,4 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: peft
custom_container: huggingface/transformers-doc-builder

View File

@ -15,6 +15,7 @@ env:
jobs:
run_all_tests_single_gpu:
timeout-minutes: 60
strategy:
fail-fast: false
matrix:
@ -46,23 +47,88 @@ jobs:
git checkout tags/v$transformers_version
cd ..
fi
- name: Run examples on single GPU
- name: Test bnb import
id: import
if: always()
run: |
source activate peft
make tests_examples_single_gpu_bnb
python3 -m bitsandbytes
python3 -c "import bitsandbytes as bnb"
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes import
status: ${{ steps.examples_tests.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
# TODO: uncomment this block if error is solved or bnb multi backend branch is merged
# - name: Run examples on single GPU
# id: examples_tests
# if: always()
# run: |
# source activate peft
# make tests_examples_single_gpu_bnb
# - name: Post to Slack
# if: always()
# uses: huggingface/hf-workflows/.github/actions/post-slack@main
# with:
# slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
# title: 🤗 Results of bitsandbytes examples tests - single GPU
# status: ${{ steps.examples_tests.outcome }}
# slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Run core tests on single GPU
id: core_tests
if: always()
run: |
source activate peft
make tests_core_single_gpu_bnb
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes core tests - single GPU
status: ${{ steps.core_tests.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Run BNB regression tests on single GPU
id: regression_tests
if: always()
run: |
source activate peft
make tests_gpu_bnb_regression
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes regression tests - single GPU
status: ${{ steps.regression_tests.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Run transformers tests on single GPU
id: transformers_tests
if: always()
run: |
source activate peft
make transformers_tests
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes transformers tests - single GPU
status: ${{ steps.transformers_tests.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Generate Report
if: always()
@ -71,6 +137,7 @@ jobs:
python scripts/log_reports.py --slack_channel_name bnb-daily-ci-collab >> $GITHUB_STEP_SUMMARY
run_all_tests_multi_gpu:
timeout-minutes: 60
strategy:
fail-fast: false
matrix:
@ -103,28 +170,75 @@ jobs:
cd ..
fi
- name: Test bnb import
id: import
if: always()
run: |
source activate peft
python3 -m bitsandbytes
python3 -c "import bitsandbytes as bnb"
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes import
status: ${{ steps.import.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Run core GPU tests on multi-gpu
if: always()
run: |
source activate peft
- name: Run examples on multi GPU
id: examples_tests
if: always()
run: |
source activate peft
make tests_examples_multi_gpu_bnb
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes examples tests - multi GPU
status: ${{ steps.examples_tests.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Run core tests on multi GPU
id: core_tests
if: always()
run: |
source activate peft
make tests_core_multi_gpu_bnb
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes core tests - multi GPU
status: ${{ steps.core_tests.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Run transformers tests on multi GPU
id: transformers_tests
if: always()
run: |
source activate peft
make transformers_tests
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.BNB_SLACK_CHANNEL_ID }}
title: 🤗 Results of bitsandbytes transformers tests - multi GPU
status: ${{ steps.transformers_tests.outcome }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Generate Report
if: always()

View File

@ -26,3 +26,11 @@ jobs:
- name: Test with pytest
run: |
make test
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.SLACK_CHANNEL_ID }}
title: 🤗 Results of transformers main tests
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -31,6 +31,8 @@ jobs:
tests:
needs: check_code_quality
strategy:
# TODO: remove 'fail-fast' line once timeout issue from the Hub is solved
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
os: ["ubuntu-latest", "macos-12", "windows-latest"]
@ -48,6 +50,12 @@ jobs:
python -m pip install --upgrade pip
# cpu version of pytorch
pip install -e .[test]
- name: Downgrade numpy on MacOS and Windows
# TODO: remove numpy downgrade on MacOS & Windows once torch fixes numpy 2.0 issue
shell: bash
if: matrix.os == 'windows-latest' || matrix.os == 'macos-12'
run: |
pip install --force-reinstall -U "numpy<2.0.0"
- name: Test with pytest
run: |
make test

View File

@ -1,7 +1,5 @@
name: torch compile tests
# see peft/tests/__init__.py
on:
workflow_dispatch:
inputs:
@ -13,31 +11,41 @@ on:
required: false
default: false
env:
RUN_SLOW: "yes"
IS_GITHUB_CI: "1"
# To be able to run tests on CUDA 12.2
NVIDIA_DISABLE_REQUIRE: "1"
jobs:
run_tests_with_compile:
runs-on: ubuntu-latest
runs-on: [self-hosted, single-gpu, nvidia-gpu, a10, ci]
env:
PEFT_DEBUG_WITH_TORCH_COMPILE: 1
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu_huggingface/peft-gpu-bnb-latest:latest"
container:
image: "huggingface/peft-gpu-bnb-latest:latest"
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
defaults:
run:
shell: bash
steps:
- uses: actions/checkout@v4
with:
ref: ${{ github.event.inputs.branch }}
repository: ${{ github.event.pull_request.head.repo.full_name }}
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
cache: "pip"
cache-dependency-path: "setup.py"
- name: Install dependencies
- name: Pip install
run: |
python -m pip install --upgrade pip
python -m pip install .[test]
source activate peft
pip install -e . --no-deps
pip install pytest-cov pytest-reportlog parameterized datasets scipy einops
pip install "pytest>=7.2.0,<8.0.0" # see: https://github.com/huggingface/transformers/blob/ce4fff0be7f6464d713f7ac3e0bbaafbc6959ae5/setup.py#L148C6-L148C26
if [ "${{ github.event.inputs.pytorch_nightly }}" = "true" ]; then
python -m pip install --upgrade --pre torch --index-url https://download.pytorch.org/whl/nightly/cpu
fi
- name: Test compile with pytest
run: |
source activate peft
echo "PEFT_DEBUG_WITH_TORCH_COMPILE=$PEFT_DEBUG_WITH_TORCH_COMPILE"
git status
make test
make tests_torch_compile

15
.github/workflows/trufflehog.yml vendored Normal file
View File

@ -0,0 +1,15 @@
on:
push:
name: Secret Leaks
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

View File

@ -6,13 +6,13 @@ check_dirs := src tests examples docs scripts docker
# this target runs checks on all files
quality:
ruff $(check_dirs)
ruff check $(check_dirs)
ruff format --check $(check_dirs)
doc-builder style src/peft tests docs/source --max_len 119 --check_only
# Format source code automatically and check is there are any problems left that need manual fixing
style:
ruff $(check_dirs) --fix
ruff check --fix $(check_dirs)
ruff format $(check_dirs)
doc-builder style src/peft tests docs/source --max_len 119
@ -47,9 +47,15 @@ tests_core_multi_gpu_bnb:
tests_core_single_gpu_bnb:
python -m pytest -m "single_gpu_tests and bitsandbytes" tests/test_common_gpu.py $(if $(IS_GITHUB_CI),--report-log "core_single_gpu.log",)
tests_gpu_bnb_regression:
python -m pytest tests/bnb/test_bnb_regression.py $(if $(IS_GITHUB_CI),--report-log "bnb_regression_gpu.log",)
# For testing transformers tests for bnb runners
transformers_tests:
RUN_SLOW=1 python -m pytest transformers-clone/tests/quantization/bnb $(if $(IS_GITHUB_CI),--report-log "transformers_tests.log",)
tests_regression:
python -m pytest -s --regression tests/regression/ $(if $(IS_GITHUB_CI),--report-log "regression_tests.log",)
tests_torch_compile:
python -m pytest tests/test_torch_compile.py $(if $(IS_GITHUB_CI),--report-log "compile_tests.log",)

View File

@ -42,9 +42,9 @@ RUN source activate peft && \
# Add autoawq for quantization testing
RUN source activate peft && \
python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.1/autoawq-0.2.1-cp38-cp38-linux_x86_64.whl
python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4-cp38-cp38-linux_x86_64.whl
RUN source activate peft && \
python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ_kernels/releases/download/v0.0.4/autoawq_kernels-0.0.4-cp38-cp38-linux_x86_64.whl
python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ_kernels/releases/download/v0.0.6/autoawq_kernels-0.0.6-cp38-cp38-linux_x86_64.whl
# Install apt libs
RUN apt-get update && \
@ -52,6 +52,10 @@ RUN apt-get update && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
# Add eetq for quantization testing
RUN source activate peft && \
python3 -m pip install git+https://github.com/NetEase-FuXi/EETQ.git
# Activate the conda env and install transformers + accelerate from source
RUN source activate peft && \
python3 -m pip install -U --no-cache-dir \
@ -66,6 +70,10 @@ RUN source activate peft && \
RUN source activate peft && \
pip install aqlm[gpu]>=1.0.2
# Add HQQ for quantization testing
RUN source activate peft && \
pip install hqq
RUN source activate peft && \
pip freeze | grep transformers

View File

@ -37,10 +37,16 @@
title: Adapter injection
- local: developer_guides/mixed_models
title: Mixed adapter types
- local: developer_guides/torch_compile
title: torch.compile
- local: developer_guides/contributing
title: Contribute to PEFT
- local: developer_guides/troubleshooting
title: Troubleshooting
- local: developer_guides/checkpoint
title: PEFT checkpoint format
- local: package_reference/helpers
title: Helpers
- title: 🤗 Accelerate integrations
sections:
@ -102,8 +108,13 @@
title: Prefix tuning
- local: package_reference/prompt_tuning
title: Prompt tuning
- local: package_reference/layernorm_tuning
title: Layernorm tuning
- local: package_reference/vera
title: VeRA
- local: package_reference/fourierft
title: FourierFT
title: Adapters
- sections:
- local: package_reference/merge_utils

View File

@ -249,7 +249,7 @@ accelerate launch --config_file "configs/fsdp_config_qlora.yaml" train.py \
--bnb_4bit_quant_storage_dtype "bfloat16"
```
Notice the new argument being passed, `bnb_4bit_quant_storage_dtype`, which denotes the data type for packing the 4-bit parameters. For example, when it is set to `bfloat16`, **32/4 = 8** 4-bit params are packed together post quantization. When using mixed precision training with `bfloat16`, `bnb_4bit_quant_storage_dtype` can be either `bfloat16` for pure `bfloat16` finetuning, or `float32` for automatic mixed precision (this consumes more GPU memory). When using mixed precision training with `float16`, `bnb_4bit_quant_storage_dtype` should be set to `float32` for stable automatic mixed precision training.
Notice the new argument being passed, `bnb_4bit_quant_storage_dtype`, which denotes the data type for packing the 4-bit parameters. For example, when it is set to `bfloat16`, **16/4 = 4** 4-bit params are packed together post quantization. When using mixed precision training with `bfloat16`, `bnb_4bit_quant_storage_dtype` can be either `bfloat16` for pure `bfloat16` finetuning, or `float32` for automatic mixed precision (this consumes more GPU memory). When using mixed precision training with `float16`, `bnb_4bit_quant_storage_dtype` should be set to `float32` for stable automatic mixed precision training.
In terms of training code, the important code changes are:
@ -288,4 +288,5 @@ You can also refer the [llama-recipes](https://github.com/facebookresearch/llama
1. Merging when using PEFT and FSDP is currently unsupported and will raise error.
2. Passing `modules_to_save` config parameter to is untested at present.
3. GPU Memory saving when using CPU Offloading is untested at present.
4. When using FSDP+QLoRA, `paged_adamw_8bit` currently results in an error when saving a checkpoint.
4. When using FSDP+QLoRA, `paged_adamw_8bit` currently results in an error when saving a checkpoint.
5. DoRA training with FSDP should work (albeit at lower speed than LoRA). If combined with bitsandbytes (QDoRA), 4-bit quantization should also work, but 8-bit quantization has known issues and is not recommended.

View File

@ -64,9 +64,9 @@ Take a look at [P-tuning for sequence classification](../task_guides/ptuning-seq
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/mpt.png"/>
</div>
<small><a href="https://hf.co/papers/2103.10385">Multitask prompt tuning enables parameter-efficient transfer learning</a>.</small>
<small><a href="https://hf.co/papers/2303.02861">Multitask prompt tuning enables parameter-efficient transfer learning</a>.</small>
[Multitask prompt tuning (MPT)](https://hf.co/papers/2103.10385) learns a single prompt from data for multiple task types that can be shared for different target tasks. Other existing approaches learn a separate soft prompt for each task that need to be retrieved or aggregated for adaptation to target tasks. MPT consists of two stages:
[Multitask prompt tuning (MPT)](https://hf.co/papers/2303.02861) learns a single prompt from data for multiple task types that can be shared for different target tasks. Other existing approaches learn a separate soft prompt for each task that need to be retrieved or aggregated for adaptation to target tasks. MPT consists of two stages:
1. source training - for each task, its soft prompt is decomposed into task-specific vectors. The task-specific vectors are multiplied together to form another matrix W, and the Hadamard product is used between W and a shared prompt matrix P to generate a task-specific prompt matrix. The task-specific prompts are distilled into a single prompt matrix that is shared across all tasks. This prompt is trained with multitask training.
2. target adaptation - to adapt the single prompt for a target task, a target prompt is initialized and expressed as the Hadamard product of the shared prompt matrix and the task-specific low-rank prompt matrix.

View File

@ -0,0 +1,250 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PEFT checkpoint format
This document describes how PEFT's checkpoint files are structured and how to convert between the PEFT format and other formats.
## PEFT files
PEFT (parameter-efficient fine-tuning) methods only update a small subset of a model's parameters rather than all of them. This is nice because checkpoint files can generally be much smaller than the original model files and are easier to store and share. However, this also means that to load a PEFT model, you need to have the original model available as well.
When you call [`~PeftModel.save_pretrained`] on a PEFT model, the PEFT model saves three files, described below:
1. `adapter_model.safetensors` or `adapter_model.bin`
By default, the model is saved in the `safetensors` format, a secure alternative to the `bin` format, which is known to be susceptible to [security vulnerabilities](https://huggingface.co/docs/hub/security-pickle) because it uses the pickle utility under the hood. Both formats store the same `state_dict` though, and are interchangeable.
The `state_dict` only contains the parameters of the adapter module, not the base model. To illustrate the difference in size, a normal BERT model requires ~420MB of disk space, whereas an IA³ adapter on top of this BERT model only requires ~260KB.
2. `adapter_config.json`
The `adapter_config.json` file contains the configuration of the adapter module, which is necessary to load the model. Below is an example of an `adapter_config.json` for an IA³ adapter with standard settings applied to a BERT model:
```json
{
"auto_mapping": {
"base_model_class": "BertModel",
"parent_library": "transformers.models.bert.modeling_bert"
},
"base_model_name_or_path": "bert-base-uncased",
"fan_in_fan_out": false,
"feedforward_modules": [
"output.dense"
],
"inference_mode": true,
"init_ia3_weights": true,
"modules_to_save": null,
"peft_type": "IA3",
"revision": null,
"target_modules": [
"key",
"value",
"output.dense"
],
"task_type": null
}
```
The configuration file contains:
- the adapter module type stored, `"peft_type": "IA3"`
- information about the base model like `"base_model_name_or_path": "bert-base-uncased"`
- the revision of the model (if any), `"revision": null`
If the base model is not a pretrained Transformers model, the latter two entries will be `null`. Other than that, the settings are all related to the specific IA³ adapter that was used to fine-tune the model.
3. `README.md`
The generated `README.md` is the model card of a PEFT model and contains a few pre-filled entries. The intent of this is to make it easier to share the model with others and to provide some basic information about the model. This file is not needed to load the model.
## Convert to PEFT format
When converting from another format to the PEFT format, we require both the `adapter_model.safetensors` (or `adapter_model.bin`) file and the `adapter_config.json` file.
### adapter_model
For the model weights, it is important to use the correct mapping from parameter name to value for PEFT to load the file. Getting this mapping right is an exercise in checking the implementation details, as there is no generally agreed upon format for PEFT adapters.
Fortunately, figuring out this mapping is not overly complicated for common base cases. Let's look at a concrete example, the [`LoraLayer`](https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora/layer.py):
```python
# showing only part of the code
class LoraLayer(BaseTunerLayer):
# All names of layers that may contain (trainable) adapter weights
adapter_layer_names = ("lora_A", "lora_B", "lora_embedding_A", "lora_embedding_B")
# All names of other parameters that may contain adapter-related parameters
other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout")
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
self.base_layer = base_layer
self.r = {}
self.lora_alpha = {}
self.scaling = {}
self.lora_dropout = nn.ModuleDict({})
self.lora_A = nn.ModuleDict({})
self.lora_B = nn.ModuleDict({})
# For Embedding layer
self.lora_embedding_A = nn.ParameterDict({})
self.lora_embedding_B = nn.ParameterDict({})
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
self.use_dora: dict[str, bool] = {}
self.lora_magnitude_vector: Optional[torch.nn.ParameterDict] = None # for DoRA
self._caches: dict[str, Any] = {}
self.kwargs = kwargs
```
In the `__init__` code used by all `LoraLayer` classes in PEFT, there are a bunch of parameters used to initialize the model, but only a few are relevant for the checkpoint file: `lora_A`, `lora_B`, `lora_embedding_A`, and `lora_embedding_B`. These parameters are listed in the class attribute `adapter_layer_names` and contain the learnable parameters, so they must be included in the checkpoint file. All the other parameters, like the rank `r`, are derived from the `adapter_config.json` and must be included there (unless the default value is used).
Let's check the `state_dict` of a PEFT LoRA model applied to BERT. When printing the first five keys using the default LoRA settings (the remaining keys are the same, just with different layer numbers), we get:
- `base_model.model.encoder.layer.0.attention.self.query.lora_A.weight`
- `base_model.model.encoder.layer.0.attention.self.query.lora_B.weight`
- `base_model.model.encoder.layer.0.attention.self.value.lora_A.weight`
- `base_model.model.encoder.layer.0.attention.self.value.lora_B.weight`
- `base_model.model.encoder.layer.1.attention.self.query.lora_A.weight`
- etc.
Let's break this down:
- By default, for BERT models, LoRA is applied to the `query` and `value` layers of the attention module. This is why you see `attention.self.query` and `attention.self.value` in the key names for each layer.
- LoRA decomposes the weights into two low-rank matrices, `lora_A` and `lora_B`. This is where `lora_A` and `lora_B` come from in the key names.
- These LoRA matrices are implemented as `nn.Linear` layers, so the parameters are stored in the `.weight` attribute (`lora_A.weight`, `lora_B.weight`).
- By default, LoRA isn't applied to BERT's embedding layer, so there are _no entries_ for `lora_A_embedding` and `lora_B_embedding`.
- The keys of the `state_dict` always start with `"base_model.model."`. The reason is that, in PEFT, we wrap the base model inside a tuner-specific model (`LoraModel` in this case), which itself is wrapped in a general PEFT model (`PeftModel`). For this reason, these two prefixes are added to the keys. When converting to the PEFT format, it is required to add these prefixes.
<Tip>
This last point is not true for prefix tuning techniques like prompt tuning. There, the extra embeddings are directly stored in the `state_dict` without any prefixes added to the keys.
</Tip>
When inspecting the parameter names in the loaded model, you might be surprised to find that they look a bit different, e.g. `base_model.model.encoder.layer.0.attention.self.query.lora_A.default.weight`. The difference is the *`.default`* part in the second to last segment. This part exists because PEFT generally allows the addition of multiple adapters at once (using an `nn.ModuleDict` or `nn.ParameterDict` to store them). For example, if you add another adapter called "other", the key for that adapter would be `base_model.model.encoder.layer.0.attention.self.query.lora_A.other.weight`.
When you call [`~PeftModel.save_pretrained`], the adapter name is stripped from the keys. The reason is that the adapter name is not an important part of the model architecture; it is just an arbitrary name. When loading the adapter, you could choose a totally different name, and the model would still work the same way. This is why the adapter name is not stored in the checkpoint file.
<Tip>
If you call `save_pretrained("some/path")` and the adapter name is not `"default"`, the adapter is stored in a sub-directory with the same name as the adapter. So if the name is "other", it would be stored inside of `some/path/other`.
</Tip>
In some circumstances, deciding which values to add to the checkpoint file can become a bit more complicated. For example, in PEFT, DoRA is implemented as a special case of LoRA. If you want to convert a DoRA model to PEFT, you should create a LoRA checkpoint with extra entries for DoRA. You can see this in the `__init__` of the previous `LoraLayer` code:
```python
self.lora_magnitude_vector: Optional[torch.nn.ParameterDict] = None # for DoRA
```
This indicates that there is an optional extra parameter per layer for DoRA.
### adapter_config
All the other information needed to load a PEFT model is contained in the `adapter_config.json` file. Let's check this file for a LoRA model applied to BERT:
```json
{
"alpha_pattern": {},
"auto_mapping": {
"base_model_class": "BertModel",
"parent_library": "transformers.models.bert.modeling_bert"
},
"base_model_name_or_path": "bert-base-uncased",
"bias": "none",
"fan_in_fan_out": false,
"inference_mode": true,
"init_lora_weights": true,
"layer_replication": null,
"layers_pattern": null,
"layers_to_transform": null,
"loftq_config": {},
"lora_alpha": 8,
"lora_dropout": 0.0,
"megatron_config": null,
"megatron_core": "megatron.core",
"modules_to_save": null,
"peft_type": "LORA",
"r": 8,
"rank_pattern": {},
"revision": null,
"target_modules": [
"query",
"value"
],
"task_type": null,
"use_dora": false,
"use_rslora": false
}
```
This contains a lot of entries, and at first glance, it could feel overwhelming to figure out all the right values to put in there. However, most of the entries are not necessary to load the model. This is either because they use the default values and don't need to be added or because they only affect the initialization of the LoRA weights, which is irrelevant when it comes to loading the model. If you find that you don't know what a specific parameter does, e.g., `"use_rslora",` don't add it, and you should be fine. Also note that as more options are added, this file will get more entries in the future, but it should be backward compatible.
At the minimum, you should include the following entries:
```json
{
"target_modules": ["query", "value"],
"peft_type": "LORA"
}
```
However, adding as many entries as possible, like the rank `r` or the `base_model_name_or_path` (if it's a Transformers model) is recommended. This information can help others understand the model better and share it more easily. To check which keys and values are expected, check out the [config.py](https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora/config.py) file (as an example, this is the config file for LoRA) in the PEFT source code.
## Model storage
In some circumstances, you might want to store the whole PEFT model, including the base weights. This can be necessary if, for instance, the base model is not available to the users trying to load the PEFT model. You can merge the weights first or convert it into a Transformer model.
### Merge the weights
The most straightforward way to store the whole PEFT model is to merge the adapter weights into the base weights:
```python
merged_model = model.merge_and_unload()
merged_model.save_pretrained(...)
```
There are some disadvantages to this approach, though:
- Once [`~LoraModel.merge_and_unload`] is called, you get a basic model without any PEFT-specific functionality. This means you can't use any of the PEFT-specific methods anymore.
- You cannot unmerge the weights, load multiple adapters at once, disable the adapter, etc.
- Not all PEFT methods support merging weights.
- Some PEFT methods may generally allow merging, but not with specific settings (e.g. when using certain quantization techniques).
- The whole model will be much larger than the PEFT model, as it will contain all the base weights as well.
But inference with a merged model should be a bit faster.
### Convert to a Transformers model
Another way to save the whole model, assuming the base model is a Transformers model, is to use this hacky approach to directly insert the PEFT weights into the base model and save it, which only works if you "trick" Transformers into believing the PEFT model is not a PEFT model. This only works with LoRA because other adapters are not implemented in Transformers.
```python
model = ... # the PEFT model
...
# after you finish training the model, save it in a temporary location
model.save_pretrained(<temp_location>)
# now load this model directly into a transformers model, without the PEFT wrapper
# the PEFT weights are directly injected into the base model
model_loaded = AutoModel.from_pretrained(<temp_location>)
# now make the loaded model believe that it is _not_ a PEFT model
model_loaded._hf_peft_config_loaded = False
# now when we save it, it will save the whole model
model_loaded.save_pretrained(<final_location>)
# or upload to Hugging Face Hub
model_loaded.push_to_hub(<final_location>)
```

View File

@ -238,3 +238,73 @@ peft_model.print_trainable_parameters()
```python
print(peft_model.targeted_module_names)
```
## Unsupported module types
Methods like LoRA only work if the target modules are supported by PEFT. For example, it's possible to apply LoRA to `nn.Linear` and `nn.Conv2d` layers, but not, for instance, to `nn.LSTM`. If you find a layer class you want to apply PEFT to is not supported, you can:
- define a custom mapping to dynamically dispatch custom modules in LoRA
- open an [issue](https://github.com/huggingface/peft/issues) and request the feature where maintainers will implement it or guide you on how to implement it yourself if demand for this module type is sufficiently high
### Experimental support for dynamic dispatch of custom modules in LoRA
> [!WARNING]
> This feature is experimental and subject to change, depending on its reception by the community. We will introduce a public and stable API if there is significant demand for it.
PEFT supports an experimental API for custom module types for LoRA. Let's assume you have a LoRA implementation for LSTMs. Normally, you would not be able to tell PEFT to use it, even if it would theoretically work with PEFT. However, this is possible with dynamic dispatch of custom layers.
The experimental API currently looks like this:
```python
class MyLoraLSTMLayer:
...
base_model = ... # load the base model that uses LSTMs
# add the LSTM layer names to target_modules
config = LoraConfig(..., target_modules=["lstm"])
# define a mapping from base layer type to LoRA layer type
custom_module_mapping = {nn.LSTM: MyLoraLSTMLayer}
# register the new mapping
config._register_custom_module(custom_module_mapping)
# after registration, create the PEFT model
peft_model = get_peft_model(base_model, config)
# do training
```
<Tip>
When you call [`get_peft_model`], you will see a warning because PEFT does not recognize the targeted module type. In this case, you can ignore this warning.
</Tip>
By supplying a custom mapping, PEFT first checks the base model's layers against the custom mapping and dispatches to the custom LoRA layer type if there is a match. If there is no match, PEFT checks the built-in LoRA layer types for a match.
Therefore, this feature can also be used to override existing dispatch logic, e.g. if you want to use your own LoRA layer for `nn.Linear` instead of using the one provided by PEFT.
When creating your custom LoRA module, please follow the same rules as the [existing LoRA modules](https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora/layer.py). Some important constraints to consider:
- The custom module should inherit from `nn.Module` and `peft.tuners.lora.layer.LoraLayer`.
- The `__init__` method of the custom module should have the positional arguments `base_layer` and `adapter_name`. After this, there are additional `**kwargs` that you are free to use or ignore.
- The learnable parameters should be stored in an `nn.ModuleDict` or `nn.ParameterDict`, where the key corresponds to the name of the specific adapter (remember that a model can have more than one adapter at a time).
- The name of these learnable parameter attributes should start with `"lora_"`, e.g. `self.lora_new_param = ...`.
- Some methods are optional, e.g. you only need to implement `merge` and `unmerge` if you want to support weight merging.
Currently, the information about the custom module does not persist when you save the model. When loading the model, you have to register the custom modules again.
```python
# saving works as always and includes the parameters of the custom modules
peft_model.save_pretrained(<model-path>)
# loading the model later:
base_model = ...
# load the LoRA config that you saved earlier
config = LoraConfig.from_pretrained(<model-path>)
# register the custom module again, the same way as the first time
custom_module_mapping = {nn.LSTM: MyLoraLSTMLayer}
config._register_custom_module(custom_module_mapping)
# pass the config instance to from_pretrained:
peft_model = PeftModel.from_pretrained(model, tmp_path / "lora-custom-module", config=config)
```
If you use this feature and find it useful, or if you encounter problems, let us know by creating an issue or a discussion on GitHub. This allows us to estimate the demand for this feature and add a public API if it is sufficiently high.

View File

@ -40,6 +40,29 @@ from peft import LoraConfig
config = LoraConfig(init_lora_weights=False, ...)
```
### PiSSA
[PiSSA](https://arxiv.org/abs/2404.02948) initializes the LoRA adapter using the principal singular values and singular vectors. This straightforward modification allows PiSSA to converge more rapidly than LoRA and ultimately attain superior performance. Moreover, PiSSA reduces the quantization error compared to QLoRA, leading to further enhancements.
Configure the initialization method to "pissa", which may take several minutes to execute SVD on the pre-trained model:
```python
from peft import LoraConfig
config = LoraConfig(init_lora_weights="pissa", ...)
```
Alternatively, execute fast SVD, which takes only a few seconds. The number of iterations determines the trade-off between the error and computation time:
```python
lora_config = LoraConfig(init_lora_weights="pissa_niter_[number of iters]", ...)
```
For detailed instruction on using PiSSA, please follow [these instructions](https://github.com/fxmeng/peft/tree/main/examples/pissa_finetuning).
### OLoRA
[OLoRA](https://arxiv.org/abs/2406.01775) utilizes QR decomposition to initialize the LoRA adapters. OLoRA translates the base weights of the model by a factor of their QR decompositions, i.e., it mutates the weights before performing any training on them. This approach significantly improves stability, accelerates convergence speed, and ultimately achieves superior performance.
You just need to pass a single additional option to use OLoRA:
```python
from peft import LoraConfig
config = LoraConfig(init_lora_weights="olora", ...)
```
For more advanced usage, please refer to our [documentation](https://github.com/huggingface/peft/tree/main/examples/olora_finetuning).
### LoftQ
#### Standard approach
@ -99,6 +122,22 @@ from peft import LoraConfig
config = LoraConfig(use_dora=True, ...)
```
If parts of the model or the DoRA adapter are offloaded to CPU you can get a significant speedup at the cost of some temporary (ephemeral) VRAM overhead by using `ephemeral_gpu_offload=True` in `config.runtime_config`.
```py
from peft import LoraConfig, LoraRuntimeConfig
config = LoraConfig(use_dora=True, runtime_config=LoraRuntimeConfig(ephemeral_gpu_offload=True), ...)
```
A `PeftModel` with a DoRA adapter can also be loaded with `ephemeral_gpu_offload=True` flag using the `from_pretrained` method as well as the `load_adapter` method.
```py
from peft import PeftModel
model = PeftModel.from_pretrained(base_model, peft_model_id, ephemeral_gpu_offload=True)
```
#### Caveats
- DoRA only supports linear and Conv2d layers at the momement.
@ -126,10 +165,18 @@ Assuming the original model had 5 layers `[0, 1, 2 ,3, 4]`, this would create a
[Fewshot-Metamath-OrcaVicuna-Mistral-10B](https://huggingface.co/abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B) is an example of a model trained using this method on Mistral-7B expanded to 10B. The
[adapter_config.json](https://huggingface.co/abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B/blob/main/adapter_config.json) shows a sample LoRA adapter config applying this method for fine-tuning.
## Merge adapters
## Merge LoRA weights into the base model
While LoRA is significantly smaller and faster to train, you may encounter latency issues during inference due to separately loading the base model and the LoRA adapter. To eliminate latency, use the [`~LoraModel.merge_and_unload`] function to merge the adapter weights with the base model. This allows you to use the newly merged model as a standalone model. The [`~LoraModel.merge_and_unload`] function doesn't keep the adapter weights in memory.
Below is a diagram that explains the intuition of LoRA adapter merging:
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_diagram.png"/>
</div>
We show in the snippets below how to run that using PEFT.
```py
from transformers import AutoModelForCausalLM
from peft import PeftModel

View File

@ -138,3 +138,20 @@ print(tokenizer.decode(outputs[0]))
</hfoption>
</hfoptions>
## Merging (IA)³ Models
The (IA)³ models facilitate linear merging of adapters. To merge adapters in an (IA)³ model, utilize the `add_weighted_adapter` method from the `IA3Model` class. This method is analogous to the `add_weighted_adapter` method used in `LoraModel`, with the key difference being the absence of the `combination_type` parameter. For example, to merge three (IA)³ adapters into a PEFT model, you would proceed as follows:
```py
adapters = ["adapter1", "adapter2", "adapter3"]
weights = [0.4, 0.3, 0.3]
adapter_name = "merge"
model.add_weighted_adapter(adapters, weights, adapter_name)
```
It is recommended that the weights sum to 1.0 to preserve the scale of the model. The merged model can then be set as the active model using the `set_adapter` method:
```py
model.set_adapter("merge")
```

View File

@ -128,6 +128,70 @@ quantized_model = get_peft_model(quantized_model, peft_config)
You can refer to the [Google Colab](https://colab.research.google.com/drive/12GTp1FCj5_0SnnNQH18h_2XFh9vS_guX?usp=sharing) example for an overview of AQLM+LoRA finetuning.
## EETQ quantization
You can also perform LoRA fine-tuning on EETQ quantized models. [EETQ](https://github.com/NetEase-FuXi/EETQ) package offers simple and efficient way to perform 8-bit quantization, which is claimed to be faster than the `LLM.int8()` algorithm. First, make sure that you have a transformers version that is compatible with EETQ (e.g. by installing it from latest pypi or from source).
```py
import torch
from transformers import EetqConfig
config = EetqConfig("int8")
```
Pass the `config` to the [`~transformers.AutoModelForCausalLM.from_pretrained`] method.
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", quantization_config=config)
```
and create a `LoraConfig` and pass it to `get_peft_model`:
```py
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=16,
lora_alpha=8,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
```
## HQQ quantization
The models that is quantized using Half-Quadratic Quantization of Large Machine Learning Models ([HQQ](https://mobiusml.github.io/hqq_blog/)) support LoRA adapter tuning. To tune the quantized model, you'll need to install the `hqq` library with: `pip install hqq`.
```py
from hqq.engine.hf import HQQModelForCausalLM
quantized_model = HQQModelForCausalLM.from_quantized(save_dir_or_hfhub, device='cuda')
peft_config = LoraConfig(...)
quantized_model = get_peft_model(quantized_model, peft_config)
```
Or using transformers version that is compatible with HQQ (e.g. by installing it from latest pypi or from source).
```python
from transformers import HqqConfig, AutoModelForCausalLM
quant_config = HqqConfig(nbits=4, group_size=64)
quantized_model = AutoModelForCausalLM.from_pretrained(save_dir_or_hfhub, device='cuda', quantization_config=quant_config)
peft_config = LoraConfig(...)
quantized_model = get_peft_model(quantized_model, peft_config)
```
## Next steps
If you're interested in learning more about quantization, the following may be helpful:

View File

@ -0,0 +1,76 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# torch.compile
In PEFT, [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) works for some but not all features. The reason why it won't always work is because PEFT is highly dynamic in certain places (loading and switching between multiple adapters, for instance), which can cause trouble for `torch.compile`. In other places, `torch.compile` may work, but won't be as fast as expected because of graph breaks.
If you don't see an error, it doesn't necessarily mean that `torch.compile` worked correctly. It might give you an output, but the output is incorrect. This guide describes what works with `torch.compile` and what doesn't.
> [!TIP]
> Unless indicated otherwise, the default `torch.compile` settings were used.
## Training and inference with `torch.compile`
These features **work** with `torch.compile`. Everything listed below was tested with a causal LM:
- Training with `Trainer` from 🤗 transformers
- Training with a custom PyTorch loop
- Inference
- Generation
The following adapters were tested successfully:
- AdaLoRA
- BOFT
- IA³
- Layer Norm Tuning
- LoHa
- LoRA
- LoRA + DoRA
- OFT
- VeRA
- HRA
The following adapters **don't work** correctly for training or inference when using `torch.compile`:
- LoKr
- LoRA targeting embedding layers
## Advanced PEFT features with `torch.compile`
Below are some of the more advanced PEFT features that **work**. They were all tested with LoRA.
- `modules_to_save` (i.e. `config = LoraConfig(..., modules_to_save=...)`)
- Merging adapters (one or multiple)
- Merging multiple adapters into one adapter (i.e. calling `model.add_weighted_adapter(...)`)
Generally, we can expect that if a feature works correctly with LoRA and is also supported by other adapter types, it should also work for that adapter type.
The more advanced PEFT features below **don't work** in conjunction with `torch.compile`. Tests were run with LoRA:
- Using PEFT adapters with quantization (bitsandbytes)
- Inference with multiple adapters
- Unloading (i.e. calling `model.merge_and_unload()`)
- Disabling adapters (i.e. using `with model.disable_adapter()`)
- Mixed adapter batches (i.e. calling `model(batch, adapter_names=["__base__", "default", "other", ...])`)
## Test cases
All the use cases listed above are tested inside of [`peft/tests/test_torch_compile.py`](https://github.com/huggingface/peft/blob/main/tests/test_torch_compile.py). If you want to check in more detail how we tested a certain feature, please go to that file and check the test that corresponds to your use case.
> [!TIP]
> If you have another use case where you know that `torch.compile` does or does not work with PEFT, please contribute by letting us know or by opening a PR to add this use case to the covered test cases.

View File

@ -69,6 +69,12 @@ trainer = Trainer(model=peft_model, fp16=True, ...)
trainer.train()
```
<Tip>
Starting from PEFT verion v0.12.0, PEFT automatically promotes the dtype of adapter weights from `torch.float16` and `torch.bfloat16` to `torch.float32` where appropriate. To _prevent_ this behavior, you can pass `autocast_adapter_dtype=False` to [`~get_peft_model`], to [`~PeftModel.from_pretrained`], and to [`~PeftModel.load_adapter`].
</Tip>
## Bad results from a loaded PEFT model
There can be several reasons for getting a poor result from a loaded PEFT model which are listed below. If you're still unable to troubleshoot the problem, see if anyone else had a similar [issue](https://github.com/huggingface/peft/issues) on GitHub, and if you can't find any, open a new issue.
@ -129,9 +135,139 @@ If the model's embedding layer doesn't follow the Transformer's naming scheme, y
```python
model = get_peft_model(...)
# train the model
model.save_adapter("my_adapter", save_embedding_layers=True)
model.save_pretrained("my_adapter", save_embedding_layers=True)
```
For inference, load the base model first and resize it the same way you did before you trained the model. After you've resized the base model, you can load the PEFT checkpoint.
For a complete example, please check out [this notebook](https://github.com/huggingface/peft/blob/main/examples/causal_language_modeling/peft_lora_clm_with_additional_tokens.ipynb).
### Check layer and model status
Sometimes a PEFT model can end up in a bad state, especially when handling multiple adapters. There can be some confusion around what adapters exist, which one is active, which one is merged, etc. To help investigate this issue, call the [`~peft.PeftModel.get_layer_status`] and the [`~peft.PeftModel.get_model_status`] methods.
The [`~peft.PeftModel.get_layer_status`] method gives you a detailed overview of each targeted layer's active, merged, and available adapters.
```python
>>> from transformers import AutoModel
>>> from peft import get_peft_model, LoraConfig
>>> model_id = "google/flan-t5-small"
>>> model = AutoModel.from_pretrained(model_id)
>>> model = get_peft_model(model, LoraConfig())
>>> model.get_layer_status()
[TunerLayerStatus(name='model.encoder.block.0.layer.0.SelfAttention.q',
module_type='lora.Linear',
enabled=True,
active_adapters=['default'],
merged_adapters=[],
requires_grad={'default': True},
available_adapters=['default']),
TunerLayerStatus(name='model.encoder.block.0.layer.0.SelfAttention.v',
module_type='lora.Linear',
enabled=True,
active_adapters=['default'],
merged_adapters=[],
requires_grad={'default': True},
available_adapters=['default']),
...]
>>> model.get_model_status()
TunerModelStatus(
base_model_type='T5Model',
adapter_model_type='LoraModel',
peft_types={'default': 'LORA'},
trainable_params=344064,
total_params=60855680,
num_adapter_layers=48,
enabled=True,
active_adapters=['default'],
merged_adapters=[],
requires_grad={'default': True},
available_adapters=['default'],
)
```
In the model state output, you should look out for entries that say `"irregular"`. This means PEFT detected an inconsistent state in the model. For instance, if `merged_adapters="irregular"`, it means that for at least one adapter, it was merged on some target modules but not on others. The inference results will most likely be incorrect as a result.
The best way to resolve this issue is to reload the whole model and adapter checkpoint(s). Ensure that you don't perform any incorrect operations on the model, e.g. manually merging adapters on some modules but not others.
Convert the layer status into a pandas `DataFrame` for an easier visual inspection.
```python
from dataclasses import asdict
import pandas as pd
df = pd.DataFrame(asdict(layer) for layer in model.get_layer_status())
```
It is possible to get this information for non-PEFT models if they are using PEFT layers under the hood, but some information like the `base_model_type` or the `peft_types` cannot be determined in that case. As an example, you can call this on a [diffusers](https://huggingface.co/docs/diffusers/index) model like so:
```python
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> from peft import get_model_status, get_layer_status
>>> path = "runwayml/stable-diffusion-v1-5"
>>> lora_id = "takuma104/lora-test-text-encoder-lora-target"
>>> pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
>>> pipe.load_lora_weights(lora_id, adapter_name="adapter-1")
>>> pipe.load_lora_weights(lora_id, adapter_name="adapter-2")
>>> pipe.set_lora_device(["adapter-2"], "cuda")
>>> get_layer_status(pipe.text_encoder)
[TunerLayerStatus(name='text_model.encoder.layers.0.self_attn.k_proj',
module_type='lora.Linear',
enabled=True,
active_adapters=['adapter-2'],
merged_adapters=[],
requires_grad={'adapter-1': False, 'adapter-2': True},
available_adapters=['adapter-1', 'adapter-2'],
devices={'adapter-1': ['cpu'], 'adapter-2': ['cuda']}),
TunerLayerStatus(name='text_model.encoder.layers.0.self_attn.v_proj',
module_type='lora.Linear',
enabled=True,
active_adapters=['adapter-2'],
merged_adapters=[],
requires_grad={'adapter-1': False, 'adapter-2': True},
devices={'adapter-1': ['cpu'], 'adapter-2': ['cuda']}),
...]
>>> get_model_status(pipe.unet)
TunerModelStatus(
base_model_type='other',
adapter_model_type='None',
peft_types={},
trainable_params=797184,
total_params=861115332,
num_adapter_layers=128,
enabled=True,
active_adapters=['adapter-2'],
merged_adapters=[],
requires_grad={'adapter-1': False, 'adapter-2': True},
available_adapters=['adapter-1', 'adapter-2'],
devices={'adapter-1': ['cpu'], 'adapter-2': ['cuda']},
)
```
## Reproducibility
### Models using batch norm
When loading a trained PEFT model where the base model uses batch norm (e.g. `torch.nn.BatchNorm1d` or `torch.nn.BatchNorm2d`), you may find that you cannot reproduce the exact same outputs. This is because the batch norm layers keep track of running stats during training, but these stats are not part of the PEFT checkpoint. Therefore, when you load the PEFT model, the running stats of the base model will be used (i.e. from before training with PEFT).
Depending on your use case, this may not be a big deal. If, however, you need your outputs to be 100% reproducible, you can achieve this by adding the batch norm layers to `modules_to_save`. Below is an example of this using resnet and LoRA. Notice that we set `modules_to_save=["classifier", "normalization"]`. We need the `"classifier"` argument because our task is image classification, and we add the `"normalization"` argument to ensure that the batch norm layers are saved in the PEFT checkpoint.
```python
from transformers import AutoModelForImageClassification
from peft import LoraConfig, get_peft_model
model_id = "microsoft/resnet-18"
base_model = AutoModelForImageClassification.from_pretrained(self.model_id)
config = LoraConfig(
target_modules=["convolution"],
modules_to_save=["classifier", "normalization"],
),
```
Depending on the type of model you use, the batch norm layers could have different names than `"normalization"`, so please ensure that the name matches your model architecture.

View File

@ -0,0 +1,38 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FourierFT: Discrete Fourier Transformation Fine-Tuning
[FourierFT](https://huggingface.co/papers/2405.03003) is a parameter-efficient fine-tuning technique that leverages Discrete Fourier Transform to compress the model's tunable weights. This method outperforms LoRA in the GLUE benchmark and common ViT classification tasks using much less parameters.
FourierFT currently has the following constraints:
- Only `nn.Linear` layers are supported.
- Quantized layers are not supported.
If these constraints don't work for your use case, consider other methods instead.
The abstract from the paper is:
> Low-rank adaptation (LoRA) has recently gained much interest in fine-tuning foundation models. It effectively reduces the number of trainable parameters by incorporating low-rank matrices A and B to represent the weight change, i.e., Delta W=BA. Despite LoRA's progress, it faces storage challenges when handling extensive customization adaptations or larger base models. In this work, we aim to further compress trainable parameters by enjoying the powerful expressiveness of the Fourier transform. Specifically, we introduce FourierFT, which treats Delta W as a matrix in the spatial domain and learns only a small fraction of its spectral coefficients. With the trained spectral coefficients, we implement the inverse discrete Fourier transform to recover Delta W. Empirically, our FourierFT method shows comparable or better performance with fewer parameters than LoRA on various tasks, including natural language understanding, natural language generation, instruction tuning, and image classification. For example, when performing instruction tuning on the LLaMA2-7B model, FourierFT surpasses LoRA with only 0.064M trainable parameters, compared to LoRA's 33.5M.
## FourierFTConfig
[[autodoc]] tuners.fourierft.config.FourierFTConfig
## FourierFTModel
[[autodoc]] tuners.fourierft.model.FourierFTModel

View File

@ -0,0 +1,12 @@
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Document Title
A collection of helper functions for PEFT.
## Checking if a model is a PEFT model
[[autodoc]] helpers.check_if_peft_model
- all

View File

@ -0,0 +1,34 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LayerNorm Tuning
LayerNorm Tuning ([LN Tuning](https://huggingface.co/papers/2312.11420)) is a PEFT method that only fine-tunes the parameters of the LayerNorm layers in a model.
The paper has tested the performance of this method on large language models and has shown that it can achieve strong performance with a significant reduction in the number of trainable parameters and GPU memory usage.
However, the method is not limited to language models and can be applied to any model that uses LayerNorm layers.
In this implementation, the default is that all layernorm layers inside a model is finetuned, but it could be used to target other layer types such as `MLP` or `Attention` layers, this can be done by specifying the `target_modules` in the `LNTuningConfig`.
The abstract from the paper is:
*This paper introduces an efficient strategy to transform Large Language Models (LLMs) into Multi-Modal Large Language Models (MLLMs). By conceptualizing this transformation as a domain adaptation process, i.e., transitioning from text understanding to embracing multiple modalities, we intriguingly note that, within each attention block, tuning LayerNorm suffices to yield strong performance. Moreover, when benchmarked against other tuning approaches like full parameter finetuning or LoRA, its benefits on efficiency are substantial. For example, when compared to LoRA on a 13B model scale, performance can be enhanced by an average of over 20% across five multi-modal tasks, and meanwhile, results in a significant reduction of trainable parameters by 41.9% and a decrease in GPU memory usage by 17.6%. On top of this LayerNorm strategy, we showcase that selectively tuning only with conversational data can improve efficiency further. Beyond these empirical outcomes, we provide a comprehensive analysis to explore the role of LayerNorm in adapting LLMs to the multi-modal domain and improving the expressive power of the model.*
## LNTuningConfig
[[autodoc]] tuners.ln_tuning.config.LNTuningConfig
## LNTuningModel
[[autodoc]] tuners.ln_tuning.model.LNTuningModel

View File

@ -71,3 +71,7 @@ A `PeftModel` for mixing different adapter types (e.g. LoRA and LoHa).
[[autodoc]] utils.get_peft_model_state_dict
[[autodoc]] utils.prepare_model_for_kbit_training
[[autodoc]] get_layer_status
[[autodoc]] get_model_status

View File

@ -20,9 +20,10 @@ rendered properly in your Markdown viewer.
When saving the adapter parameters, it's possible to eschew storing the low rank matrices by setting `save_projection=False` on the `VeraConfig`. In that case, these matrices will be restored based on the fixed random seed from the `projection_prng_key` argument. This cuts down on the size of the checkpoint, but we cannot guarantee reproducibility on all devices and for all future versions of PyTorch. If you want to ensure reproducibility, set `save_projection=True` (which is the default).
To handle different shapes of adapted layers, VeRA initializes shared A and B matrices with the largest required size for each dimension. During the forward pass, submatrices A and B for a given layer are sliced out from these shared matrices and used as described in the paper. For example, adapting two linear layers of shapes (100, 20) and (80, 50) will create A and B matrices of shapes (rank, 50) and (100, rank) respectively. Then, to adapt a layer of shape (100, 20), submatrices A and B of shapes (rank, 20) and (100, rank) will be extracted.
VeRA currently has the following constraints:
- All targeted parameters must have the same shape.
- Only `nn.Linear` layers are supported.
- Quantized layers are not supported.

View File

@ -307,7 +307,7 @@ Let's load the model from the Hub and test it out on a food image.
```py
from peft import PeftConfig, PeftModel
from transfomers import AutoImageProcessor
from transformers import AutoImageProcessor
from PIL import Image
import requests

View File

@ -90,7 +90,7 @@ def preprocess_function(examples, text_column="Tweet text", label_column="text_l
model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[
"attention_mask"
][i]
labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids
labels["input_ids"][i] = [-100] * (max_length - len(label_input_ids)) + label_input_ids
model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length])
model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length])
labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length])

View File

@ -99,7 +99,7 @@ You can create your own configuration for training by initializing a [`PromptEnc
from peft import PromptEncoderConfig, TaskType
p_tuning_config = PromptEncoderConfig(
encoder_reprameterization_type="MLP",
encoder_reparameterization_type="MLP",
encoder_hidden_size=128,
num_attention_heads=16,
num_layers=24,

View File

@ -37,7 +37,7 @@ from utils.unet_2d_condition import UNet2DConditionNewModel
sys.path.append("../../src")
from peft import PeftModel
from peft import PeftModel # noqa: E402
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,106 @@
# DoRA: Weight-Decomposed Low-Rank Adaptation
![dora](https://i.ytimg.com/vi/m7KQdGSr0Dg/maxresdefault.jpg)
## Introduction
[DoRA](https://arxiv.org/abs/2402.09353) is a novel approach that leverages low rank adaptation through weight decomposition analysis to investigate the inherent differences between full fine-tuning and LoRA. DoRA initially decomposes the pretrained weight into its magnitude and directional components and finetunes both of them. Because the directional component is large in terms of parameter numbers, we further decompose it with LoRA for efficient finetuning. This results in enhancing both the learning capacity and training stability of LoRA while avoiding any additional inference overhead.
## Quick start
```python
import torch
from peft import LoraConfig, get_peft_model
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer
from datasets import load_dataset
model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b", device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
dataset = load_dataset("timdettmers/openassistant-guanaco", split="train")
lora_config = LoraConfig(
use_dora=True
)
peft_model = get_peft_model(model, lora_config)
trainer = transformers.Trainer(
model=peft_model,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=2048,
tokenizer=tokenizer,
)
trainer.train()
peft_model.save_pretrained("dora-llama-3-8b")
```
There is no additional change needed to your standard LoRA procedure, except for specifying `use_dora = True` option in your lora configuration.
Run the finetuning script simply by running:
```bash
python examples/dora_finetuning/dora_finetuning.py --base_model meta-llama/Meta-Llama-3-8B --data_path timdettmers/openassistant-guanaco
```
This 👆🏻 by default will load the model in peft set up with LoRA config. Now if you wanna quickly compare it with Dora, all you need to do is to input ` --use_dora` in the command line. So same above example would be 👇🏻;
```bash
python examples/dora_finetuning/dora_finetuning.py --base_model meta-llama/Meta-Llama-3-8B --data_path timdettmers/openassistant-guanaco --use_dora
```
DoRA also supports quantization. To use 4-bit quantization try:
```bash
python examples/dora_finetuning/dora_finetuning.py --base_model meta-llama/Meta-Llama-3-8B --quantize
```
Similarly, by default the LoRA layers are the attention and MLP layers of LLama model, if you get to choose a different set of layers for LoRA to be applied on, you can simply define it using:
```bash
python examples/dora_finetuning/dora_finetuning.py --lora_target_modules "q_proj,k_proj,v_proj,o_proj"
```
### Full example of the script
```bash
python dora_finetuning.py \
--base_model "PATH_TO_MODEL" \
--data_path "PATH_TO_DATASET" \
--output_dir "PATH_TO_OUTPUT_DIR" \
--batch_size 1 \
--num_epochs 3 \
--learning_rate 3e-4 \
--cutoff_len 512 \
--val_set_size 500 \
--use_dora \
--quantize \
--eval_step 10 \
--save_step 100 \
--device "cuda:0" \
--lora_r 16 \
--lora_alpha 32 \
--lora_dropout 0.05 \
--lora_target_modules "q_proj,k_proj,v_proj,o_proj" \
--hub_model_id "YOUR_HF_REPO" \
--push_to_hub
```
## Use the model on 🤗
You can load and use the model as any other 🤗 models.
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("ShirinYamani/huggyllama-llama-7b-finetuned")
```
## DoRA vs. LoRA
In general, DoRA finetuning on diffusion models is still experimental and is likely to require different hyperparameter values to perform best compared to LoRA.
Specifically, people have noticed 2 differences to take into account in your training:
1. LoRA seem to converge faster than DoRA (so a set of parameters that may lead to overfitting when training a LoRA may be working well for a DoRA)
2. DoRA quality superior to LoRA especially in lower ranks: The difference in quality of DoRA of rank 8 and LoRA of rank 8 appears to be more significant than when training ranks of 32 or 64 for example.
## Citation
```
@article{liu2024dora,
title={DoRA: Weight-Decomposed Low-Rank Adaptation},
author={Liu, Shih-Yang and Wang, Chien-Yi and Yin, Hongxu and Molchanov, Pavlo and Wang, Yu-Chiang Frank and Cheng, Kwang-Ting and Chen, Min-Hung},
journal={arXiv preprint arXiv:2402.09353},
year={2024}
}
```

View File

@ -0,0 +1,200 @@
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
DataCollatorWithPadding,
Trainer,
TrainingArguments,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
def train_model(
base_model: str,
data_path: str,
output_dir: str,
batch_size: int,
num_epochs: int,
learning_rate: float,
cutoff_len: int,
val_set_size: int,
use_dora: bool,
quantize: bool,
eval_step: int,
save_step: int,
device: str,
lora_r: int,
lora_alpha: int,
lora_dropout: float,
lora_target_modules: str,
hub_model_id: str,
push_to_hub: bool,
):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
hf_token = os.getenv("HF_TOKEN")
# Setup device
device = torch.device(device)
print(f"Using device: {device}")
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model, token=hf_token)
# QDoRA (quantized dora): IF YOU WANNA QUANTIZE THE MODEL
if quantize:
model = AutoModelForCausalLM.from_pretrained(
base_model,
token=hf_token,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=(
torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16
),
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
),
)
# setup for quantized training
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
else:
model = AutoModelForCausalLM.from_pretrained(base_model, token=hf_token)
# LoRa config for the PEFT model
lora_config = LoraConfig(
use_dora=use_dora, # to use Dora OR compare to Lora just set the --use_dora
r=lora_r, # Rank of matrix
lora_alpha=lora_alpha,
target_modules=(
lora_target_modules.split(",")
if lora_target_modules
else ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
),
lora_dropout=lora_dropout,
bias="none",
)
# get the peft model with LoRa config
model = get_peft_model(model, lora_config)
model.to(device) # MODEL TO GPU/CUDA
tokenizer.pad_token = tokenizer.eos_token
# Load the dataset
dataset = load_dataset(data_path)
def tokenize_function(examples):
inputs = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=cutoff_len)
inputs["labels"] = inputs["input_ids"].copy() # setting labels for a language modeling task
return inputs
# Tokenize the dataset and prepare for training
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)
# Data collator to dynamically pad the batched examples
data_collator = DataCollatorWithPadding(tokenizer)
# Define training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_steps=100,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=eval_step,
save_steps=save_step,
save_total_limit=2,
push_to_hub=push_to_hub,
hub_model_id=hub_model_id,
gradient_accumulation_steps=16,
fp16=True,
learning_rate=learning_rate,
hub_token=hf_token,
)
# Clear CUDA cache to free memory
torch.cuda.empty_cache()
# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
)
# Start model training
trainer.train()
# Save and push the trained model and tokenizer
if push_to_hub:
# Push the main model to the hub
trainer.push_to_hub(commit_message="Fine-tuned model")
# Save the model and tokenizer locally
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Fine-tune LLaMA with DoRA and PEFT")
parser.add_argument("--base_model", type=str, default="huggyllama/llama-7b", help="Base model path or name")
parser.add_argument(
"--data_path", type=str, default="timdettmers/openassistant-guanaco", help="Dataset path or name"
)
parser.add_argument(
"--output_dir", type=str, default="path/to/output", help="Output directory for the fine-tuned model"
)
parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--learning_rate", type=float, default=3e-4, help="Learning rate")
parser.add_argument("--cutoff_len", type=int, default=512, help="Cutoff length for tokenization")
parser.add_argument("--val_set_size", type=int, default=500, help="Validation set size")
parser.add_argument("--use_dora", action="store_true", help="Apply Dora")
parser.add_argument("--quantize", action="store_true", help="Use quantization")
parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval")
parser.add_argument("--save_step", type=int, default=100, help="Save step interval")
parser.add_argument("--device", type=str, default="cuda:0", help="Device to use for training")
parser.add_argument("--lora_r", type=int, default=8, help="LoRA rank")
parser.add_argument("--lora_alpha", type=int, default=16, help="LoRA alpha")
parser.add_argument("--lora_dropout", type=float, default=0.05, help="LoRA dropout rate")
parser.add_argument(
"--lora_target_modules", type=str, default=None, help="Comma-separated list of target modules for LoRA"
)
parser.add_argument(
"--hub_model_id",
type=str,
default="path/to/repo",
help="Repository name to push the model on the Hugging Face Hub",
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to Hugging Face Hub")
args = parser.parse_args()
train_model(
base_model=args.base_model,
data_path=args.data_path,
output_dir=args.output_dir,
batch_size=args.batch_size,
num_epochs=args.num_epochs,
learning_rate=args.learning_rate,
cutoff_len=args.cutoff_len,
val_set_size=args.val_set_size,
use_dora=args.use_dora,
quantize=args.quantize,
eval_step=args.eval_step,
save_step=args.save_step,
device=args.device,
lora_r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
lora_target_modules=args.lora_target_modules,
hub_model_id=args.hub_model_id,
push_to_hub=args.push_to_hub,
)

View File

@ -0,0 +1,103 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example script demonstrating the time difference loading a model with a DoRA using ephemeral GPU offloading vs doing it purely on the CPU.
Example outputs:
$ python load_with_dora.py
--- Loading model ---
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:04<00:00, 1.03s/it]
--- Loading PeftModel ---
--- Done ---
Model loading time: 4.83s
PeftModel loading time: 28.14s
Use ephemeral GPU offloading: False
(Note: if this was the first time you ran the script, or if your cache was cleared, the times shown above are invalid, due to the time taken to download the model and DoRA files. Just re-run the script in this case.)
$ python load_with_dora.py --ephemeral_gpu_offload
--- Loading model ---
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:03<00:00, 1.11it/s]
--- Loading PeftModel ---
--- Done ---
Model loading time: 4.28s
PeftModel loading time: 16.59s
Use ephemeral GPU offloading: True
(Note: if this was the first time you ran the script, or if your cache was cleared, the times shown above are invalid, due to the time taken to download the model and DoRA files. Just re-run the script in this case.)
"""
import argparse
import time
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM
from peft import PeftModel
def main():
parser = argparse.ArgumentParser(description="Load a model with DoRA using ephemeral GPU offloading")
parser.add_argument("--model", type=str, default="NousResearch/Hermes-2-Pro-Mistral-7B", help="Model to load")
parser.add_argument(
"--dora",
type=str,
default="peft-internal-testing/DoRA-Hermes-2-Pro-Mistral-7B",
help="DoRA to use",
)
parser.add_argument("--ephemeral_gpu_offload", action="store_true", help="Use ephemeral GPU offloading")
parser.add_argument(
"--merge_model_path", type="str", help="Merge the model with the DoRA model and save to the given path"
)
args = parser.parse_args()
peft_model_kwargs = {
"ephemeral_gpu_offload": args.ephemeral_gpu_offload,
"max_memory": {"cpu": "256GiB"},
"device_map": {"": "cpu"},
}
# Predownload
try:
snapshot_download(repo_id=args.model)
except Exception as e:
print(f"Failed to download model: {e}")
# We continue anyway as this might be e.g. a local directory or something
try:
snapshot_download(repo_id=args.dora)
except Exception as e:
print(f"Failed to download DoRA: {e}")
# We continue anyway as this might be e.g. a local directory or something
start = time.perf_counter()
print("--- Loading model ---")
model = AutoModelForCausalLM.from_pretrained(args.model)
model_time = time.perf_counter() - start
print("--- Loading PeftModel ---")
peft_model = PeftModel.from_pretrained(model, args.dora, **peft_model_kwargs)
print("--- Done ---")
peft_model_time = time.perf_counter() - start
print(f"Model loading time: {model_time:.2f}s")
print(f"PeftModel loading time: {peft_model_time:.2f}s")
print(f"Use ephemeral GPU offloading: {args.ephemeral_gpu_offload}")
if args.merge_model_path is not None:
merged_model = peft_model.merge_and_unload(progressbar=True)
merged_model.save_pretrained(args.merge_model_path)
if __name__ == "__main__":
main()

View File

@ -194,6 +194,8 @@ class AutoModelForSentenceEmbedding(nn.Module):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)

View File

@ -0,0 +1,98 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DreamBooth fine-tuning with HRA
This guide demonstrates how to use Householder reflection adaptation (HRA) method, to fine-tune Dreambooth with `stabilityai/stable-diffusion-2-1` model.
HRA provides a new perspective connecting LoRA to OFT and achieves encouraging performance in various downstream tasks.
HRA adapts a pre-trained model by multiplying each frozen weight matrix with a chain of r learnable Householder reflections (HRs).
HRA can be interpreted as either an OFT adapter or an adaptive LoRA.
Consequently, it harnesses the advantages of both strategies, reducing parameters and computation costs while penalizing the loss of pre-training knowledge.
For further details on HRA, please consult the [original HRA paper](https://arxiv.org/abs/2405.17484).
In this guide we provide a Dreambooth fine-tuning script that is available in [PEFT's GitHub repo examples](https://github.com/huggingface/peft/tree/main/examples/hra_dreambooth). This implementation is adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth).
You can try it out and fine-tune on your custom images.
## Set up your environment
Start by cloning the PEFT repository:
```bash
git clone --recursive https://github.com/huggingface/peft
```
Navigate to the directory containing the training scripts for fine-tuning Dreambooth with HRA:
```bash
cd peft/examples/hra_dreambooth
```
Set up your environment: install PEFT, and all the required libraries. At the time of writing this guide we recommend installing PEFT from source. The following environment setup should work on A100 and H100:
```bash
conda create --name peft python=3.10
conda activate peft
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia
conda install xformers -c xformers
pip install -r requirements.txt
pip install git+https://github.com/huggingface/peft
```
## Download the data
[dreambooth](https://github.com/google/dreambooth) dataset should have been automatically cloned in the following structure when running the training script.
```
hra_dreambooth
├── data
│ └── dreambooth
│ └── dataset
│ ├── backpack
│ └── backpack_dog
│ ...
```
You can also put your custom images into `hra_dreambooth/data/dreambooth/dataset`.
## Fine-tune Dreambooth with HRA
```bash
class_idx=0
bash ./train_dreambooth.sh $class_idx
```
where the `$class_idx` corresponds to different subjects ranging from 0 to 29.
Launch the training script with `accelerate` and pass hyperparameters, as well as LoRa-specific arguments to it such as:
- `use_hra`: Enables HRA in the training script.
- `hra_r`: the number of HRs (i.e., r) across different layers, expressed in `int`.
As r increases, the number of trainable parameters increases, which generally leads to improved performance.
However, this also results in higher memory consumption and longer computation times.
Therefore, r is usually set to 8.
**Note**, please set r to an even number to avoid potential issues during initialization.
- `hra_apply_GS`: Applies Gram-Schmidt orthogonalization. Default is `false`.
- `hra_bias`: specify if the `bias` parameters should be trained. Can be `none`, `all` or `hra_only`.
If you are running this script on Windows, you may need to set the `--num_dataloader_workers` to 0.
To learn more about DreamBooth fine-tuning with prior-preserving loss, check out the [Diffusers documentation](https://huggingface.co/docs/diffusers/training/dreambooth#finetuning-with-priorpreserving-loss).
## Generate images with the fine-tuned model
To generate images with the fine-tuned model, simply run the jupyter notebook `dreambooth_inference.ipynb` for visualization with `jupyter notebook` under `./examples/hra_dreambooth`.

Binary file not shown.

After

Width:  |  Height:  |  Size: 466 KiB

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,13 @@
transformers==4.36.2
accelerate==0.25.0
evaluate
tqdm
datasets==2.16.1
diffusers==0.17.1
Pillow
huggingface_hub
safetensors
nb_conda_kernels
ipykernel
ipywidgets
wandb==0.16.1

View File

@ -0,0 +1,609 @@
#!/usr/bin/env python
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The implementation is based on "Bridging The Gap between Low-rank and Orthogonal
# Adaptation via Householder Reflection Adaptation" (https://arxiv.org/abs/2405.17484).
import hashlib
import itertools
import logging
import math
import os
from contextlib import nullcontext
from pathlib import Path
import datasets
import diffusers
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import Repository
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from utils.args_loader import (
get_full_repo_name,
import_model_class_from_model_name_or_path,
parse_args,
)
from utils.dataset import DreamBoothDataset, PromptDataset, collate_fn
from utils.tracemalloc import TorchTracemalloc, b2mb
from peft import HRAConfig, get_peft_model
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.16.0.dev0")
logger = get_logger(__name__)
UNET_TARGET_MODULES = ["to_q", "to_v", "to_k", "query", "value", "key", "to_out.0", "add_k_proj", "add_v_proj"]
TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"]
def save_adaptor(accelerator, step, unet, text_encoder, args):
unwarpped_unet = accelerator.unwrap_model(unet)
unwarpped_unet.save_pretrained(
os.path.join(args.output_dir, f"unet/{step}"), state_dict=accelerator.get_state_dict(unet)
)
if args.train_text_encoder:
unwarpped_text_encoder = accelerator.unwrap_model(text_encoder)
unwarpped_text_encoder.save_pretrained(
os.path.join(args.output_dir, f"text_encoder/{step}"),
state_dict=accelerator.get_state_dict(text_encoder),
)
def main(args):
validation_prompts = list(filter(None, args.validation_prompt[0].split(".")))
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to if args.report_to != "none" else None,
project_dir=accelerator_project_config,
)
if args.report_to == "wandb":
import wandb
args.wandb_project_name = args.project_name
args.wandb_run_name = args.run_name
wandb_init = {
"wandb": {
"name": args.wandb_run_name,
"mode": "online",
}
}
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
global_seed = hash(args.run_name) % (2**32)
set_seed(global_seed)
# Generate class images if prior preservation is enabled.
if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
if args.prior_generation_precision == "fp32":
torch_dtype = torch.float32
elif args.prior_generation_precision == "fp16":
torch_dtype = torch.float16
elif args.prior_generation_precision == "bf16":
torch_dtype = torch.bfloat16
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=torch_dtype,
safety_checker=None,
revision=args.revision,
)
pipeline.set_progress_bar_config(disable=True)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
sample_dataloader = accelerator.prepare(sample_dataloader)
pipeline.to(accelerator.device)
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
):
images = pipeline(example["prompt"]).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
image.save(image_filename)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name) # noqa: F841
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
elif args.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
)
# import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
# Load scheduler and models
noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = text_encoder_cls.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
if args.use_hra:
config = HRAConfig(
r=args.hra_r,
apply_GS=args.hra_apply_GS,
target_modules=UNET_TARGET_MODULES,
bias=args.hra_bias,
)
unet = get_peft_model(unet, config, adapter_name=args.run_name)
unet.print_trainable_parameters()
vae.requires_grad_(False)
unet.train()
if args.train_text_encoder and args.use_hra:
config = HRAConfig(
r=args.hra_r,
apply_GS=args.hra_apply_GS,
target_modules=UNET_TARGET_MODULES,
bias=args.hra_bias,
)
text_encoder = get_peft_model(text_encoder, config, adapter_name=args.run_name)
text_encoder.print_trainable_parameters()
text_encoder.train()
else:
text_encoder.requires_grad_(False)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
# below fails when using hra so commenting it out
if args.train_text_encoder and not args.use_hra:
text_encoder.gradient_checkpointing_enable()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# Optimizer creation
params_to_optimize = [param for param in unet.parameters() if param.requires_grad]
if args.train_text_encoder:
params_to_optimize += [param for param in text_encoder.parameters() if param.requires_grad]
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Download the official dreambooth dataset from the official repository: https://github.com/google/dreambooth.git
data_path = os.path.join(os.getcwd(), "data", "dreambooth")
if not os.path.exists(data_path):
os.makedirs(os.path.join(os.getcwd(), "data"), exist_ok=True)
os.system(f"git clone https://github.com/google/dreambooth.git '{data_path}'")
# Dataset and DataLoaders creation:
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
num_workers=args.num_dataloader_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae and text_encoder to device and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
if not args.train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
if args.report_to == "wandb":
accelerator.init_trackers(args.wandb_project_name, config=vars(args), init_kwargs=wandb_init)
else:
accelerator.init_trackers(args.project_name, config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = resume_global_step // num_update_steps_per_epoch
resume_step = resume_global_step % num_update_steps_per_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
if args.train_text_encoder:
text_encoder.train()
for epoch in range(first_epoch, args.num_train_epochs):
unet.train()
with TorchTracemalloc() if not args.no_tracemalloc else nullcontext() as tracemalloc:
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
if args.report_to == "wandb":
accelerator.print(progress_bar)
continue
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
target, target_prior = torch.chunk(target, 2, dim=0)
# Compute instance loss
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
# Compute prior loss
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder
else unet.parameters()
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
if args.report_to == "wandb":
accelerator.print(progress_bar)
global_step += 1
if global_step % args.checkpointing_steps == 0 and global_step != 0:
if accelerator.is_main_process:
save_adaptor(accelerator, global_step, unet, text_encoder, args)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if (
args.validation_prompt is not None
and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0
and global_step > 10
):
unet.eval()
logger.info(
f"Running validation... \n Generating {len(validation_prompts)} images with prompt:"
f" {validation_prompts[0]}, ......"
)
# create pipeline
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
safety_checker=None,
revision=args.revision,
)
# set `keep_fp32_wrapper` to True because we do not want to remove
# mixed precision hooks while we are still training
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True)
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
if args.seed is not None:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
else:
generator = None
images = []
val_img_dir = os.path.join(
args.output_dir,
f"validation/{global_step}",
args.run_name,
)
os.makedirs(val_img_dir, exist_ok=True)
for val_promot in validation_prompts:
image = pipeline(val_promot, num_inference_steps=50, generator=generator).images[0]
image.save(os.path.join(val_img_dir, f"{'_'.join(val_promot.split(' '))}.png"[1:]))
images.append(image)
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
import wandb
tracker.log(
{
"validation": [
wandb.Image(image, caption=f"{i}: {validation_prompts[i]}")
for i, image in enumerate(images)
]
}
)
del pipeline
torch.cuda.empty_cache()
if global_step >= args.max_train_steps:
break
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
if not args.no_tracemalloc:
accelerator.print(f"GPU Memory before entering the train : {b2mb(tracemalloc.begin)}")
accelerator.print(f"GPU Memory consumed at the end of the train (end-begin): {tracemalloc.used}")
accelerator.print(f"GPU Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}")
accelerator.print(
f"GPU Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}"
)
accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}")
accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}")
accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}")
accelerator.print(
f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}"
)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@ -0,0 +1,185 @@
CLASS_IDX=$1
# Define the UNIQUE_TOKEN, CLASS_TOKENs, and SUBJECT_NAMES
UNIQUE_TOKEN="qwe"
SUBJECT_NAMES=(
"backpack" "backpack_dog" "bear_plushie" "berry_bowl" "can"
"candle" "cat" "cat2" "clock" "colorful_sneaker"
"dog" "dog2" "dog3" "dog5" "dog6"
"dog7" "dog8" "duck_toy" "fancy_boot" "grey_sloth_plushie"
"monster_toy" "pink_sunglasses" "poop_emoji" "rc_car" "red_cartoon"
"robot_toy" "shiny_sneaker" "teapot" "vase" "wolf_plushie"
)
CLASS_TOKENs=(
"backpack" "backpack" "stuffed animal" "bowl" "can"
"candle" "cat" "cat" "clock" "sneaker"
"dog" "dog" "dog" "dog" "dog"
"dog" "dog" "toy" "boot" "stuffed animal"
"toy" "glasses" "toy" "toy" "cartoon"
"toy" "sneaker" "teapot" "vase" "stuffed animal"
)
CLASS_TOKEN=${CLASS_TOKENs[$CLASS_IDX]}
SELECTED_SUBJECT=${SUBJECT_NAMES[$CLASS_IDX]}
if [[ $CLASS_IDX =~ ^(0|1|2|3|4|5|8|9|17|18|19|20|21|22|23|24|25|26|27|28|29)$ ]]; then
PROMPT_LIST=(
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the jungle."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the snow."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on the beach."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on a cobblestone street."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of pink fabric."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a wooden floor."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a city in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a mountain in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a blue house in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a purple rug in a forest."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a wheat field in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a tree and autumn leaves in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with the Eiffel Tower in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} floating on top of water."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} floating in an ocean of milk."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of green grass with sunflowers around it."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a mirror."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of the sidewalk in a crowded street."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a dirt road."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a white rug."
"a red ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a purple ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a shiny ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a wet ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a cube shaped ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
)
prompt_test_list=(
"a ${CLASS_TOKEN} in the jungle"
"a ${CLASS_TOKEN} in the snow"
"a ${CLASS_TOKEN} on the beach"
"a ${CLASS_TOKEN} on a cobblestone street"
"a ${CLASS_TOKEN} on top of pink fabric"
"a ${CLASS_TOKEN} on top of a wooden floor"
"a ${CLASS_TOKEN} with a city in the background"
"a ${CLASS_TOKEN} with a mountain in the background"
"a ${CLASS_TOKEN} with a blue house in the background"
"a ${CLASS_TOKEN} on top of a purple rug in a forest"
"a ${CLASS_TOKEN} with a wheat field in the background"
"a ${CLASS_TOKEN} with a tree and autumn leaves in the background"
"a ${CLASS_TOKEN} with the Eiffel Tower in the background"
"a ${CLASS_TOKEN} floating on top of water"
"a ${CLASS_TOKEN} floating in an ocean of milk"
"a ${CLASS_TOKEN} on top of green grass with sunflowers around it"
"a ${CLASS_TOKEN} on top of a mirror"
"a ${CLASS_TOKEN} on top of the sidewalk in a crowded street"
"a ${CLASS_TOKEN} on top of a dirt road"
"a ${CLASS_TOKEN} on top of a white rug"
"a red ${CLASS_TOKEN}"
"a purple ${CLASS_TOKEN}"
"a shiny ${CLASS_TOKEN}"
"a wet ${CLASS_TOKEN}"
"a cube shaped ${CLASS_TOKEN}"
)
else
PROMPT_LIST=(
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the jungle."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in the snow."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on the beach."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on a cobblestone street."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of pink fabric."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a wooden floor."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a city in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a mountain in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} with a blue house in the background."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} on top of a purple rug in a forest."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a red hat."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a santa hat."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a rainbow scarf."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a black top hat and a monocle."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a chef outfit."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a firefighter outfit."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a police outfit."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing pink glasses."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} wearing a yellow shirt."
"a ${UNIQUE_TOKEN} ${CLASS_TOKEN} in a purple wizard outfit."
"a red ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a purple ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a shiny ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a wet ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
"a cube shaped ${UNIQUE_TOKEN} ${CLASS_TOKEN}."
)
prompt_test_list=(
"a ${CLASS_TOKEN} in the jungle"
"a ${CLASS_TOKEN} in the snow"
"a ${CLASS_TOKEN} on the beach"
"a ${CLASS_TOKEN} on a cobblestone street"
"a ${CLASS_TOKEN} on top of pink fabric"
"a ${CLASS_TOKEN} on top of a wooden floor"
"a ${CLASS_TOKEN} with a city in the background"
"a ${CLASS_TOKEN} with a mountain in the background"
"a ${CLASS_TOKEN} with a blue house in the background"
"a ${CLASS_TOKEN} on top of a purple rug in a forest"
"a ${CLASS_TOKEN} wearing a red hat"
"a ${CLASS_TOKEN} wearing a santa hat"
"a ${CLASS_TOKEN} wearing a rainbow scarf"
"a ${CLASS_TOKEN} wearing a black top hat and a monocle"
"a ${CLASS_TOKEN} in a chef outfit"
"a ${CLASS_TOKEN} in a firefighter outfit"
"a ${CLASS_TOKEN} in a police outfit"
"a ${CLASS_TOKEN} wearing pink glasses"
"a ${CLASS_TOKEN} wearing a yellow shirt"
"a ${CLASS_TOKEN} in a purple wizard outfit"
"a red ${CLASS_TOKEN}"
"a purple ${CLASS_TOKEN}"
"a shiny ${CLASS_TOKEN}"
"a wet ${CLASS_TOKEN}"
"a cube shaped ${CLASS_TOKEN}"
)
fi
VALIDATION_PROMPT=${PROMPT_LIST[@]}
INSTANCE_PROMPT="a photo of ${UNIQUE_TOKEN} ${CLASS_TOKEN}"
CLASS_PROMPT="a photo of ${CLASS_TOKEN}"
export MODEL_NAME="stabilityai/stable-diffusion-2-1"
PEFT_TYPE="hra"
HRA_R=8
export PROJECT_NAME="dreambooth_${PEFT_TYPE}"
export RUN_NAME="${SELECTED_SUBJECT}_${PEFT_TYPE}_${HRA_R}"
export INSTANCE_DIR="./data/dreambooth/dataset/${SELECTED_SUBJECT}"
export CLASS_DIR="./data/class_data/${CLASS_TOKEN}"
export OUTPUT_DIR="./data/output/${PEFT_TYPE}"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir="$CLASS_DIR" \
--output_dir=$OUTPUT_DIR \
--project_name=$PROJECT_NAME \
--run_name=$RUN_NAME \
--with_prior_preservation \
--prior_loss_weight=1.0 \
--instance_prompt="$INSTANCE_PROMPT" \
--validation_prompt="$VALIDATION_PROMPT" \
--class_prompt="$CLASS_PROMPT" \
--resolution=512 \
--train_batch_size=1 \
--num_dataloader_workers=2 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--use_hra \
--hra_r=$HRA_R \
--hra_bias="hra_only" \
--learning_rate=5e-3 \
--max_train_steps=510 \
--checkpointing_steps=200 \
--validation_steps=200 \
--enable_xformers_memory_efficient_attention \
--report_to="none" \

View File

@ -0,0 +1,377 @@
# adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth)
import argparse
import os
import warnings
from typing import Optional
from huggingface_hub import HfFolder, whoami
from transformers import PretrainedConfig
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a Dreambooth training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
required=True,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If there are not enough images already present in"
" class_data_dir, additional images will be sampled with class_prompt."
),
)
parser.add_argument(
"--validation_prompt",
nargs="+",
help="A prompt that is used during validation to verify that the model is learning.",
)
parser.add_argument(
"--num_validation_images",
type=int,
default=4,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=500,
help=(
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument(
"--set_grads_to_none",
action="store_true",
help=(
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
" behaviors, so disable this argument if it causes any problems. More info:"
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
),
)
# hra args
parser.add_argument("--use_hra", action="store_true", help="Whether to use HRA for parameter efficient tuning.")
parser.add_argument("--hra_r", type=int, default=8, help="The rank of HRA across different layers.")
parser.add_argument(
"--hra_apply_GS", default=False, action="store_true", help="Whether to apply Gram-Schmidt orthogonalization."
)
parser.add_argument(
"--hra_bias",
type=str,
default="none",
help="Bias type for HRA. Can be 'none', 'all' or 'hra_only', only used if use_hra is True.",
)
parser.add_argument(
"--num_dataloader_workers", type=int, default=1, help="Num of workers for the training dataloader."
)
parser.add_argument(
"--no_tracemalloc",
default=False,
action="store_true",
help="Flag to stop memory allocation tracing during training. This could speed up training on Windows.",
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--project_name",
type=str,
default=None,
help=("The project name for log tracking"),
)
parser.add_argument(
"--run_name",
type=str,
default=None,
help=("The run name for log tracking"),
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"wandb"`'
' (default), `"tensorboard"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--wandb_key",
type=str,
default=None,
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "),
)
parser.add_argument(
"--wandb_project_name",
type=str,
default=None,
help=("If report to option is set to wandb, project name in wandb for log tracking "),
)
parser.add_argument(
"--wandb_run_name",
type=str,
default=None,
help=("If report to option is set to wandb, project name in wandb for log tracking "),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--prior_generation_precision",
type=str,
default=None,
choices=["no", "fp32", "fp16", "bf16"],
help=(
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
# if args.dataset_name is None and args.train_data_dir is None:
# raise ValueError("Need either a dataset name or a training folder.")
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
# logger is not available yet
if args.class_data_dir is not None:
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
if args.class_prompt is not None:
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
return args

View File

@ -0,0 +1,128 @@
# adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth)
from pathlib import Path
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
return example
def collate_fn(examples, with_prior_preservation=False):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = torch.cat(input_ids, dim=0)
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
}
return batch
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example

View File

@ -0,0 +1,60 @@
# adapted from [peft's boft_dreambooth](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth)
import gc
import threading
import psutil
import torch
# Converting Bytes to Megabytes
def b2mb(x):
return int(x / 2**20)
# This context manager is used to track the peak memory usage of the process
class TorchTracemalloc:
def __enter__(self):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
self.begin = torch.cuda.memory_allocated()
self.process = psutil.Process()
self.cpu_begin = self.cpu_mem_used()
self.peak_monitoring = True
peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
peak_monitor_thread.daemon = True
peak_monitor_thread.start()
return self
def cpu_mem_used(self):
"""get resident set size memory for the current process"""
return self.process.memory_info().rss
def peak_monitor_func(self):
self.cpu_peak = -1
while True:
self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak)
# can't sleep or will not catch the peak right (this comment is here on purpose)
# time.sleep(0.001) # 1msec
if not self.peak_monitoring:
break
def __exit__(self, *exc):
self.peak_monitoring = False
gc.collect()
torch.cuda.empty_cache()
self.end = torch.cuda.memory_allocated()
self.peak = torch.cuda.max_memory_allocated()
self.used = b2mb(self.end - self.begin)
self.peaked = b2mb(self.peak - self.begin)
self.cpu_end = self.cpu_mem_used()
self.cpu_used = b2mb(self.cpu_end - self.cpu_begin)
self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin)
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")

View File

@ -0,0 +1,84 @@
# OLoRA: Orthonormal Low Rank Adaptation of Large Language Models
## Introduction
[OLoRA](https://arxiv.org/abs/2406.01775) is a novel approach that leverages orthonormal low rank adaptation through QR decomposition. Unlike the default LoRA implementation, OLoRA decomposes original weights into their $\mathbf{Q}$ and $\mathbf{R}$ parts, and then uses the first `rank` rows of $\mathbf{R}$ and the first `rank` columns of $\mathbf{Q}$ to initialize $\mathbf{A}$ and $\mathbf{B}$, respectively. This results in significantly faster convergence, more stable training, and superior performance.
## Quick start
```python
import torch
from peft import LoraConfig, get_peft_model
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import SFTTrainer
from datasets import load_dataset
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
dataset = load_dataset("imdb", split="train[:1%]")
lora_config = LoraConfig(
init_lora_weights="olora"
)
peft_model = get_peft_model(model, lora_config)
trainer = SFTTrainer(
model=peft_model,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=512,
tokenizer=tokenizer,
)
trainer.train()
peft_model.save_pretrained("olora-opt-350m")
```
There is no additional change needed to your standard LoRA procedure, except for specifying `init_lora_weights = "olora"` option in your lora configuration.
Additionally you can refer to olora finetuning script.
Run the script simply by running:
```bash
python3 examples/olora_finetuning/olora_finetuning.py --base_model facebook/opt-350m
```
OLoRA also supports quantization. To use 4-bit quantization try:
```bash
python3 examples/olora_finetuning/olora_finetuning.py --base_model facebook/opt-350m --quantize
```
## Use the model
You can load and use the model as any other 🤗 PEFT model
```python
from peft import PeftModel
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
olora_model = PeftModel.from_pretrained(model, "olora-opt-350m")
```
## OLoRA and LoRA
OLoRA differs from LoRA in that it mutates the original weights. To utilize multiple adapters simultaneously, you can leverage the `path_initial_model_for_weight_conversion` option. Below is a simple template illustrating how to convert OLoRA to conventional LoRA:
```python
base_model = AutoModel.from_pretrained("facebook/opt-350m")
olora_config = LoraConfig(
...
init_lora_weights = "olora" # Initialize the model with OLoRA
)
olora_model = get_peft_model(base_model, olora_config)
init_path = <path-to-untrained-olora-model>
olora_model.save_pretrained(init_path) # Save the model *before* performing any training
# Train the model
train(olora_model) # Your training loop
#Save the model after training
olora_model.save_pretrained(output_dir, path_initial_model_for_weight_conversion=init_path)
```
After completing training, you can save and convert your OLoRA model to a conventional LoRA model by setting `path_initial_model_for_weight_conversion` to `init_path`, that is the path of your untrained OLoRA model. This conversion enables you to use multiple adapters with your LoRA model. Note that this conversion is not supported if `rslora` is used in combination with `rank_pattern` or `alpha_pattern`.
## Citation
```
@misc{büyükakyüz2024olora,
title={OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models},
author={Kerim Büyükakyüz},
year={2024},
eprint={2406.01775},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```

View File

@ -0,0 +1,184 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import torch
import transformers
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import (
LoraConfig,
get_peft_model,
)
def train(
base_model: str = "path/to/model",
data_path: str = "yahma/alpaca-cleaned",
output_dir: str = "olora",
batch_size: int = 16,
num_epochs: int = 1,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 16,
quantize: bool = False,
eval_step: int = 100,
save_step: int = 100,
device_map: str = "auto",
lora_r: int = 32,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = None,
init_lora_weights="olora",
):
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map=device_map,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
if quantize
else None,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(example):
full_prompt = generate_prompt(example)
tokenized_full_prompt = tokenize(full_prompt)
return tokenized_full_prompt
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
init_lora_weights=init_lora_weights,
)
model = get_peft_model(model, config)
data = load_dataset(data_path)
train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=batch_size,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=100,
optim="adamw_torch",
evaluation_strategy="steps",
save_strategy="steps",
eval_steps=eval_step,
save_steps=save_step,
output_dir=output_dir,
save_total_limit=3,
load_best_model_at_end=True,
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
trainer.train()
model.save_pretrained(output_dir)
def generate_prompt(example):
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{example["instruction"]}
### Response:
{example["output"]}"""
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str, default="path/to/model")
parser.add_argument("--data_path", type=str, default="yahma/alpaca-cleaned")
parser.add_argument("--output_dir", type=str, default="olora")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=3e-4)
parser.add_argument("--cutoff_len", type=int, default=256)
parser.add_argument("--val_set_size", type=int, default=16)
parser.add_argument("--quantize", action="store_true")
parser.add_argument("--eval_step", type=int, default=100)
parser.add_argument("--save_step", type=int, default=100)
parser.add_argument("--device_map", type=str, default="auto")
parser.add_argument("--lora_r", type=int, default=32)
parser.add_argument("--lora_alpha", type=int, default=16)
parser.add_argument("--lora_dropout", type=float, default=0.05)
parser.add_argument("--lora_target_modules", type=str, default=None)
parser.add_argument("--init_lora_weights", type=str, default="olora")
args = parser.parse_args()
train(
base_model=args.base_model,
data_path=args.data_path,
output_dir=args.output_dir,
batch_size=args.batch_size,
num_epochs=args.num_epochs,
learning_rate=args.learning_rate,
cutoff_len=args.cutoff_len,
val_set_size=args.val_set_size,
quantize=args.quantize,
eval_step=args.eval_step,
save_step=args.save_step,
device_map=args.device_map,
lora_r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
lora_target_modules=args.lora_target_modules,
init_lora_weights=args.init_lora_weights,
)

View File

@ -0,0 +1,131 @@
# PiSSA: Principal Singular values and Singular vectors Adaptation
## Introduction ([Paper](https://arxiv.org/abs/2404.02948), [code](https://github.com/GraphPKU/PiSSA))
PiSSA represents a matrix $W\in\mathbb{R}^{m\times n}$ within the model by the product of two trainable matrices $A \in \mathbb{R}^{m\times r}$ and $B \in \mathbb{R}^{r\times n}$, where $r \ll \min(m, n)$, plus a residual matrix $W^{res}\in\mathbb{R}^{m\times n}$ for error correction. Singular value decomposition (SVD) is employed to factorize $W$, and the principal singular values and vectors of $W$ are utilized to initialize $A$ and $B$. The residual singular values and vectors initialize the residual matrix $W^{res}$, which keeps frozen during fine-tuning. This straightforward modification allows PiSSA to converge more rapidly than LoRA and ultimately attain superior performance. Moreover, PiSSA reduces the quantization error compared to QLoRA, leading to further enhancements.
## Quick Start
```python
import torch
from peft import LoraConfig, get_peft_model
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import SFTTrainer
from datasets import load_dataset
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
tokenizer.pad_token_id = tokenizer.eos_token_id
lora_config = LoraConfig(
# init_lora_weights="pissa", # Configure the initialization method to "pissa", which may take several minutes to execute SVD on the pre-trained model.
init_lora_weights="pissa_niter_4", # Initialize the PiSSA with fast SVD, which completes in just a few seconds.
)
peft_model = get_peft_model(model, lora_config)
peft_model.print_trainable_parameters()
dataset = load_dataset("imdb", split="train[:1%]")
trainer = SFTTrainer(
model=peft_model,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=128,
tokenizer=tokenizer,
)
trainer.train()
peft_model.save_pretrained("pissa-llama-2-7b")
```
When utilizing fast SVD, reducing the rank and the number of iterations decreases the time required. However, this approach leads to higher errors in the computed matrices $A$ and $B$. To preserve the model's initial capabilities, we calculate the residual matrix by $W^{res} = W - BA$. Even with potential errors in $A$ and $B$, the sum of $W^{res}$ and $BA$ accurately equals $W$.
To utilize the fine-tuned PiSSA modules, simply run the following command:
```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", torch_dtype=torch.bfloat16, device_map="auto"
)
# Performs SVD again to initialize the residual model and loads the state_dict of the fine-tuned PiSSA modules.
peft_model = PeftModel.from_pretrained(model, "pissa-llama-2-7b")
```
## Advanced Usage
### Access the preprocessed models
We recommend downloading decomposed models directly from the [Hugging Face Collections](https://huggingface.co/collections/fxmeng/pissa-661ce700721235e542a5d7a8) instead of performing SVD every time.
If the existing models do not meet your needs, apply PiSSA initialization to a pre-trained model and store the decomposed model locally:
```bash
python preprocess.py \
--base_model_name_or_path meta-llama/Llama-2-7b-hf \
--init_lora_weights pissa \
--output_dir pissa-llama-2-7b-r32-alpha-32 \
--lora_r 32 \
--lora_alpha 32 \
--lora_dropout 0 \
--bits bf16
```
### Convert PiSSA to LoRA
The main advantage of PiSSA is concentrated during the training phase. For a trained PiSSA adapter, we recommend converting it equivalently to the LoRA adapter for using and sharing.
```python
# The fine-tuned matrices $A$ and $B$ in PiSSA adapter is saved and should be combined with the residual model.
peft_model.save_pretrained(output_dir)
# Given the matrices $A_0$ and $B_0$, initialized by PiSSA and untrained, and the trained matrices $A$ and $B$,
# we can convert these to LoRA by setting $\Delta W = A \times B - A_0 \times B_0 = [A \mid A_0] \times [B \mid -B_0]^T = A'B'$.
peft_model.save_pretrained(output_dir, convert_pissa_to_lora="pissa_init")
```
This conversion enables the loading of LoRA on top of a standard base model:
```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", torch_dtype=torch.bfloat16, device_map="auto"
)
# No SVD is performed during this step, and the base model remains unaltered.
peft_model = PeftModel.from_pretrained(model, "pissa-llama-2-7b-lora")
```
Utilizing the converted LoRA does not require modifying the parameters of the base model. When multiple converted LoRAs are needed simultaneously, each adapter operates independently without interference, allowing for the adapters to be freely deleted or added.
Note that this conversion is not supported if `rslora` is used in combination with `rank_pattern` or `alpha_pattern`.
### Fine-tune in 4-bit or 8-bit
If quantization fine-tuning is desired, it is necessary to first decompose the original model at full precision and then reload the residual model in either 4-bit or 8-bit configurations.
```shell
python pissa_finetuning.py \
--residual_model_name_or_path fxmeng/pissa-llama-2-7b-r16-alpha-16 \
--output_dir output/pissa-llama-2-7b-r16-alpha-16-metamath-10k \
--bits nf4 \
--data_path meta-math/MetaMathQA \
--dataset_split train[:100000] \
--dataset_field query response \
--bf16 True \
--num_train_epochs 1 \
--per_device_train_batch_size 32 \
--gradient_accumulation_steps 4 \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 1 \
--logging_steps 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--tf32 True \
--report_to none \
--convert_pissa_to_lora
```
This approach ensures the preservation of high-frequency, out-of-distribution parameters in the low-rank PiSSA modules, resulting in reduced quantization errors during the quantization of the residual model.
## Citation
```
@article{meng2024pissa,
title={PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models},
author={Meng, Fanxu and Wang, Zhaohui and Zhang, Muhan},
journal={arXiv preprint arXiv:2404.02948},
year={2024}
}
```

View File

@ -0,0 +1,156 @@
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from typing import List, Optional
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments
from trl import SFTTrainer
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
@dataclass
class TrainingArguments(TrainingArguments):
# model configs
base_model_name_or_path: Optional[str] = field(
default=None, metadata={"help": "The name or path of the fp32/16 base model."}
)
residual_model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The name or path of the fp32/16 residual model. (`['fxmeng/pissa-llama-2-7b-r16-alpha-16']`)"
},
)
bits: str = field(default="fp32", metadata={"help": "(`['fp4', 'nf4', 'int8', 'bf16', 'fp16', fp32]`)"})
init_lora_weights: str = field(default="pissa", metadata={"help": "(`['gaussian', 'pissa', 'pissa_niter_4']`)"})
lora_r: int = field(default=16)
lora_alpha: int = field(default=16)
lora_dropout: float = field(default=0)
convert_pissa_to_lora: bool = field(default=False)
merge_and_save: bool = field(default=False)
# dataset configs
data_path: str = field(default="imdb", metadata={"help": "Path to the training data."})
dataset_split: str = field(default="train[:1%]", metadata={"help": "(`['train', 'test', 'eval']`):"})
dataset_field: List[str] = field(default=None, metadata={"help": "Fields of dataset input and output."})
max_seq_length: int = field(
default=512,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
parser = HfArgumentParser(TrainingArguments)
script_args = parser.parse_args_into_dataclasses()[0]
print(script_args)
print(f"Load pre-processed residual model in {script_args.bits} bits.")
if script_args.bits in ["nf4", "fp4", "int8"]:
quantization_config = BitsAndBytesConfig(
load_in_4bit=(script_args.bits == "nf4" or script_args.bits == "fp4"),
load_in_8bit=script_args.bits == "int8",
bnb_4bit_quant_type=script_args.bits,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
res_model = AutoModelForCausalLM.from_pretrained(
script_args.residual_model_name_or_path, quantization_config=quantization_config, low_cpu_mem_usage=True
)
res_model = prepare_model_for_kbit_training(res_model)
print("Wrapping the residual model with PiSSA.")
peft_model = PeftModel.from_pretrained(
res_model, script_args.residual_model_name_or_path, subfolder="pissa_init", is_trainable=True
)
tokenizer = AutoTokenizer.from_pretrained(script_args.residual_model_name_or_path)
elif script_args.residual_model_name_or_path is not None:
res_model = AutoModelForCausalLM.from_pretrained(
script_args.residual_model_name_or_path,
torch_dtype=(
torch.float16
if script_args.bits == "fp16"
else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32)
),
device_map="auto",
)
print("Wrapping the residual model with PiSSA.")
peft_model = PeftModel.from_pretrained(
res_model, script_args.residual_model_name_or_path, subfolder="pissa_init", is_trainable=True
)
tokenizer = AutoTokenizer.from_pretrained(script_args.residual_model_name_or_path)
elif script_args.base_model_name_or_path is not None:
print(
f"No available pre-processed model, manually initialize a PiSSA using {script_args.base_model_name_or_path}."
)
model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name_or_path,
torch_dtype=(
torch.float16
if script_args.bits == "fp16"
else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32)
),
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name_or_path)
tokenizer.pad_token_id = tokenizer.eos_token_id
lora_config = LoraConfig(
r=script_args.lora_r,
lora_alpha=script_args.lora_alpha,
init_lora_weights=script_args.init_lora_weights,
lora_dropout=script_args.lora_dropout,
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
bias="none",
task_type="CAUSAL_LM",
)
peft_model = get_peft_model(model, lora_config)
print(peft_model)
peft_model.print_trainable_parameters()
print(f"Training PiSSA with trl on the {script_args.data_path}[{script_args.dataset_split}] dataset.")
dataset = load_dataset(script_args.data_path, split=script_args.dataset_split)
dataset = dataset.map(
lambda example: {
"text": f"### USER: {example[script_args.dataset_field[0]]}\n### ASSISTANT: {example[script_args.dataset_field[1]]}"
}
)
trainer = SFTTrainer(
model=peft_model,
args=script_args,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=script_args.max_seq_length,
tokenizer=tokenizer,
)
trainer.train()
trainer.save_state()
############################## Upon training completion, convert and save PiSSA in LoRA format ##############################
if script_args.convert_pissa_to_lora:
peft_model.save_pretrained(
os.path.join(script_args.output_dir, "pissa_lora"),
convert_pissa_to_lora=os.path.join(script_args.residual_model_name_or_path, "pissa_init"),
)
else:
peft_model.save_pretrained(
os.path.join(script_args.output_dir, "pissa_ft"),
)
if script_args.merge_and_save:
model = peft_model.merge_and_unload()
model.save_pretrained(os.path.join(script_args.output_dir, "pissa_merged"))
tokenizer.save_pretrained(os.path.join(script_args.output_dir, "pissa_merged"))

View File

@ -0,0 +1,67 @@
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model
parser = argparse.ArgumentParser(
description="Merge Adapter to Base Model", help="The name or path of the fp32/16 base model."
)
parser.add_argument("--base_model_name_or_path", type=str, default="bf16")
parser.add_argument("--bits", type=str, default="bf16", choices=["bf16", "fp16", "fp32"])
parser.add_argument(
"--init_lora_weights", type=str, default="pissa", help="(`['pissa', 'pissa_niter_[number of iters]']`)"
)
parser.add_argument("--lora_r", type=int, default=128)
parser.add_argument("--lora_alpha", type=int, default=128)
parser.add_argument("--lora_dropout", type=int, default=0)
script_args = parser.parse_args()
print(script_args)
model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name_or_path,
torch_dtype=(
torch.float16
if script_args.bits == "fp16"
else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32)
),
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name_or_path)
tokenizer.pad_token_id = tokenizer.eos_token_id
lora_config = LoraConfig(
r=script_args.lora_r,
lora_alpha=script_args.lora_alpha,
init_lora_weights=script_args.init_lora_weights,
lora_dropout=script_args.lora_dropout,
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
bias="none",
task_type="CAUSAL_LM",
)
peft_model = get_peft_model(model, lora_config)
# Save PiSSA modules:
peft_model.peft_config["default"].init_lora_weights = True
peft_model.save_pretrained(os.path.join(script_args.output_dir, "pissa_init"))
# Save residual model:
peft_model = peft_model.unload()
peft_model.save_pretrained(script_args.output_dir)
# Save the tokenizer:
tokenizer.save_pretrained(script_args.output_dir)

View File

@ -0,0 +1,556 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d36e1e93-ae93-4a4e-93c6-68fd868d2882",
"metadata": {},
"source": [
"# Using FourierFT for sequence classification"
]
},
{
"cell_type": "markdown",
"id": "ddfc0610-55f6-4343-a950-125ccf0f45ac",
"metadata": {},
"source": [
"In this example, we fine-tune Roberta (base) on a sequence classification task using FourierFT."
]
},
{
"cell_type": "markdown",
"id": "45addd81-d4f3-4dfd-960d-3920d347f0a6",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a9935ae2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/zgaoat/anaconda3/envs/pr2/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"# To run this notebook, please run `pip install evaluate` to install additional dependencies not covered by PEFT.\n",
"import torch\n",
"from torch.optim import AdamW\n",
"from torch.utils.data import DataLoader\n",
"from peft import (\n",
" get_peft_model,\n",
" FourierFTConfig,\n",
" PeftType,\n",
")\n",
"\n",
"import evaluate\n",
"from datasets import load_dataset\n",
"from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed, AutoConfig\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "markdown",
"id": "62c959bf-7cc2-49e0-b97e-4c10ec3b9bf3",
"metadata": {},
"source": [
"## Parameters"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e3b13308",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<torch._C.Generator at 0x78e2a49744b0>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch_size = 32\n",
"model_name_or_path = \"roberta-base\"\n",
"task = \"mrpc\"\n",
"peft_type = PeftType.FOURIERFT\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"num_epochs = 5 # for better results, increase this number\n",
"n_frequency = 1000 # for better results, increase this number\n",
"scaling = 150.0\n",
"max_length = 512\n",
"torch.manual_seed(0)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0526f571",
"metadata": {},
"outputs": [],
"source": [
"peft_config = FourierFTConfig(\n",
" task_type=\"SEQ_CLS\", \n",
" n_frequency=n_frequency,\n",
" target_modules=[\"query\", \"value\"],\n",
" scaling = scaling,\n",
")\n",
"head_lr = 6e-3 # the learning rate for the classification head for NLU tasks\n",
"fft_lr = 6e-2 # the learning rate for the parameters other than the classification head (q,v in this case)"
]
},
{
"cell_type": "markdown",
"id": "c075c5d2-a457-4f37-a7f1-94fd0d277972",
"metadata": {},
"source": [
"## Loading data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7bb52cb4-d1c3-4b04-8bf0-f39ca88af139",
"metadata": {},
"outputs": [],
"source": [
"if any(k in model_name_or_path for k in (\"gpt\", \"opt\", \"bloom\")):\n",
" padding_side = \"left\"\n",
"else:\n",
" padding_side = \"right\"\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side)\n",
"if getattr(tokenizer, \"pad_token_id\") is None:\n",
" tokenizer.pad_token_id = tokenizer.eos_token_id"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e69c5e1f-d27b-4264-a41e-fc9b99d025e6",
"metadata": {},
"outputs": [],
"source": [
"datasets = load_dataset(\"glue\", task)\n",
"metric = evaluate.load(\"glue\", task)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0209f778-c93b-40eb-a4e0-24c25db03980",
"metadata": {},
"outputs": [],
"source": [
"def tokenize_function(examples):\n",
" # max_length=None => use the model max length (it's actually the default)\n",
" outputs = tokenizer(examples[\"sentence1\"], examples[\"sentence2\"], truncation=True, max_length=max_length)\n",
" return outputs\n",
"\n",
"\n",
"tokenized_datasets = datasets.map(\n",
" tokenize_function,\n",
" batched=True,\n",
" remove_columns=[\"idx\", \"sentence1\", \"sentence2\"],\n",
")\n",
"\n",
"# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the\n",
"# transformers library\n",
"tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7453954e-982c-46f0-b09c-589776e6d6cb",
"metadata": {},
"outputs": [],
"source": [
"def collate_fn(examples):\n",
" return tokenizer.pad(examples, padding=\"longest\", return_tensors=\"pt\")\n",
"\n",
"\n",
"# Instantiate dataloaders.\n",
"train_dataloader = DataLoader(tokenized_datasets[\"train\"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size)\n",
"eval_dataloader = DataLoader(\n",
" tokenized_datasets[\"validation\"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f3b9b2e8-f415-4d0f-9fb4-436f1a3585ea",
"metadata": {},
"source": [
"## Preparing the FourierFT model"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2ed5ac74",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"trainable params: 616,130 || all params: 125,263,300 || trainable%: 0.4919\n"
]
}
],
"source": [
"model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True, max_length=None)\n",
"model = get_peft_model(model, peft_config)\n",
"model.print_trainable_parameters()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0d2d0381",
"metadata": {},
"outputs": [],
"source": [
"head_param = list(map(id, model.classifier.parameters()))\n",
"\n",
"others_param = filter(lambda p: id(p) not in head_param, model.parameters()) \n",
"\n",
"optimizer = AdamW([\n",
" {\"params\": model.classifier.parameters(), \"lr\": head_lr},\n",
" {\"params\": others_param, \"lr\": fft_lr}\n",
"],weight_decay=0.)\n",
"\n",
"\n",
"# Instantiate scheduler\n",
"lr_scheduler = get_linear_schedule_with_warmup(\n",
" optimizer=optimizer,\n",
" num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs),\n",
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c0dd5aa8-977b-4ac0-8b96-884b17bcdd00",
"metadata": {},
"source": [
"## Training"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "fa0e73be",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/115 [00:00<?, ?it/s]You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
"100%|██████████| 115/115 [00:06<00:00, 19.03it/s]\n",
"100%|██████████| 13/13 [00:00<00:00, 41.72it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 0: {'accuracy': 0.8161764705882353, 'f1': 0.8709122203098106}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 115/115 [00:05<00:00, 20.61it/s]\n",
"100%|██████████| 13/13 [00:00<00:00, 42.91it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 1: {'accuracy': 0.8480392156862745, 'f1': 0.8966666666666666}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 115/115 [00:05<00:00, 20.63it/s]\n",
"100%|██████████| 13/13 [00:00<00:00, 42.65it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 2: {'accuracy': 0.8676470588235294, 'f1': 0.9075342465753424}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 115/115 [00:05<00:00, 20.56it/s]\n",
"100%|██████████| 13/13 [00:00<00:00, 42.11it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 3: {'accuracy': 0.8504901960784313, 'f1': 0.8988391376451078}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 115/115 [00:05<00:00, 20.50it/s]\n",
"100%|██████████| 13/13 [00:00<00:00, 43.15it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 4: {'accuracy': 0.8725490196078431, 'f1': 0.9103448275862069}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"model.to(device)\n",
"for epoch in range(num_epochs):\n",
" model.train()\n",
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
" batch.to(device)\n",
" outputs = model(**batch)\n",
" loss = outputs.loss\n",
" loss.backward()\n",
" optimizer.step()\n",
" lr_scheduler.step()\n",
" optimizer.zero_grad()\n",
"\n",
" model.eval()\n",
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
" batch.to(device)\n",
" with torch.no_grad():\n",
" outputs = model(**batch)\n",
" predictions = outputs.logits.argmax(dim=-1)\n",
" predictions, references = predictions, batch[\"labels\"]\n",
" metric.add_batch(\n",
" predictions=predictions,\n",
" references=references,\n",
" )\n",
"\n",
" eval_metric = metric.compute()\n",
" print(f\"epoch {epoch}:\", eval_metric)"
]
},
{
"cell_type": "markdown",
"id": "f2b2caca",
"metadata": {},
"source": [
"## Share adapters on the 🤗 Hub"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "7b23af6f-cf6e-486f-9d10-0eada95b631f",
"metadata": {},
"outputs": [],
"source": [
"account_id = ... # your Hugging Face Hub account ID"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "990b3c93",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/zgaoat/anaconda3/envs/pr2/lib/python3.11/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/zgaoat/roberta-base-mrpc-peft-fourierft/commit/064eb35cbb7a1073b4d8fafbeccee43a0a4e37c9', commit_message='Upload model', commit_description='', oid='064eb35cbb7a1073b4d8fafbeccee43a0a4e37c9', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.push_to_hub(f\"{account_id}/roberta-base-mrpc-peft-fourierft\")"
]
},
{
"cell_type": "markdown",
"id": "9d140b26",
"metadata": {},
"source": [
"## Load adapters from the Hub\n",
"\n",
"You can also directly load adapters from the Hub using the commands below:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "c283e028-b349-46b0-a20e-cde0ee5fbd7b",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from peft import PeftModel, PeftConfig\n",
"from transformers import AutoTokenizer"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "320b10a0-4ea8-4786-9f3c-4670019c6b18",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"peft_model_id = f\"{account_id}/roberta-base-mrpc-peft-fourierft\"\n",
"config = PeftConfig.from_pretrained(peft_model_id)\n",
"inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path)\n",
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b3a94049-bc01-4f2e-8cf9-66daf24a4402",
"metadata": {},
"outputs": [],
"source": [
"# Load the FourierFT model\n",
"inference_model = PeftModel.from_pretrained(inference_model, peft_model_id, config=config)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "bd919fef-4e9a-4dc5-a957-7b879cfc5d38",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/13 [00:00<?, ?it/s]You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
"100%|██████████| 13/13 [00:00<00:00, 43.06it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'accuracy': 0.8725490196078431, 'f1': 0.9103448275862069}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"inference_model.to(device)\n",
"inference_model.eval()\n",
"for step, batch in enumerate(tqdm(eval_dataloader)):\n",
" batch.to(device)\n",
" with torch.no_grad():\n",
" outputs = inference_model(**batch)\n",
" predictions = outputs.logits.argmax(dim=-1)\n",
" predictions, references = predictions, batch[\"labels\"]\n",
" metric.add_batch(\n",
" predictions=predictions,\n",
" references=references,\n",
" )\n",
"\n",
"eval_metric = metric.compute()\n",
"print(eval_metric)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -94,7 +94,7 @@
" task_type=\"SEQ_CLS\", \n",
" r=rank,\n",
" d_initial=0.1,\n",
" target_modules=[\"query\", \"value\"],\n",
" target_modules=[\"query\", \"value\", \"intermediate.dense\"],\n",
" save_projection=True,\n",
")\n",
"head_lr = 1e-2\n",
@ -205,7 +205,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"trainable params: 610,754 || all params: 125,257,924 || trainable%: 0.48759709605278145\n"
"trainable params: 647,714 || all params: 125,294,884 || trainable%: 0.5170\n"
]
}
],
@ -255,76 +255,76 @@
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/29 [00:00<?, ?it/s]You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:23<00:00, 1.24it/s]\n",
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:01<00:00, 2.33it/s]\n"
" 0%| | 0/29 [00:00<?, ?it/s]You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
"100%|██████████| 29/29 [00:18<00:00, 1.58it/s]\n",
"100%|██████████| 4/4 [00:01<00:00, 3.52it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 0: {'accuracy': 0.7132352941176471, 'f1': 0.823529411764706}\n"
"epoch 0: {'accuracy': 0.7475490196078431, 'f1': 0.8367670364500792}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:23<00:00, 1.26it/s]\n",
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:01<00:00, 2.30it/s]\n"
"100%|██████████| 29/29 [00:17<00:00, 1.68it/s]\n",
"100%|██████████| 4/4 [00:01<00:00, 3.37it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 1: {'accuracy': 0.7671568627450981, 'f1': 0.8484848484848485}\n"
"epoch 1: {'accuracy': 0.7671568627450981, 'f1': 0.8536209553158706}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:23<00:00, 1.24it/s]\n",
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:01<00:00, 2.30it/s]\n"
"100%|██████████| 29/29 [00:17<00:00, 1.66it/s]\n",
"100%|██████████| 4/4 [00:01<00:00, 3.33it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 2: {'accuracy': 0.8259803921568627, 'f1': 0.8738898756660745}\n"
"epoch 2: {'accuracy': 0.8553921568627451, 'f1': 0.8959435626102292}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:23<00:00, 1.25it/s]\n",
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:01<00:00, 2.41it/s]\n"
"100%|██████████| 29/29 [00:17<00:00, 1.64it/s]\n",
"100%|██████████| 4/4 [00:01<00:00, 3.35it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 3: {'accuracy': 0.8431372549019608, 'f1': 0.891156462585034}\n"
"epoch 3: {'accuracy': 0.8823529411764706, 'f1': 0.9133574007220215}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:23<00:00, 1.25it/s]\n",
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:01<00:00, 2.35it/s]"
"100%|██████████| 29/29 [00:17<00:00, 1.63it/s]\n",
"100%|██████████| 4/4 [00:01<00:00, 3.17it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 4: {'accuracy': 0.8480392156862745, 'f1': 0.8938356164383561}\n"
"epoch 4: {'accuracy': 0.8897058823529411, 'f1': 0.9183303085299456}\n"
]
},
{
@ -520,18 +520,6 @@
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"

View File

@ -28,7 +28,7 @@ torchrun --nproc_per_node 8 --nnodes 1 train.py \
--per_device_eval_batch_size 8 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing True \
--use_reentrant False \
--use_reentrant False \
--dataset_text_field "content" \
--use_peft_lora True \
--lora_r 8 \

View File

@ -137,7 +137,8 @@ def main(model_args, data_args, training_args):
max_seq_length=data_args.max_seq_length,
)
trainer.accelerator.print(f"{trainer.model}")
trainer.model.print_trainable_parameters()
if hasattr(trainer.model, "print_trainable_parameters"):
trainer.model.print_trainable_parameters()
# train
checkpoint = None

View File

@ -15,13 +15,13 @@
from setuptools import find_packages, setup
VERSION = "0.10.1.dev0"
VERSION = "0.12.0"
extras = {}
extras["quality"] = [
"black", # doc-builder has an implicit dependency on Black, see huggingface/doc-builder#434
"hf-doc-builder",
"ruff~=0.2.1",
"ruff~=0.4.8",
]
extras["docs_specific"] = [
"black", # doc-builder has an implicit dependency on Black, see huggingface/doc-builder#434

View File

@ -17,7 +17,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__version__ = "0.10.1.dev0"
__version__ = "0.12.0"
from .auto import (
AutoPeftModel,
@ -44,11 +44,14 @@ from .peft_model import (
PeftModelForTokenClassification,
PeftModelForQuestionAnswering,
PeftModelForFeatureExtraction,
get_layer_status,
get_model_status,
)
from .tuners import (
AdaptionPromptConfig,
AdaptionPromptModel,
LoraConfig,
LoraRuntimeConfig,
LoftQConfig,
LoraModel,
LoHaConfig,
@ -75,8 +78,16 @@ from .tuners import (
OFTModel,
PolyConfig,
PolyModel,
LNTuningConfig,
LNTuningModel,
VeraConfig,
VeraModel,
FourierFTConfig,
FourierFTModel,
XLoraConfig,
XLoraModel,
HRAConfig,
HRAModel,
)
from .utils import (
TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING,

View File

@ -62,6 +62,7 @@ class _BaseAutoPeftModel:
adapter_name: str = "default",
is_trainable: bool = False,
config: Optional[PeftConfig] = None,
revision: Optional[str] = None,
**kwargs,
):
r"""
@ -69,8 +70,9 @@ class _BaseAutoPeftModel:
are passed along to `PeftConfig` that automatically takes care of filtering the kwargs of the Hub methods and
the config object init.
"""
peft_config = PeftConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
peft_config = PeftConfig.from_pretrained(pretrained_model_name_or_path, revision=revision, **kwargs)
base_model_path = peft_config.base_model_name_or_path
base_model_revision = peft_config.revision
task_type = getattr(peft_config, "task_type", None)
@ -101,7 +103,7 @@ class _BaseAutoPeftModel:
"Cannot infer the auto class from the config, please make sure that you are loading the correct model for your task type."
)
base_model = target_class.from_pretrained(base_model_path, **kwargs)
base_model = target_class.from_pretrained(base_model_path, revision=base_model_revision, **kwargs)
tokenizer_exists = False
if os.path.exists(os.path.join(pretrained_model_name_or_path, TOKENIZER_CONFIG_NAME)):
@ -114,7 +116,7 @@ class _BaseAutoPeftModel:
tokenizer_exists = check_file_exists_on_hf_hub(
repo_id=pretrained_model_name_or_path,
filename=TOKENIZER_CONFIG_NAME,
revision=kwargs.get("revision", None),
revision=revision,
repo_type=kwargs.get("repo_type", None),
token=token,
)

View File

@ -14,6 +14,7 @@
import inspect
import json
import os
import warnings
from dataclasses import asdict, dataclass, field
from typing import Dict, Optional, Union
@ -63,7 +64,7 @@ class PeftConfigMixin(PushToHubMixin):
os.makedirs(save_directory, exist_ok=True)
auto_mapping_dict = kwargs.pop("auto_mapping_dict", None)
output_dict = asdict(self)
output_dict = self.to_dict()
# converting set type to list
for key, value in output_dict.items():
if isinstance(value, set):
@ -97,7 +98,7 @@ class PeftConfigMixin(PushToHubMixin):
# TODO: this hack is needed to fix the following issue (on commit 702f937):
# if someone saves a default config and loads it back with `PeftConfig` class it yields to
# not loading the correct config class.
#
# from peft import AdaLoraConfig, PeftConfig
# peft_config = AdaLoraConfig()
# print(peft_config)
@ -162,6 +163,13 @@ class PeftConfigMixin(PushToHubMixin):
with open(path_json_file) as file:
json_object = json.load(file)
# Sanity check that config does not contain a runtime_config
if "runtime_config" in json_object:
warnings.warn(
"The configuration file contains a `runtime_config` key. This is ignored. Runtime configurations are only valid at runtime."
)
del json_object["runtime_config"]
return json_object
@classmethod
@ -232,7 +240,7 @@ class PeftConfig(PeftConfigMixin):
base_model_name_or_path: Optional[str] = field(
default=None, metadata={"help": "The name of the base model to use."}
)
revision: Optional[str] = field(default=None, metadata={"help": "The specific model version to use."})
revision: Optional[str] = field(default=None, metadata={"help": "The specific base model version to use."})
peft_type: Optional[Union[str, PeftType]] = field(default=None, metadata={"help": "Peft type"})
task_type: Optional[Union[str, TaskType]] = field(default=None, metadata={"help": "Task type"})
inference_mode: bool = field(default=False, metadata={"help": "Whether to use inference mode"})

View File

@ -1,16 +1,30 @@
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from copy import deepcopy
from functools import update_wrapper
from types import MethodType
from .peft_model import PeftModel
from .peft_model import PeftConfig, PeftModel
def update_forward_signature(model: PeftModel) -> None:
"""
Args:
Updates the forward signature of the PeftModel to include parents class signature
model (`PeftModel`): Peft model to update the forward signature
Example:
```python
@ -41,9 +55,9 @@ def update_forward_signature(model: PeftModel) -> None:
def update_generate_signature(model: PeftModel) -> None:
"""
Args:
Updates the generate signature of a PeftModel with overriding generate to include parents class signature
model (`PeftModel`): Peft model to update the generate signature
Example:
```python
@ -81,12 +95,12 @@ def update_generate_signature(model: PeftModel) -> None:
def update_signature(model: PeftModel, method: str = "all") -> None:
"""
Args:
Updates the signature of a PeftModel include parents class signature for forward or generate method
model (`PeftModel`): Peft model to update generate or forward signature method (`str`): method to update
signature choose one of "forward", "generate", "all"
Example:
```python
```python
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> from peft import get_peft_model, LoraConfig, TaskType, update_signature
@ -111,3 +125,24 @@ def update_signature(model: PeftModel, method: str = "all") -> None:
update_generate_signature(model)
else:
raise ValueError(f"method {method} is not supported please choose one of ['forward', 'generate', 'all']")
def check_if_peft_model(model_name_or_path: str) -> bool:
"""
Check if the model is a PEFT model.
Args:
model_name_or_path (`str`):
Model id to check, can be local or on the Hugging Face Hub.
Returns:
`bool`: True if the model is a PEFT model, False otherwise.
"""
is_peft_model = True
try:
PeftConfig.from_pretrained(model_name_or_path)
except Exception:
# allow broad exceptions so that this works even if new exceptions are added on HF Hub side
is_peft_model = False
return is_peft_model

View File

@ -77,3 +77,13 @@ def is_aqlm_available():
@lru_cache
def is_auto_awq_available():
return importlib.util.find_spec("awq") is not None
@lru_cache
def is_eetq_available():
return importlib.util.find_spec("eetq") is not None
@lru_cache
def is_hqq_available():
return importlib.util.find_spec("hqq") is not None

View File

@ -14,10 +14,13 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any
import warnings
from typing import TYPE_CHECKING, Any, Optional
import torch
from peft.tuners.xlora.model import XLoraModel
from .config import PeftConfig
from .mixed_model import PeftMixedModel
from .peft_model import (
@ -35,8 +38,14 @@ from .tuners import (
AdaptionPromptConfig,
BOFTConfig,
BOFTModel,
FourierFTConfig,
FourierFTModel,
HRAConfig,
HRAModel,
IA3Config,
IA3Model,
LNTuningConfig,
LNTuningModel,
LoHaConfig,
LoHaModel,
LoKrConfig,
@ -53,6 +62,7 @@ from .tuners import (
PromptTuningConfig,
VeraConfig,
VeraModel,
XLoraConfig,
)
from .tuners.tuners_utils import BaseTuner as _BaseTuner
from .utils import _prepare_prompt_learning_config
@ -85,7 +95,11 @@ PEFT_TYPE_TO_CONFIG_MAPPING: dict[str, type[PeftConfig]] = {
"MULTITASK_PROMPT_TUNING": MultitaskPromptTuningConfig,
"OFT": OFTConfig,
"POLY": PolyConfig,
"LN_TUNING": LNTuningConfig,
"VERA": VeraConfig,
"FOURIERFT": FourierFTConfig,
"XLORA": XLoraConfig,
"HRA": HRAConfig,
}
PEFT_TYPE_TO_TUNER_MAPPING: dict[str, type[_BaseTuner]] = {
@ -97,7 +111,11 @@ PEFT_TYPE_TO_TUNER_MAPPING: dict[str, type[_BaseTuner]] = {
"IA3": IA3Model,
"OFT": OFTModel,
"POLY": PolyModel,
"LN_TUNING": LNTuningModel,
"VERA": VeraModel,
"FOURIERFT": FourierFTModel,
"XLORA": XLoraModel,
"HRA": HRAModel,
}
@ -113,7 +131,12 @@ def get_peft_config(config_dict: dict[str, Any]) -> PeftConfig:
def get_peft_model(
model: PreTrainedModel, peft_config: PeftConfig, adapter_name: str = "default", mixed: bool = False
model: PreTrainedModel,
peft_config: PeftConfig,
adapter_name: str = "default",
mixed: bool = False,
autocast_adapter_dtype: bool = True,
revision: Optional[str] = None,
) -> PeftModel | PeftMixedModel:
"""
Returns a Peft model object from a model and a config.
@ -127,6 +150,13 @@ def get_peft_model(
The name of the adapter to be injected, if not provided, the default adapter name is used ("default").
mixed (`bool`, `optional`, defaults to `False`):
Whether to allow mixing different (compatible) adapter types.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 or bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
revision (`str`, `optional`, defaults to `main`):
The revision of the base model. If this isn't set, the saved peft model will load the `main` revision for
the base model
"""
model_config = getattr(model, "config", {"model_type": "custom"})
if hasattr(model_config, "to_dict"):
@ -134,15 +164,25 @@ def get_peft_model(
peft_config.base_model_name_or_path = model.__dict__.get("name_or_path", None)
if revision is not None:
if peft_config.revision is not None and peft_config.revision != revision:
warnings.warn(
f"peft config has already set base model revision to {peft_config.revision}, overwriting with revision {revision}"
)
peft_config.revision = revision
if mixed:
# note: PeftMixedModel does not support autocast_adapter_dtype, so don't pass it
return PeftMixedModel(model, peft_config, adapter_name=adapter_name)
if peft_config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys() and not peft_config.is_prompt_learning:
return PeftModel(model, peft_config, adapter_name=adapter_name)
return PeftModel(model, peft_config, adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype)
if peft_config.is_prompt_learning:
peft_config = _prepare_prompt_learning_config(peft_config, model_config)
return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](model, peft_config, adapter_name=adapter_name)
return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](
model, peft_config, adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype
)
def inject_adapter_in_model(

View File

@ -23,8 +23,6 @@ from accelerate.hooks import remove_hook_from_submodules
from torch import nn
from transformers.utils import PushToHubMixin
from peft.tuners.mixed import COMPATIBLE_TUNER_TYPES
from .config import PeftConfig
from .peft_model import PeftModel
from .tuners import (
@ -36,6 +34,7 @@ from .tuners import (
MixedModel,
OFTModel,
)
from .tuners.mixed import COMPATIBLE_TUNER_TYPES
from .utils import PeftType, _set_adapter, _set_trainable
@ -97,8 +96,6 @@ class PeftMixedModel(PushToHubMixin, torch.nn.Module):
Example:
```py
>>> from peft import get_peft_model
>>> base_model = ... # load the base model, e.g. from transformers
>>> peft_model = PeftMixedModel.from_pretrained(base_model, path_to_adapter1, "adapter1").eval()
>>> peft_model.load_adapter(path_to_adapter2, "adapter2")
@ -193,6 +190,8 @@ class PeftMixedModel(PushToHubMixin, torch.nn.Module):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "base_model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.base_model, name)
def forward(self, *args: Any, **kwargs: Any):
@ -311,6 +310,12 @@ class PeftMixedModel(PushToHubMixin, torch.nn.Module):
"""
return self.base_model.unload(*args, **kwargs)
def get_layer_status(self):
raise TypeError(f"get_layer_status is not supported for {self.__class__.__name__}.")
def get_model_status(self):
raise TypeError(f"get_model_status is not supported for {self.__class__.__name__}.")
@classmethod
def _split_kwargs(cls, kwargs: dict[str, Any]):
return PeftModel._split_kwargs(kwargs)

View File

@ -20,7 +20,8 @@ import os
import warnings
from contextlib import contextmanager
from copy import deepcopy
from typing import Any, Optional, Union
from dataclasses import dataclass
from typing import Any, Literal, Optional, Union
import packaging.version
import torch
@ -28,7 +29,7 @@ import transformers
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.hooks import AlignDevicesHook, add_hook_to_module, remove_hook_from_submodules
from accelerate.utils import get_balanced_memory, named_module_tensors
from huggingface_hub import ModelCard, ModelCardData, hf_hub_download
from huggingface_hub import HfFileSystem, ModelCard, ModelCardData, hf_hub_download
from safetensors import safe_open
from safetensors.torch import save_file as safe_save_file
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -42,7 +43,10 @@ from .tuners import (
AdaLoraModel,
AdaptionPromptModel,
BOFTModel,
FourierFTModel,
HRAModel,
IA3Model,
LNTuningModel,
LoHaModel,
LoKrModel,
LoraModel,
@ -53,8 +57,10 @@ from .tuners import (
PromptEmbedding,
PromptEncoder,
VeraModel,
XLoraConfig,
XLoraModel,
)
from .tuners.tuners_utils import BaseTunerLayer
from .tuners.tuners_utils import BaseTuner, BaseTunerLayer
from .utils import (
SAFETENSORS_WEIGHTS_NAME,
TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING,
@ -87,7 +93,11 @@ PEFT_TYPE_TO_MODEL_MAPPING = {
PeftType.IA3: IA3Model,
PeftType.OFT: OFTModel,
PeftType.POLY: PolyModel,
PeftType.LN_TUNING: LNTuningModel,
PeftType.VERA: VeraModel,
PeftType.FOURIERFT: FourierFTModel,
PeftType.XLORA: XLoraModel,
PeftType.HRA: HRAModel,
}
@ -99,6 +109,10 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
model ([`~transformers.PreTrainedModel`]): The base transformer model used for Peft.
peft_config ([`PeftConfig`]): The configuration of the Peft model.
adapter_name (`str`, *optional*): The name of the adapter, defaults to `"default"`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
**Attributes**:
- **base_model** ([`torch.nn.Module`]) -- The base transformer model used for Peft.
@ -115,7 +129,13 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
in the base model if using [`PromptLearningConfig`].
"""
def __init__(self, model: PreTrainedModel, peft_config: PeftConfig, adapter_name: str = "default") -> None:
def __init__(
self,
model: PreTrainedModel,
peft_config: PeftConfig,
adapter_name: str = "default",
autocast_adapter_dtype: bool = True,
) -> None:
super().__init__()
self.modules_to_save = None
self.active_adapter = adapter_name
@ -135,6 +155,11 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
self.base_model = cls(model, {adapter_name: peft_config}, adapter_name)
self.set_additional_trainable_modules(peft_config, adapter_name)
if hasattr(self.base_model, "_cast_adapter_dtype"):
self.base_model._cast_adapter_dtype(
adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype
)
if getattr(model, "is_gradient_checkpointing", True):
model = self._prepare_model_for_gradient_checkpointing(model)
@ -174,6 +199,8 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
selected_adapters: Optional[list[str]] = None,
save_embedding_layers: Union[str, bool] = "auto",
is_main_process: bool = True,
convert_pissa_to_lora: Optional[str] = None,
path_initial_model_for_weight_conversion: Optional[str] = None,
**kwargs: Any,
) -> None:
r"""
@ -196,8 +223,19 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
is_main_process (`bool`, *optional*):
Whether the process calling this is the main process or not. Will default to `True`. Will not save the
checkpoint if not on the main process, which is important for multi device setups (e.g. DDP).
convert_pissa_to_lora (`str, *optional*`):
Deprecated. Use `path_initial_model_for_weight_conversion` instead.
path_initial_model_for_weight_conversion (`str, *optional*`):
The path to the initialized adapter, which is obtained after initializing the model with PiSSA or OLoRA
and before performing any training. When `path_initial_model_for_weight_conversion` is not None, the
difference in adapter before and after fine-tuning is calculated. This difference can be represented as
the parameters of a standard LoRA adapter. Using this converted adapter does not require changes to the
base model, thus conveniently allowing the use of multiple PiSSA or OLoRA adapters with LoRA adapters,
and the activation or deactivation of any adapters. Note that this conversion is not supported if
`rslora` is used in combination with `rank_pattern` or `alpha_pattern`.
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments passed along to the `push_to_hub` method.
"""
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
@ -213,6 +251,50 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
f"You passed an invalid `selected_adapters` arguments, current supported adapter names are"
f" {list(self.peft_config.keys())} - got {selected_adapters}."
)
# TODO: remove deprecated parameter in PEFT v0.14.0
if convert_pissa_to_lora is not None:
warnings.warn(
"`convert_pissa_to_lora` is deprecated and will be removed in a future version. "
"Use `path_initial_model_for_weight_conversion` instead."
)
path_initial_model_for_weight_conversion = convert_pissa_to_lora
def save_mutated_as_lora(peft_config, path_initial_model_for_weight_conversion, output_state_dict, kwargs):
if peft_config.use_rslora and (peft_config.rank_pattern or peft_config.alpha_pattern):
msg = (
"Passing `path_initial_model_for_weight_conversion` to `save_pretrained` is not supported when "
"using `rank_pattern` or `alpha_pattern` at the same time as `use_rslora=True`."
)
raise ValueError(msg)
if not any(
str(peft_config.init_lora_weights).lower().startswith(prefix) for prefix in ["pissa", "olora", "true"]
):
warnings.warn(
"`path_initial_model_for_weight_conversion` only works for converting a PiSSA or OLoRA adapter to "
"a LoRA adapter"
)
initial_adapter_name = os.path.basename(path_initial_model_for_weight_conversion)
try:
self.load_adapter(
os.path.dirname(path_initial_model_for_weight_conversion),
subfolder=initial_adapter_name,
adapter_name=initial_adapter_name,
)
is_pissa = str(self.peft_config[initial_adapter_name].init_lora_weights).lower().startswith("pissa")
is_olora = str(self.peft_config[initial_adapter_name].init_lora_weights).lower() == "olora"
if is_pissa or is_olora:
raise ValueError(
"The `init_lora_weights` parameter of the initial adapter should be set to `True`. "
"Otherwise, `self.load_adapter` will subtract the decomposed values again based on the "
"residual model."
)
output_state_dict = self.base_model.subtract_mutated_init(
output_state_dict, initial_adapter_name, kwargs
)
finally:
self.delete_adapter(initial_adapter_name)
return output_state_dict
if is_main_process:
os.makedirs(save_directory, exist_ok=True)
@ -252,13 +334,24 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
# not supported in safetensors.
for shared_tensor_name in names[1:]:
output_state_dict[shared_tensor_name] = output_state_dict[shared_tensor_name].clone()
if path_initial_model_for_weight_conversion is not None:
peft_config.init_lora_weights = True
peft_config.save_pretrained(path_initial_model_for_weight_conversion)
output_state_dict = save_mutated_as_lora(
peft_config, path_initial_model_for_weight_conversion, output_state_dict, kwargs
)
safe_save_file(
output_state_dict,
os.path.join(output_dir, SAFETENSORS_WEIGHTS_NAME),
metadata={"format": "pt"},
)
elif is_main_process:
if path_initial_model_for_weight_conversion is not None:
peft_config.init_lora_weights = True
peft_config.save_pretrained(path_initial_model_for_weight_conversion)
output_state_dict = save_mutated_as_lora(
peft_config, path_initial_model_for_weight_conversion, output_state_dict, kwargs
)
torch.save(output_state_dict, os.path.join(output_dir, WEIGHTS_NAME))
# save the config and change the inference mode to `True`
@ -286,6 +379,20 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
auto_mapping_dict = None
if is_main_process:
if path_initial_model_for_weight_conversion is not None:
peft_config.init_lora_weights = True
peft_config.r *= 2
if not peft_config.use_rslora:
peft_config.lora_alpha *= 2
else:
# with rslora, we have scaling = alpha / sqrt(r), we thus adjust alpha to keep the same scaling
peft_config.lora_alpha *= 2**0.5
if peft_config.rank_pattern:
peft_config.rank_pattern = {key: 2 * val for key, val in peft_config.rank_pattern.items()}
if peft_config.alpha_pattern:
peft_config.alpha_pattern = {key: 2 * val for key, val in peft_config.alpha_pattern.items()}
peft_config.save_pretrained(output_dir, auto_mapping_dict=auto_mapping_dict)
peft_config.inference_mode = inference_mode
@ -297,6 +404,8 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
adapter_name: str = "default",
is_trainable: bool = False,
config: Optional[PeftConfig] = None,
autocast_adapter_dtype: bool = True,
ephemeral_gpu_offload: bool = False,
**kwargs: Any,
) -> PeftModel:
r"""
@ -323,6 +432,16 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
The configuration object to use instead of an automatically loaded configuration. This configuration
object is mutually exclusive with `model_id` and `kwargs`. This is useful when configuration is already
loaded before calling `from_pretrained`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Only relevant for specific adapter types.
ephemeral_gpu_offload (`bool`, *optional*):
Whether to use ephemeral GPU offloading for partially loaded modules. Defaults to `False`. This is
useful when parts of the model and/or components (such as adapters) are kept in CPU memory until they
are needed. Rather than perform expensive operations on small data, the data is transferred to the GPU
on-demand, the operation(s) performed, and the results moved back to CPU memory. This brings a slight
momentary VRAM overhead but gives orders of magnitude speedup in certain cases.
torch_device (`str`, *optional*, defaults to None):
The device to load the adapter on. If `None`, the device will be inferred.
kwargs: (`optional`):
Additional keyword arguments passed along to the specific PEFT configuration class.
"""
@ -345,6 +464,13 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
else:
raise ValueError(f"The input config must be a PeftConfig, got {config.__class__}")
# Runtime configuration, if supported
if hasattr(config, "runtime_config"):
config.runtime_config.ephemeral_gpu_offload = ephemeral_gpu_offload
else:
if ephemeral_gpu_offload:
warnings.warn("Ephemeral GPU offloading is not supported for this model. Ignoring.")
if hasattr(model, "hf_device_map"):
weight_map = dict(named_module_tensors(model, recurse=True))
@ -384,12 +510,42 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.")
else:
config.inference_mode = not is_trainable
if isinstance(getattr(model, "base_model", None), XLoraModel):
if not isinstance(config, XLoraConfig):
raise TypeError(f"Expected 'XLoraConfig', got '{type(config)}' instead.")
if "adapters" in kwargs:
config.adapters = kwargs["adapters"]
else:
# If the path is on HF hub, then we get the adapter names to create a subfolders list which tells
# `load_adapter` where the adapters are.
if not os.path.exists(model_id):
s = HfFileSystem()
# The names of the adapters which must be in folders
adapter_names = [
file["name"][len(model_id) + 1 :] for file in s.ls(model_id) if file["type"] == "directory"
]
# Prepare a dict of adapter paths, which really just point to the hf id; we will use the subfolders
adapter_paths = {}
for adapter_name in adapter_names:
adapter_paths[adapter_name] = os.path.join(model_id, model_id)
config.adapters = adapter_paths
config._subfolders = adapter_names
else:
if "adapters" not in kwargs:
raise ValueError("If model_id is a local path, then `adapters` must be passed in kwargs.")
if config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys():
model = cls(model, config, adapter_name)
model = cls(model, config, adapter_name, autocast_adapter_dtype=autocast_adapter_dtype)
else:
model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](model, config, adapter_name)
model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, **kwargs)
model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](
model, config, adapter_name, autocast_adapter_dtype=autocast_adapter_dtype
)
model.load_adapter(
model_id, adapter_name, is_trainable=is_trainable, autocast_adapter_dtype=autocast_adapter_dtype, **kwargs
)
return model
def _setup_prompt_encoder(self, adapter_name: str):
@ -580,6 +736,8 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "base_model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.base_model, name)
@contextmanager
@ -628,24 +786,42 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
... model(inputs)
```
"""
try:
if self.peft_config[self.active_adapter].is_prompt_learning:
if self.peft_config[self.active_adapter].is_prompt_learning:
try:
# TODO: consider replacing this patching of methods with a more robust mechanism: setting a flag and
# letting the underlying methods deal with it, same as how LoRA does it.
old_forward = self.forward
self.forward = self.base_model.forward
old_prepare_inputs_for_generation = self.prepare_inputs_for_generation
self.prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation
else:
self.base_model.disable_adapter_layers()
yield
finally:
if self.peft_config[self.active_adapter].is_prompt_learning:
yield
finally:
self.forward = old_forward
self.prepare_inputs_for_generation = old_prepare_inputs_for_generation
else:
elif self.peft_config[self.active_adapter].is_adaption_prompt:
try:
self.base_model.disable_adapter_layers()
yield
finally:
self.base_model.enable_adapter_layers()
else: # LoRA, LoHa, etc.
model_status = self.get_model_status()
if model_status.enabled == "irregular":
warnings.warn(
"The model contains some adapter layers that are enabled and others that are disabled. "
"This is most likely unintentional. After exiting the disable_adapter context, all adapters "
"will be enabled"
)
try:
self.base_model.disable_adapter_layers()
yield
finally:
if model_status.enabled is not False:
# model_status.enabled is `True` or `"irregular"`
self.base_model.enable_adapter_layers()
def get_base_model(self) -> torch.nn.Module:
"""
Returns the base model.
@ -709,6 +885,76 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
self.modules_to_save.update(peft_config.modules_to_save)
_set_trainable(self, adapter_name) # this may add a new ModulesToSaveWrapper
def get_layer_status(self) -> list[TunerLayerStatus]:
"""Get the status of each adapter layer in the model.
This method returns a list of `TunerLayerStatus` dataclass instances, each of which contains the following
attributes:
- `name` (`str`):
The name of the adapter layer, e.g. `model.encoder.block.0.layer.0.SelfAttention.q`.
- `module_type` (`str`):
The type of the adapter layer, e.g. `lora.Linear`.
- `enabled` (`bool`):
Whether the adapter layer is enabled.
- `active_adapters` (`list[str]`):
The names of the active adapters, if any, e.g. `["default"]`.
- `merged_adapters` (`list[str]`):
The names of the merged adapters, if any, e.g. `["default"]`.
- `available_adapters` (`list[str]`):
The names of the available adapters, e.g. `["default"]`.
Args:
model ([`~PeftModel`]):
The model to get the adapter layer status from.
Returns:
list[`peft.peft_model.TunerLayerStatus`]:
A list of dataclasses, each containing the status of the corresponding adapter layer.
"""
return get_layer_status(self)
def get_model_status(self) -> TunerModelStatus:
"""Get the status of tuners of the model.
This method returns a `TunerModelStatus` dataclass instance, which contains the following attributes:
- `base_model_type` (`str`):
The type of the base model, e.g. `T5Model`.
- `adapter_model_type` (`str`):
The type of the adapter model, e.g. `LoraModel`.
- `peft_types` (`dict[str, str]`):
The mapping of adapter name to adapter type, e.g. `{"default": "LORA"}`.
- `trainable_params` (`int`):
The number of trainable parameters in the model.
- `total_params` (`int`):
The total number of parameters in the model.
- `num_adapter_layers` (`int`):
The number of adapter layers in the model.
- `enabled` (`bool`, `Literal["irregular"]`):
Whether all adapter layers are enabled. If some are enabled and some are not, this will be `"irregular"`.
This means that your model is in an inconsistent state and might not work as expected.
- `active_adapters` (`list[str]`, `Literal["irregular"]`):
The names of the active adapters. If the active adapters are not consistent across all layers, this will be
`"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
- `merged_adapters` (`list[str]`, `Literal["irregular"]`):
The names of the merged adapters. If the merged adapters are not consistent across all layers, this will be
`"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
- `available_adapters` (`list[str]`):
The names of the available adapters, e.g. `["default"]`.
Args:
model ([`~PeftModel`]):
The model to get the adapter layer status from.
Returns:
`peft.peft_model.TunerModelStatus`:
A dataclass containing the status of the model.
"""
return get_model_status(self)
@classmethod
def _split_kwargs(cls, kwargs: dict[str, Any]):
_kwargs_not_in_hf_hub_download_signature = ("use_auth_token",)
@ -809,6 +1055,8 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
adapter_name: str,
is_trainable: bool = False,
torch_device: Optional[str] = None,
autocast_adapter_dtype: bool = True,
ephemeral_gpu_offload: bool = False,
**kwargs: Any,
):
"""
@ -829,6 +1077,12 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
used for inference.
torch_device (`str`, *optional*, defaults to None):
The device to load the adapter on. If `None`, the device will be inferred.
autocast_adapter_dtype (`bool`, *optional*, defaults to `True`):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter
weights using float16 and bfloat16 to float32, as this is typically required for stable training, and
only affect select PEFT tuners.
ephemeral_gpu_offload (`bool`, *optional*, defaults to `False`):
Whether to use ephemeral GPU offloading for partially loaded modules. Defaults to `False`.
kwargs: (`optional`):
Additional arguments to modify the way the adapter is loaded, e.g. the token for Hugging Face Hub.
"""
@ -847,6 +1101,7 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
)
].from_pretrained(
model_id,
ephemeral_gpu_offload=ephemeral_gpu_offload,
**hf_hub_download_kwargs,
)
if peft_config.is_prompt_learning and is_trainable:
@ -908,6 +1163,11 @@ class PeftModel(PushToHubMixin, torch.nn.Module):
remove_hook_from_submodules(self.prompt_encoder)
add_hook_to_module(self.get_base_model(), hook)
if hasattr(self.base_model, "_cast_adapter_dtype"):
self.base_model._cast_adapter_dtype(
adapter_name=adapter_name, autocast_adapter_dtype=autocast_adapter_dtype
)
# Set model in evaluation mode to deactivate Dropout modules by default
if not is_trainable:
self.eval()
@ -1007,6 +1267,11 @@ class PeftModelForSequenceClassification(PeftModel):
Args:
model ([`~transformers.PreTrainedModel`]): Base transformer model.
peft_config ([`PeftConfig`]): Peft config.
adapter_name (`str`, *optional*): The name of the adapter, defaults to `"default"`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
**Attributes**:
- **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
@ -1040,8 +1305,10 @@ class PeftModelForSequenceClassification(PeftModel):
```
"""
def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
super().__init__(model, peft_config, adapter_name)
def __init__(
self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default", **kwargs
) -> None:
super().__init__(model, peft_config, adapter_name, **kwargs)
classifier_module_names = ["classifier", "score"]
if self.modules_to_save is None:
@ -1235,7 +1502,11 @@ class PeftModelForCausalLM(PeftModel):
Args:
model ([`~transformers.PreTrainedModel`]): Base transformer model.
peft_config ([`PeftConfig`]): Peft config.
adapter_name (`str`, *optional*): The name of the adapter, defaults to `"default"`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
Example:
@ -1265,8 +1536,10 @@ class PeftModelForCausalLM(PeftModel):
```
"""
def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
super().__init__(model, peft_config, adapter_name)
def __init__(
self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default", **kwargs
) -> None:
super().__init__(model, peft_config, adapter_name, **kwargs)
self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation
def forward(
@ -1393,7 +1666,12 @@ class PeftModelForCausalLM(PeftModel):
# change in the logic of `prepare_inputs_for_generation` makes the below code necessary
# In prompt learning methods, past key values are longer when compared to the `input_ids`.
# As such only consider the last input ids in the autogressive generation phase.
if model_kwargs["past_key_values"][0][0].shape[-2] >= model_kwargs["input_ids"].shape[1]:
past_key_values = model_kwargs["past_key_values"]
if isinstance(past_key_values, (tuple, list)):
seq_len = past_key_values[0][0].shape[-2]
else: # using transformers kv cache
seq_len = past_key_values.get_seq_length()
if seq_len >= model_kwargs["input_ids"].shape[1]:
model_kwargs["input_ids"] = model_kwargs["input_ids"][:, -1:]
if model_kwargs.get("attention_mask", None) is not None:
@ -1440,7 +1718,11 @@ class PeftModelForSeq2SeqLM(PeftModel):
Args:
model ([`~transformers.PreTrainedModel`]): Base transformer model.
peft_config ([`PeftConfig`]): Peft config.
adapter_name (`str`, *optional*): The name of the adapter, defaults to `"default"`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
Example:
@ -1469,8 +1751,10 @@ class PeftModelForSeq2SeqLM(PeftModel):
```
"""
def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
super().__init__(model, peft_config, adapter_name)
def __init__(
self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default", **kwargs
) -> None:
super().__init__(model, peft_config, adapter_name, **kwargs)
self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation
self.base_model_prepare_encoder_decoder_kwargs_for_generation = (
self.base_model._prepare_encoder_decoder_kwargs_for_generation
@ -1694,6 +1978,11 @@ class PeftModelForTokenClassification(PeftModel):
Args:
model ([`~transformers.PreTrainedModel`]): Base transformer model.
peft_config ([`PeftConfig`]): Peft config.
adapter_name (`str`, *optional*): The name of the adapter, defaults to `"default"`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
**Attributes**:
- **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
@ -1727,8 +2016,10 @@ class PeftModelForTokenClassification(PeftModel):
```
"""
def __init__(self, model: torch.nn.Module, peft_config: PeftConfig = None, adapter_name: str = "default") -> None:
super().__init__(model, peft_config, adapter_name)
def __init__(
self, model: torch.nn.Module, peft_config: PeftConfig = None, adapter_name: str = "default", **kwargs
) -> None:
super().__init__(model, peft_config, adapter_name, **kwargs)
classifier_module_names = ["classifier", "score"]
if self.modules_to_save is None:
@ -1906,6 +2197,11 @@ class PeftModelForQuestionAnswering(PeftModel):
Args:
model ([`~transformers.PreTrainedModel`]): Base transformer model.
peft_config ([`PeftConfig`]): Peft config.
adapter_name (`str`, *optional*): The name of the adapter, defaults to `"default"`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
**Attributes**:
- **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
@ -1937,8 +2233,10 @@ class PeftModelForQuestionAnswering(PeftModel):
```
"""
def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
super().__init__(model, peft_config, adapter_name)
def __init__(
self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default", **kwargs
) -> None:
super().__init__(model, peft_config, adapter_name, **kwargs)
qa_module_names = ["qa_outputs"]
if self.modules_to_save is None:
@ -2139,6 +2437,11 @@ class PeftModelForFeatureExtraction(PeftModel):
Args:
model ([`~transformers.PreTrainedModel`]): Base transformer model.
peft_config ([`PeftConfig`]): Peft config.
adapter_name (`str`, *optional*): The name of the adapter, defaults to `"default"`.
autocast_adapter_dtype (`bool`, *optional*):
Whether to autocast the adapter dtype. Defaults to `True`. Right now, this will only cast adapter weights
using float16 and bfloat16 to float32, as this is typically required for stable training, and only affect
select PEFT tuners.
**Attributes**:
- **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
@ -2167,8 +2470,8 @@ class PeftModelForFeatureExtraction(PeftModel):
```
"""
def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default"):
super().__init__(model, peft_config, adapter_name)
def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default", **kwargs):
super().__init__(model, peft_config, adapter_name, **kwargs)
def forward(
self,
@ -2229,3 +2532,287 @@ class PeftModelForFeatureExtraction(PeftModel):
prompts = prompts.to(inputs_embeds.dtype)
inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
return self.base_model(inputs_embeds=inputs_embeds, **kwargs)
@dataclass
class TunerLayerStatus:
name: str
module_type: str
enabled: bool
active_adapters: list[str]
merged_adapters: list[str]
requires_grad: dict[str, bool | Literal["irregular"]]
available_adapters: list[str]
devices: dict[str, list[str]]
def get_layer_status(model: torch.nn.Module) -> list[TunerLayerStatus]:
"""Get the status of each adapter layer in the model.
This function returns a list of `TunerLayerStatus` dataclass instances, each of which contains the following
attributes:
- `name` (`str`):
The name of the adapter layer, e.g. `model.encoder.block.0.layer.0.SelfAttention.q`.
- `module_type` (`str`):
The type of the adapter layer, e.g. `lora.Linear`.
- `enabled` (`bool`):
Whether the adapter layer is enabled.
- `active_adapters` (`list[str]`):
The names of the active adapters, if any, e.g. `["default"]`.
- `merged_adapters` (`list[str]`):
The names of the merged adapters, if any, e.g. `["default"]`.
- requires_grad : dict[str, bool | Literal["irregular"]]
The requires_grad status of the parameters for each adapter module. Ideally, it should be either `True` or
`False`. If the requires_grad status is not consistent across all parameters, the value will be set to
`"irregular"`.
- `available_adapters` (`list[str]`):
The names of the available adapters, e.g. `["default"]`.
- `devices` (`dict[str, list[str]]`):
The devices where the parameters of the given adapter are stored, e.g. `["cuda"]`.
Args:
model ([Union[`~PeftModel`, `~transformers.PreTrainedModel`, `nn.Module`]]):
The model to get the adapter layer status from.
Returns:
list[`peft.peft_model.TunerLayerStatus`]:
A list of dataclasses, each containing the status of the corresponding adapter layer.
"""
if isinstance(model, PeftModel):
base_model = model.base_model
if not isinstance(base_model, BaseTuner):
raise TypeError(
"get_layer_status() got an invalid PeftModel instance; prefix tuning and adaption prompt are not "
"supported."
)
else:
base_model = model
layer_status: list[TunerLayerStatus] = []
for name, module in base_model.named_modules():
if not isinstance(module, BaseTunerLayer):
continue
# determine if all submodules/parameters if this module require grad or not
mapping_requires_grad_list: dict[str, list[bool]] = collections.defaultdict(list)
for adapter_module_name in module.adapter_layer_names:
adapter_module = getattr(module, adapter_module_name)
if isinstance(adapter_module, torch.nn.ModuleDict):
for key, submodule in adapter_module.items():
for param in submodule.parameters():
mapping_requires_grad_list[key].append(param.requires_grad)
elif isinstance(adapter_module, torch.nn.ParameterDict):
for key, param in adapter_module.items():
mapping_requires_grad_list[key].append(param.requires_grad)
else:
# strange, we don't know how to handle this, ignore for now
pass
def check_irrgular(vals: list[bool]) -> bool | Literal["irregular"]:
if all(vals):
return True
if not any(vals):
return False
return "irregular"
requires_grad = {key: check_irrgular(vals) for key, vals in mapping_requires_grad_list.items()}
devices_dd = collections.defaultdict(list)
for adapter_module_name in module.adapter_layer_names + module.other_param_names:
adapter_module = getattr(module, adapter_module_name)
if isinstance(adapter_module, torch.nn.ModuleDict):
for key, submodule in adapter_module.items():
devices_dd[key].extend([param.device.type for param in submodule.parameters()])
elif (
isinstance(adapter_module, torch.nn.ParameterDict)
or (adapter_module.__class__.__name__ == "BufferDict") # VeRA
):
for key, param in adapter_module.items():
devices_dd[key].append(param.device.type)
devices = {key: sorted(set(val)) for key, val in devices_dd.items()}
status = TunerLayerStatus(
name=name,
module_type=repr(module).partition("(")[0],
enabled=not module.disable_adapters,
active_adapters=module.active_adapters,
merged_adapters=module.merged_adapters,
requires_grad=requires_grad,
available_adapters=sorted(module._get_available_adapters()),
devices=devices,
)
layer_status.append(status)
if not layer_status:
raise ValueError(
"No adapter layers found in the model, please ensure that it's a PEFT model or that you have PEFT adapters "
"injected in the model."
)
return layer_status
@dataclass
class TunerModelStatus:
base_model_type: str
adapter_model_type: str
peft_types: dict[str, str]
trainable_params: int
total_params: int
num_adapter_layers: int
enabled: bool | Literal["irregular"]
active_adapters: list[str] | Literal["irregular"]
merged_adapters: list[str] | Literal["irregular"]
requires_grad: dict[str, bool | Literal["irregular"]]
available_adapters: list[str]
devices: dict[str, list[str]]
def get_model_status(model: torch.nn.Module) -> TunerModelStatus:
"""Get the status of tuners of the model.
This function returns a `TunerModelStatus` dataclass instance, which contains the following attributes:
- `base_model_type` (`str`):
The type of the base model, e.g. `T5Model`.
- `adapter_model_type` (`str`):
The type of the adapter model, e.g. `LoraModel`.
- `peft_types` (`dict[str, str]`):
The mapping of adapter name to adapter type, e.g. `{"default": "LORA"}`.
- `trainable_params` (`int`):
The number of trainable parameters in the model.
- `total_params` (`int`):
The total number of parameters in the model.
- `num_adapter_layers` (`int`):
The number of adapter layers in the model.
- `enabled` (`bool`, `Literal["irregular"]`):
Whether all adapter layers are enabled. If some are enabled and some are not, this will be `"irregular"`. This
means that your model is in an inconsistent state and might not work as expected.
- `active_adapters` (`list[str]`, `Literal["irregular"]`):
The names of the active adapters. If the active adapters are not consistent across all layers, this will be
`"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
- `merged_adapters` (`list[str]`, `Literal["irregular"]`):
The names of the merged adapters. If the merged adapters are not consistent across all layers, this will be
`"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
- `requires_grad` (`dict[str, bool | Literal["irregular"]]`):
Whether for the given adapter, all adapter layers have `requires_grad` set to `True` or `False`. If there is a
mix, this will be set to `"irregular"`, which means that your model is in an inconsistent state and might not
work as expected.
- `available_adapters` (`list[str]`):
The names of the available adapters, e.g. `["default"]`.
- `devices` (`dict[str, list[str]]`):
The devices where the parameters of the given adapter are stored, e.g. `["cuda"]`.
Args:
model ([Union[`~PeftModel`, `~transformers.PreTrainedModel`, `nn.Module`]]):
The model to get the adapter layer status from.
Returns:
`peft.peft_model.TunerModelStatus`:
A dataclass containing the status of the model.
"""
if isinstance(model, PeftModel):
if not isinstance(model.base_model, BaseTuner):
raise TypeError(
"get_model_status() got an invalid PeftModel instance; prefix tuning and adaption prompt are not "
"supported."
)
base_model_type = model.get_base_model().__class__.__name__
trainable_params, total_params = model.get_nb_trainable_parameters()
base_model = model.base_model
peft_types = {key: str(config.peft_type).partition(".")[-1] for key, config in base_model.peft_config.items()}
adapter_model_type = base_model.__class__.__name__
elif isinstance(model, PreTrainedModel):
base_model_type = model.__class__.__name__
trainable_params, total_params = PeftModel.get_nb_trainable_parameters(model)
base_model = model
peft_types = {}
adapter_model_type = "None"
else:
base_model_type = "other"
trainable_params, total_params = PeftModel.get_nb_trainable_parameters(model)
base_model = model
peft_types = {}
adapter_model_type = "None"
layer_status = get_layer_status(model)
num_adapter_layers = len(layer_status)
enabled_set: set[bool] = {status.enabled for status in layer_status} # must be {True}, {False}, or {True, False}
enabled: bool | Literal["irregular"]
if len(enabled_set) == 1:
enabled = enabled_set.pop()
else:
enabled = "irregular"
available_adapters: list[str] = sorted(set().union(*(status.available_adapters for status in layer_status)))
# ideally, active adapters should be consistent across all layers of the model, but we cannot guarantee it
all_active_adapters: set[tuple[str, ...]] = {tuple(status.active_adapters) for status in layer_status}
active_adapters: list[str] | Literal["irregular"]
if not all_active_adapters:
active_adapters = []
elif len(all_active_adapters) == 1:
active_adapters = list(all_active_adapters.pop())
else:
active_adapters = "irregular"
# Here we determine what adapters are merged. This is not trivial because multiple adapters can be merged or not at
# the same time. Some layers may only have adapter A, some only adapter B, so it's not as easy as just checking
# which adapters are merged on each layer.
# First, determine all adapters that are merged on at least on module.
merged_all: set[str] = set()
for status in layer_status:
merged_all.update(status.merged_adapters)
# Next, check if on any layer, on of these adapters is not merged.
merged_adapters: list[str] | Literal["irregular"] = sorted(merged_all)
for status in layer_status:
unmerged = set(status.available_adapters) - set(status.merged_adapters)
if unmerged & merged_all:
# there is overlap between unmerged adapters and adapters that should be merged
merged_adapters = "irregular"
break
# check status of requires_grad
# first, merge the values for all layers
requires_grad_all: dict[str, list[bool | Literal["irregular"]]] = collections.defaultdict(list)
for status in layer_status:
for key, val in status.requires_grad.items():
requires_grad_all[key].append(val)
# then, check if the values are consistent
def check_irrgular(vals: list[bool | Literal["irregular"]]) -> bool | Literal["irregular"]:
if all(val is True for val in vals):
return True
if all(val is False for val in vals):
return False
return "irregular"
requires_grad = {key: check_irrgular(vals) for key, vals in requires_grad_all.items()}
devices_dd = collections.defaultdict(list)
for status in layer_status:
for key, val in status.devices.items():
devices_dd[key].extend(val)
devices = {key: sorted(set(val)) for key, val in devices_dd.items()}
adapter_model_status = TunerModelStatus(
base_model_type=base_model_type,
adapter_model_type=adapter_model_type,
peft_types=peft_types,
trainable_params=trainable_params,
total_params=total_params,
num_adapter_layers=num_adapter_layers,
enabled=enabled,
active_adapters=active_adapters,
merged_adapters=merged_adapters,
requires_grad=requires_grad,
available_adapters=available_adapters,
devices=devices,
)
return adapter_model_status

View File

@ -18,7 +18,7 @@
# limitations under the License.
from .adaption_prompt import AdaptionPromptConfig, AdaptionPromptModel
from .lora import LoraConfig, LoraModel, LoftQConfig
from .lora import LoraConfig, LoraModel, LoftQConfig, LoraRuntimeConfig
from .loha import LoHaConfig, LoHaModel
from .lokr import LoKrConfig, LoKrModel
from .ia3 import IA3Config, IA3Model
@ -31,4 +31,8 @@ from .multitask_prompt_tuning import MultitaskPromptEmbedding, MultitaskPromptTu
from .oft import OFTConfig, OFTModel
from .mixed import MixedModel
from .poly import PolyConfig, PolyModel
from .ln_tuning import LNTuningConfig, LNTuningModel
from .vera import VeraConfig, VeraModel
from .fourierft import FourierFTConfig, FourierFTModel
from .xlora import XLoraConfig, XLoraModel
from .hra import HRAConfig, HRAModel

View File

@ -50,3 +50,20 @@ class AdaLoraConfig(LoraConfig):
def __post_init__(self):
self.peft_type = PeftType.ADALORA
if self.use_dora:
raise ValueError(f"{self.peft_type} does not support DoRA.")
if self.loftq_config:
raise ValueError(f"{self.peft_type} does not support LOFTQ.")
self.target_modules = (
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
)
# if target_modules is a regex expression, then layers_to_transform should be None
if isinstance(self.target_modules, str) and self.layers_to_transform is not None:
raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.")
# if target_modules is a regex expression, then layers_pattern should be None
if isinstance(self.target_modules, str) and self.layers_pattern is not None:
raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.")

View File

@ -35,7 +35,8 @@ class AdaLoraLayer(LoraLayer):
# List all names of layers that may contain adapter weights
# Note: ranknum doesn't need to be included as it is not an nn.Module
adapter_layer_names = ("lora_A", "lora_B", "lora_E", "lora_embedding_A", "lora_embedding_B")
# other_param_names is defined in LoraLayer
# All names of other parameters that may contain adapter-related parameters
other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout", "ranknum")
def __init__(self, base_layer: nn.Module) -> None:
super().__init__(base_layer)
@ -72,16 +73,12 @@ class AdaLoraLayer(LoraLayer):
if init_lora_weights:
self.reset_lora_parameters(adapter_name)
if hasattr(self.get_base_layer(), "qweight"):
# QuantLinear
self.to(self.get_base_layer().qweight.device)
else:
self.to(self.get_base_layer().weight.device)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def reset_lora_parameters(self, adapter_name):
if adapter_name in self.lora_A.keys():
nn.init.normal_(self.lora_E[adapter_name], mean=0.0, std=0.02)
nn.init.zeros_(self.lora_E[adapter_name])
nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02)
nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02)

View File

@ -229,6 +229,8 @@ class AdaLoraModel(LoraModel):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
def forward(self, *args, **kwargs):
@ -349,3 +351,7 @@ class AdaLoraModel(LoraModel):
# Pass the function and do forward propagation
else:
return None
def add_weighted_adapter(self, *args, **kwargs):
"""This method is not supported for AdaLoRA, use LoRA instead."""
raise TypeError(f"{self.__class__.__name__} does not support add_weighted_adapter method.")

View File

@ -158,4 +158,6 @@ class AdaptionPromptModel(nn.Module):
except AttributeError:
# This is necessary as e.g. causal models have various methods that we
# don't want to re-implement here.
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)

View File

@ -20,41 +20,78 @@ from __future__ import annotations
import math
import os
import warnings
from contextlib import contextmanager
from typing import Any, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.utils.cpp_extension import load
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
os.environ["CC"] = "gcc"
os.environ["CXX"] = "gcc"
curr_dir = os.path.dirname(__file__)
_FBD_CUDA = None
# this function is a 1:1 copy from accelerate
@contextmanager
def patch_environment(**kwargs):
"""
A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting.
Will convert the values in `kwargs` to strings and upper-case all the keys.
Example:
```python
>>> import os
>>> from accelerate.utils import patch_environment
>>> with patch_environment(FOO="bar"):
... print(os.environ["FOO"]) # prints "bar"
>>> print(os.environ["FOO"]) # raises KeyError
```
"""
existing_vars = {}
for key, value in kwargs.items():
key = key.upper()
if key in os.environ:
existing_vars[key] = os.environ[key]
os.environ[key] = str(value)
yield
for key in kwargs:
key = key.upper()
if key in existing_vars:
# restore previous value
os.environ[key] = existing_vars[key]
else:
os.environ.pop(key, None)
def get_fbd_cuda():
global _FBD_CUDA
if _FBD_CUDA is not None:
return _FBD_CUDA
# This import initializes cuda context and should thus be local, see issue 1877
from torch.utils.cpp_extension import load
curr_dir = os.path.dirname(__file__)
# need ninja to build the extension
try:
fbd_cuda = load(
name="fbd_cuda",
sources=[f"{curr_dir}/fbd/fbd_cuda.cpp", f"{curr_dir}/fbd/fbd_cuda_kernel.cu"],
verbose=True,
# build_directory='/tmp/' # for debugging
)
# extra_cuda_cflags = ['-std=c++14', '-ccbin=$$(which gcc-7)']) # cuda10.2 is not compatible with gcc9. Specify gcc 7
import fbd_cuda
with patch_environment(CC="gcc", CXX="gcc"):
fbd_cuda = load(
name="fbd_cuda",
sources=[f"{curr_dir}/fbd/fbd_cuda.cpp", f"{curr_dir}/fbd/fbd_cuda_kernel.cu"],
verbose=True,
# build_directory='/tmp/' # for debugging
)
# extra_cuda_cflags = ['-std=c++14', '-ccbin=$$(which gcc-7)']) # cuda10.2 is not compatible with gcc9. Specify gcc 7
import fbd_cuda
except Exception as e:
warnings.warn(f"Failed to load the CUDA extension: {e}, check if ninja is available.")
warnings.warn("Setting boft_n_butterfly_factor to 1 to speed up the finetuning process.")
@ -310,18 +347,11 @@ class BOFTLayer(BaseTunerLayer):
self.reset_boft_parameters(adapter_name, init_weights)
weight = getattr(self, "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
# set the boft block size and number
self.boft_block_size[adapter_name] = boft_block_size
self.boft_block_num[adapter_name] = boft_block_num
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def reset_boft_parameters(self, adapter_name, init_weights):
@ -544,8 +574,9 @@ class Linear(nn.Module, BOFTLayer):
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
boft_P = self.boft_P.to(block_diagonal_butterfly.device)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):
@ -585,8 +616,9 @@ class Linear(nn.Module, BOFTLayer):
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
boft_P = self.boft_P.to(block_diagonal_butterfly.device)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):
@ -742,19 +774,13 @@ class Conv2d(nn.Module, BOFTLayer):
self.reset_boft_parameters(adapter_name, init_weights)
weight = getattr(self, "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
self.set_adapter(self.active_adapters)
# set the boft block size and number
self.boft_block_size[adapter_name] = boft_block_size
self.boft_block_num[adapter_name] = boft_block_num
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
@ -860,8 +886,9 @@ class Conv2d(nn.Module, BOFTLayer):
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
boft_P = self.boft_P.to(block_diagonal_butterfly.device)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):
@ -903,8 +930,9 @@ class Conv2d(nn.Module, BOFTLayer):
block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly))
block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch)
boft_P = self.boft_P.to(block_diagonal_butterfly.device)
butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, boft_P.permute(0, 2, 1))
butterfly_oft_mat_batch = torch.bmm(boft_P, butterfly_oft_mat_batch)
butterfly_oft_mat = butterfly_oft_mat_batch[0]
for i in range(1, butterfly_oft_mat_batch.shape[0]):

View File

@ -207,6 +207,8 @@ class BOFTModel(BaseTuner):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):

View File

@ -0,0 +1,20 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .config import FourierFTConfig
from .layer import FourierFTLayer, FourierFTLinear
from .model import FourierFTModel
__all__ = ["FourierFTConfig", "FourierFTLayer", "FourierFTLinear", "FourierFTModel"]

View File

@ -0,0 +1,188 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from dataclasses import dataclass, field
from typing import Optional, Union
from peft.config import PeftConfig
from peft.utils import PeftType
@dataclass
class FourierFTConfig(PeftConfig):
"""
This is the configuration class to store the configuration of a [`FourierFTModel`].
Args:
n_frequency (`int`):
Num of learnable frequencies for the Discrete Fourier Transform. 'n_frequency' is an integer that is
greater than 0 and less than or equal to d^2 (assuming the weight W has dimensions of d by d).
Additionally, it is the number of trainable parameters required to update each delta W weight.
'n_frequency' will affect the performance and efficiency for PEFT. Specifically, it has little impact on
training speed, but higher values of it (typically) result in larger GPU memory costs and better accuracy.
With the same `target_modules`, the number of parameters of LoRA is (2*d*r/n_frequency) times that of
FourierFT. The following examples of settings regarding 'n_frequency' can be used as reference for users.
For NLU tasks with the RoBERTa-large model, adopting 'n_frequency': 1000 can almost achieve similar results
as 'r': 8 in LoRA. At this time, the number of parameters of LoRA is about 16 times that of FourierFT. For
image classification tasks with Vit-large models, adopting 'n_frequency': 3000 can almost achieve similar
results as 'r': 16 in LoRA, where the number of parameters of LoRA is about 11 times that of FourierFT.
scaling (`float`):
The scaling value for the delta W matrix. This is an important hyperparameter used for scaling, similar to
the 'lora_alpha' parameter in the LoRA method. 'scaling' can be determined during the hyperparameter search
process. However, if users want to skip this process, one can refer to the settings in the following
scenarios. This parameter can be set to 100.0 or 150.0 for both RoBERTa-base and RoBERTa-large models
across all NLU (GLUE) tasks. This parameter can be set to 300.0 for both LLaMA family models for all
instruction tuning. This parameter can be set to 300.0 for both ViT-base and ViT-large models across all
image classification tasks.
random_loc_seed (`int`):
Seed for the random location of the frequencies, i.e., the spectral entry matrix.
target_modules (`Union[list[str],str]`):
List of module names or regex expression of the module names to replace with FourierFT. For example, ['q',
'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. Only linear layers are supported.
fan_in_fan_out (`bool`):
Set this to True if the layer to replace stores weight like (fan_in, fan_out).
bias (`str`):
Bias type for FourierFT. Can be 'none', 'all' or 'fourier_only'.
modules_to_save (`list[str]`):
List of modules apart from FourierFT layers to be set as trainable and saved in the final checkpoint. For
example, in Sequence Classification or Token Classification tasks, the final layer `classifier/score` are
randomly initialized and as such need to be trainable and saved.
layers_to_transform (`Union[list[int],int]`):
The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes
that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at
this index.
layers_pattern (`str`):
The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is
not in the common layers pattern.
n_frequency_pattern (`dict`):
The mapping from layer names or regexp expression to n_frequency which are different from the default
specified. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 1000`}.
init_weights (`bool`):
The initialization of the Fourier weights. Set this to False if the spectrum are initialized to a standard
normal distribution. Set this to True if the spectrum are initialized to zeros.
"""
n_frequency: int = field(
default=1000,
metadata={
"help": (
"Num of learnable frequencies for the Discrete Fourier Transform. 'n_frequency' is an integer that is"
"greater than 0 and less than or equal to d^2 (assuming the weight W has dimensions of d by d)."
"Additionally, it is the number of trainable parameters required to update each delta W weight."
"'n_frequency' will affect the performance and efficiency for PEFT. Specifically, it has little impact on"
"training speed, but higher values of it (typically) result in larger GPU memory costs and better accuracy."
"With the same `target_modules`, the number of parameters of LoRA is (2*d*r/n_frequency) times that of FourierFT."
"The following examples of settings regarding 'n_frequency' can be used as reference for users. For NLU"
"tasks with the RoBERTa-large model, adopting 'n_frequency': 1000 can almost achieve similar results as"
"'r': 8 in LoRA. At this time, the number of parameters of LoRA is about 16 times that of FourierFT."
"For image classification tasks with Vit-large models, adopting 'n_frequency': 3000 can almost achieve"
"similar results as 'r': 16 in LoRA, where the number of parameters of LoRA is about 11 times that of FourierFT."
)
},
)
scaling: float = field(
default=150.0,
metadata={
"help": (
"The scaling value for the delta W matrix. This is an important hyperparameter used for scaling, similar to the"
"'lora_alpha' parameter in the LoRA method. 'scaling' can be determined during the hyperparameter search process."
"However, if users want to skip this process, one can refer to the settings in the following scenarios."
"This parameter can be set to 100.0 or 150.0 for both RoBERTa-base and RoBERTa-large models across all NLU (GLUE) tasks."
"This parameter can be set to 300.0 for both LLaMA family models for all instruction tuning."
"This parameter can be set to 300.0 for both ViT-base and ViT-large models across all image classification tasks."
)
},
)
random_loc_seed: Optional[int] = field(
default=777, metadata={"help": "Seed for the random location of the frequencies."}
)
fan_in_fan_out: bool = field(
default=False,
metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"},
)
target_modules: Optional[Union[list[str], str]] = field(
default=None,
metadata={
"help": (
"List of module names or regex expression of the module names to replace with FourierFT."
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'. "
"Only linear layers are supported."
)
},
)
bias: str = field(
default="none", metadata={"help": "Bias type for FourierFT. Can be 'none', 'all' or 'fourier_only'."}
)
modules_to_save: Optional[list[str]] = field(
default=None,
metadata={
"help": (
"List of modules apart from FourierFT layers to be set as trainable and saved in the final checkpoint. For"
" example, in Sequence Classification or Token Classification tasks, the final layer"
" `classifier/score` are randomly initialized and as such need to be trainable and saved."
)
},
)
layers_to_transform: Optional[Union[list[int], int]] = field(
default=None,
metadata={
"help": (
"The layer indexes to transform, is this argument is specified, PEFT will transform only the layers"
" indexes that are specified inside this list. If a single integer is passed, PEFT will transform only"
" the layer at this index."
)
},
)
layers_pattern: Optional[str] = field(
default=None,
metadata={
"help": (
"The layer pattern name, used only if `layers_to_transform` is different to None and if the layer"
" pattern is not in the common layers pattern."
)
},
)
n_frequency_pattern: Optional[dict] = field(
default_factory=dict,
metadata={
"help": (
"The mapping from layer names or regexp expression to n_frequency which are different from the default specified."
"For example, `{model.decoder.layers.0.encoder_attn.k_proj: 500`}."
)
},
)
init_weights: bool = field(
default=False,
metadata={
"help": (
"The initialization of the Fourier weights. Set this to False if the spectrum should be initialized to a standard normal distribution."
"Set this to True if the spectrum should be initialized to zeros."
)
},
)
def __post_init__(self):
self.peft_type = PeftType.FOURIERFT
self.target_modules = (
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
)
# if target_modules is a regex expression, then layers_to_transform should be None
if isinstance(self.target_modules, str) and self.layers_to_transform is not None:
raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.")
# if target_modules is a regex expression, then layers_pattern should be None
if isinstance(self.target_modules, str) and self.layers_pattern is not None:
raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.")

View File

@ -0,0 +1,190 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
class FourierFTLayer(BaseTunerLayer):
# All names of layers that may contain (trainable) adapter weights
adapter_layer_names = ("fourierft_spectrum",)
# All names of other parameters that may contain adapter-related parameters
other_param_names = ("fourierft_n_frequency", "fourierft_scaling", "fourierft_random_loc_seed")
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
self.base_layer = base_layer
self.fourierft_n_frequency = {}
self.fourierft_scaling = {}
self.fourierft_spectrum = nn.ParameterDict({})
self.indices = {}
self.fourierft_random_loc_seed = {}
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
self.kwargs = kwargs
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features
elif isinstance(base_layer, Conv1D):
self.in_features, self.out_features = (
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
)
else:
raise ValueError(f"Unsupported layer type {type(base_layer)}")
def update_layer(self, adapter_name, n_frequency, scaling, init_weights, random_loc_seed):
if n_frequency <= 0:
raise ValueError(f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}")
if n_frequency > self.in_features * self.out_features:
raise ValueError(
f"`n_frequency` should be less than or equal to the product of the input and output dimensions "
f"but the value passed is {n_frequency} and the product is {self.in_features * self.out_features}"
)
self.fourierft_n_frequency[adapter_name] = n_frequency
self.fourierft_random_loc_seed[adapter_name] = random_loc_seed
self.indices[adapter_name] = torch.randperm(
self.out_features * self.in_features,
generator=torch.Generator().manual_seed(self.fourierft_random_loc_seed[adapter_name]),
)[:n_frequency]
self.indices[adapter_name] = torch.stack(
[self.indices[adapter_name] // self.in_features, self.indices[adapter_name] % self.in_features], dim=0
)
self.fourierft_scaling[adapter_name] = scaling
# Actual trainable parameters
self.fourierft_spectrum[adapter_name] = nn.Parameter(torch.randn(n_frequency), requires_grad=True)
if init_weights:
self.reset_fourier_parameters(adapter_name)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
@torch.no_grad()
def reset_fourier_parameters(self, adapter_name):
if adapter_name in self.fourierft_spectrum.keys():
nn.init.zeros_(self.fourierft_spectrum[adapter_name])
def get_delta_weight(self, adapter) -> torch.Tensor:
spectrum = self.fourierft_spectrum[adapter]
indices = self.indices[adapter].to(spectrum.device)
dense_spectrum = torch.zeros(self.out_features, self.in_features, device=spectrum.device, dtype=spectrum.dtype)
dense_spectrum[indices[0, :], indices[1, :]] = spectrum
delta_weight = torch.fft.ifft2(dense_spectrum).real * self.fourierft_scaling[adapter]
return delta_weight
class FourierFTLinear(nn.Module, FourierFTLayer):
# FourierFT implemented in a dense layer
def __init__(
self,
base_layer,
adapter_name: str,
n_frequency: int = 1000,
scaling: float = 150.0,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
init_weights: Union[bool, str] = False,
random_loc_seed: int = 777,
**kwargs,
) -> None:
super().__init__()
FourierFTLayer.__init__(self, base_layer, **kwargs)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(adapter_name, n_frequency, scaling, init_weights, random_loc_seed)
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.fourierft_spectrum.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
orig_weights += self.get_delta_weight(active_adapter)
if not torch.isfinite(orig_weights).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
else:
base_layer.weight.data += self.get_delta_weight(active_adapter)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.fourierft_spectrum.keys():
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
def get_delta_weight(self, adapter) -> torch.Tensor:
return super().get_delta_weight(adapter)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.fourierft_spectrum.keys():
continue
delta_w = self.get_delta_weight(active_adapter)
x = x.to(delta_w.dtype)
result = result + F.linear(x, delta_w)
result = result.to(previous_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "fourierft." + rep

View File

@ -0,0 +1,346 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import re
import warnings
from dataclasses import asdict
from enum import Enum
from itertools import chain
from typing import Optional
import torch
from tqdm import tqdm
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
from peft.utils import (
TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING,
ModulesToSaveWrapper,
_get_submodules,
)
from .config import FourierFTConfig
from .layer import FourierFTLayer, FourierFTLinear
class FourierFTModel(BaseTuner):
"""
Creates FourierFT model from a pretrained transformers model.
The method is described in detail in https://arxiv.org/abs/2405.03003.
Args:
model ([`torch.nn.Module`]): The model to be adapted.
config ([`FourierFTConfig`]): The configuration of the FourierFT model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
Returns:
`torch.nn.Module`: The FourierFT model.
**Attributes**:
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`FourierFTConfig`]): The configuration of the Fourier model.
"""
prefix: str = "fourierft_"
def __init__(self, model, config, adapter_name) -> None:
super().__init__(model, config, adapter_name)
def _check_new_adapter_config(self, config: FourierFTConfig) -> None:
"""
A helper method to check the config when a new adapter is being added.
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
"""
# TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check
# does not fully correspond to the error message.
if (len(self.peft_config) > 1) and (config.bias != "none"):
raise ValueError(
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, "
"set bias to 'none' for all adapters."
)
@staticmethod
def _check_target_module_exists(fourierft_config, key):
return check_target_module_exists(fourierft_config, key)
def _create_and_replace(
self,
fourierft_config,
adapter_name,
target,
target_name,
parent,
current_key,
**optional_kwargs,
):
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
# Regexp matching - Find key which matches current target_name in patterns provided
pattern_keys = list(chain(fourierft_config.n_frequency_pattern.keys()))
target_name_key = next(filter(lambda key: re.match(rf".*\.{key}$", current_key), pattern_keys), current_key)
n_frequency = fourierft_config.n_frequency_pattern.get(target_name_key, fourierft_config.n_frequency)
scaling = fourierft_config.scaling
random_loc_seed = fourierft_config.random_loc_seed
bias = hasattr(target, "bias") and target.bias is not None
kwargs = {
"n_frequency": n_frequency,
"scaling": scaling,
"fan_in_fan_out": fourierft_config.fan_in_fan_out,
"init_weights": fourierft_config.init_weights,
"random_loc_seed": fourierft_config.random_loc_seed,
}
kwargs["bias"] = bias
if isinstance(target, FourierFTLayer):
target.update_layer(
adapter_name,
n_frequency,
scaling,
fourierft_config.init_weights,
random_loc_seed,
)
else:
new_module = self._create_new_module(fourierft_config, adapter_name, target, **kwargs)
if adapter_name != self.active_adapter:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
def _replace_module(self, parent, child_name, new_module, child):
setattr(parent, child_name, new_module)
# It's not necessary to set requires_grad here, as that is handled by
# _mark_only_adapters_as_trainable
# child layer wraps the original module, unpack it
if hasattr(child, "base_layer"):
child = child.base_layer
if not hasattr(new_module, "base_layer"):
new_module.weight = child.weight
if hasattr(child, "bias"):
new_module.bias = child.bias
if getattr(child, "state", None) is not None:
if hasattr(new_module, "base_layer"):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if "fourierft_" in name:
module.to(child.weight.device)
def _mark_only_adapters_as_trainable(self, model: torch.nn.Module) -> None:
for n, p in model.named_parameters():
if self.prefix not in n:
p.requires_grad = False
for active_adapter in self.active_adapters:
bias = self.peft_config[active_adapter].bias
if bias == "none":
continue
if bias == "all":
for n, p in model.named_parameters():
if "bias" in n:
p.requires_grad = True
elif bias == "fourier_only":
for m in model.modules():
if isinstance(m, FourierFTLayer) and hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.")
@staticmethod
def _create_new_module(fourierft_config, adapter_name, target, **kwargs):
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if isinstance(target_base_layer, torch.nn.Linear):
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = fourierft_config.fan_in_fan_out = False
elif isinstance(target_base_layer, Conv1D):
kwargs["is_target_conv_1d_layer"] = True
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = fourierft_config.fan_in_fan_out = True
else:
raise ValueError(
f"Target module {target} is not supported. Currently, only the following modules are supported: "
"`torch.nn.Linear`."
)
new_module = FourierFTLinear(target, adapter_name, **kwargs)
return new_module
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model":
raise
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
config_dict = {}
for key, value in self.peft_config.items():
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
if inference:
config["inference_mode"] = True
config_dict[key] = config
return config
def _set_adapter_layers(self, enabled: bool = True) -> None:
for module in self.model.modules():
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
module.enable_adapters(enabled)
def enable_adapter_layers(self) -> None:
"""Enable all adapters.
Call this if you have previously disabled all adapters and want to re-enable them.
"""
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self) -> None:
"""Disable all adapters.
When disabling all adapters, the model output corresponds to the output of the base model.
"""
for active_adapter in self.active_adapters:
val = self.peft_config[active_adapter].bias
if val != "none":
msg = (
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same "
"output as the the base model would without adaption."
)
warnings.warn(msg)
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name: str | list[str]) -> None:
"""Set the active adapter(s).
Args:
adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated.
"""
for module in self.model.modules():
if isinstance(module, FourierFTLayer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
@staticmethod
def _prepare_adapter_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _unload_and_optionally_merge(
self,
merge=True,
progressbar: bool = False,
safe_merge: bool = False,
adapter_names: Optional[list[str]] = None,
):
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
desc = "Unloading " + ("and merging " if merge else "") + "model"
for key in tqdm(key_list, disable=not progressbar, desc=desc):
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
if merge:
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
self._replace_module(parent, target_name, target.get_base_layer(), target)
elif isinstance(target, ModulesToSaveWrapper):
# save any additional trainable modules part of `modules_to_save`
setattr(parent, target_name, target.modules_to_save[target.active_adapter])
return self.model
def delete_adapter(self, adapter_name: str):
"""
Deletes an existing adapter.
Args:
adapter_name (str): Name of the adapter to be deleted.
"""
if adapter_name not in list(self.peft_config.keys()):
raise ValueError(f"Adapter {adapter_name} does not exist")
del self.peft_config[adapter_name]
# we cannot use self.prefix as we want to include non-trainable fourierft parameters
key_list = [key for key, _ in self.model.named_modules() if "fourierft" not in key]
new_adapter = None
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, FourierFTLayer):
target.delete_adapter(adapter_name)
if new_adapter is None:
new_adapter = target.active_adapter[:]
self.active_adapter = new_adapter or []
def merge_and_unload(
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
) -> torch.nn.Module:
r"""
This method merges the Fourier layers into the base model. This is needed if someone wants to use the base
model as a standalone model.
Args:
progressbar (`bool`):
whether to show a progressbar indicating the unload and merge process
safe_merge (`bool`):
whether to activate the safe merging check to check if there is any potential Nan in the adapter
weights
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
return self._unload_and_optionally_merge(
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
)
def unload(self) -> torch.nn.Module:
"""
Gets back the base model by removing all the Fourier modules without merging. This gives back the original base
model.
"""
return self._unload_and_optionally_merge(merge=False)

View File

@ -0,0 +1,20 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .config import HRAConfig
from .layer import HRAConv2d, HRALayer, HRALinear
from .model import HRAModel
__all__ = ["HRAConfig", "HRAModel", "HRAConv2d", "HRALinear", "HRALayer"]

View File

@ -0,0 +1,116 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import List, Optional, Union
from peft.config import PeftConfig
from peft.utils import PeftType
@dataclass
class HRAConfig(PeftConfig):
"""
This is the configuration class to store the configuration of a [`HRAModel`].
Args:
r (`int`):
The rank of HRA across different layers. It is best to set 'r' to an even number; otherwise, the default
initialization method will not work.
apply_GS (`bool`):
Whether to apply Gram-Schmidt orthogonalization.
target_modules (`Optional[Union[List[str], str]]`):
The names of the modules to apply the adapter to. If this is specified, only the modules with the specified
names will be replaced. When passing a string, a regex match will be performed. When passing a list of
strings, either an exact match will be performed or it is checked if the name of the module ends with any
of the passed strings. If this is specified as 'all-linear', then all linear modules are chosen, excluding
the output layer. If this is not specified, modules will be chosen according to the model architecture. If
the architecture is not known, an error will be raised -- in this case, you should specify the target
modules manually.
init_weights (`bool`):
Whether to perform initialization of HRA weights.
layers_to_transform (`Union[List[int], int]`):
The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices
that are specified in this list. If a single integer is passed, it will apply the transformations on the
layer at this index.
layers_pattern (`str`):
The layer pattern name, used only if `layers_to_transform` is different from `None`.
rank_pattern (`dict`):
The mapping from layer names or regexp expression to ranks which are different from the default rank
specified by `r`.
modules_to_save (`List[str]`):
List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint.
"""
r: int = field(
default=8,
metadata={
"help": "The rank of HRA across different layers.",
"note": "It is best to set 'r' to an even number; otherwise, the default initialization method will not work.",
},
)
apply_GS: bool = field(
default=False,
metadata={"help": "Whether to apply Gram-Schmidt orthogonalization or not."},
)
target_modules: Optional[Union[List[str], str]] = field(
default=None,
metadata={
"help": "List of module names or regex expression of the module names to replace with HRA.",
"example": "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' ",
},
)
init_weights: bool = field(
default=True,
metadata={
"help": (
"Whether to initialize the weights of the HRA layers with their default initialization. Don't change "
"this setting, except if you know exactly what you're doing."
),
},
)
layers_to_transform: Optional[Union[List[int], int]] = field(
default=None,
metadata={
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index."
},
)
layers_pattern: Optional[str] = field(
default=None,
metadata={
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern."
},
)
bias: str = field(default="none", metadata={"help": "Bias type for HRA. Can be 'none', 'all' or 'hra_only'"})
modules_to_save: Optional[List[str]] = field(
default=None,
metadata={
"help": "List of modules apart from HRA layers to be set as trainable and saved in the final checkpoint. "
"For example, in Sequence Classification or Token Classification tasks, "
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
},
)
def __post_init__(self):
self.peft_type = PeftType.HRA
self.target_modules = (
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
)
# if target_modules is a regex expression, then layers_to_transform should be None
if isinstance(self.target_modules, str) and self.layers_to_transform is not None:
raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.")
# if target_modules is a regex expression, then layers_pattern should be None
if isinstance(self.target_modules, str) and self.layers_pattern is not None:
raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.")

View File

@ -0,0 +1,435 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from typing import Any, List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
class HRALayer(BaseTunerLayer):
# All names of layers that may contain (trainable) adapter weights
adapter_layer_names = ("hra_u",)
# All names of other parameters that may contain adapter-related parameters
other_param_names = ("hra_r", "hra_apply_GS")
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
self.base_layer = base_layer
self.hra_r = {}
self.hra_apply_GS = {}
self.hra_u = nn.ParameterDict({})
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
self.kwargs = kwargs
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features
elif isinstance(base_layer, nn.Conv2d):
self.in_features, self.out_features = base_layer.in_channels, base_layer.out_channels
else:
raise ValueError(f"Unsupported layer type {type(base_layer)}")
def update_layer(
self,
adapter_name: str,
r: int,
apply_GS: bool,
init_weights: bool,
**kwargs,
) -> None:
"""Internal function to create hra adapter
Args:
adapter_name (`str`): Name for the adapter to add.
r (`int`): Rank for the added adapter.
init_weights (`bool`): Whether to initialize weights.
apply_GS (`bool`): Whether to apply Gram-Schmidt orthogonalization or not.
"""
if r <= 0:
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
self.hra_r[adapter_name] = r
self.hra_apply_GS[adapter_name] = apply_GS
# Determine shape of HRA weights
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
self.hra_u[adapter_name] = nn.Parameter(torch.empty(self.in_features, r), requires_grad=True)
elif isinstance(base_layer, nn.Conv2d):
self.hra_u[adapter_name] = nn.Parameter(
torch.empty(self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], r),
requires_grad=True,
)
else:
raise TypeError(f"HRA is not implemented for base layers of type {type(base_layer).__name__}")
# Initialize weights
if init_weights:
self.reset_hra_parameters(adapter_name)
else:
self.reset_hra_parameters_random(adapter_name)
# Move new weights to device
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def reset_hra_parameters(self, adapter_name: str):
if self.hra_r[adapter_name] % 2 != 0:
warnings.warn("The symmetric initialization can NOT be performed when r is odd!")
nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5))
else:
shape = self.hra_u[adapter_name].shape
half_u = torch.zeros(shape[0], shape[1] // 2)
nn.init.kaiming_uniform_(half_u, a=math.sqrt(5))
self.hra_u[adapter_name] = nn.Parameter(torch.repeat_interleave(half_u, 2, dim=1))
def reset_hra_parameters_random(self, adapter_name: str):
nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5))
def scale_layer(self, scale: float) -> None:
if scale == 1:
return
for active_adapter in self.active_adapters:
if active_adapter not in self.hra_u.keys():
continue
warnings.warn("Scaling operation for HRA not supported! Automatically set scale to 1.")
def unscale_layer(self, scale=None) -> None:
for active_adapter in self.active_adapters:
if active_adapter not in self.hra_u.keys():
continue
warnings.warn("Unscaling operation for HRA not supported! Keeping scale at 1.")
class HRALinear(nn.Module, HRALayer):
"""
HRA implemented in a dense layer.
"""
def __init__(
self,
base_layer,
adapter_name: str,
r: int = 0,
apply_GS: bool = False,
init_weights: Union[bool, str] = True,
**kwargs,
) -> None:
super().__init__()
HRALayer.__init__(self, base_layer, **kwargs)
self._active_adapter = adapter_name
self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs)
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If `None`, all active adapters will be merged.
Defaults to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.hra_u.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weight = base_layer.weight.data.clone()
delta_weight = self.get_delta_weight(active_adapter)
orig_weight = torch.mm(orig_weight, delta_weight)
if not torch.isfinite(orig_weight).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
self.base_layer.weight.data = orig_weight
else:
delta_weight = self.get_delta_weight(active_adapter)
self.base_layer.weight.data = torch.mm(self.base_layer.weight.data, delta_weight)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.hra_u.keys():
orig_weight = self.get_base_layer().weight.data.clone()
delta_weight = self.get_delta_weight(active_adapter, reverse=True)
self.get_base_layer().weight.data = torch.mm(orig_weight, delta_weight)
def get_delta_weight(self, adapter_name: str, reverse: bool = False) -> torch.Tensor:
rank = self.hra_r[adapter_name]
apply_GS = self.hra_apply_GS[adapter_name]
opt_u = self.hra_u[adapter_name]
shape = opt_u.shape
if apply_GS:
weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)]
for i in range(1, rank):
ui = opt_u[:, i].view(-1, 1)
for j in range(i):
ui = ui - (weight[j].t() @ ui) * weight[j]
weight.append((ui / ui.norm()).view(-1, 1))
weight = torch.cat(weight, dim=1)
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t()
else:
opt_u = opt_u / opt_u.norm(dim=0)
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype)
if reverse:
indices = range(rank - 1, -1, -1)
else:
indices = range(rank)
for i in indices:
ui = opt_u[:, i].view(-1, 1)
weight = weight @ (torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * ui @ ui.t())
return weight
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
new_weight = torch.eye(self.in_features, device=x.device)
for active_adapter in self.active_adapters:
if active_adapter not in self.hra_u.keys():
continue
delta_weight = self.get_delta_weight(active_adapter)
new_weight = torch.mm(new_weight, delta_weight)
x = x.to(self.get_base_layer().weight.data.dtype)
orig_weight = self.get_base_layer().weight.data
new_weight = torch.mm(orig_weight, new_weight)
result = F.linear(input=x, weight=new_weight, bias=self.base_layer.bias)
result = result.to(previous_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "hra." + rep
class HRAConv2d(nn.Module, HRALayer):
"""HRA implemented in Conv2d layer"""
def __init__(
self,
base_layer,
adapter_name: str,
r: int = 0,
apply_GS: bool = False,
init_weights: Union[bool, str] = True,
**kwargs,
):
super().__init__()
HRALayer.__init__(self, base_layer)
self._active_adapter = adapter_name
self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs)
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If `None`, all active adapters will be merged.
Defaults to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.hra_u.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weight = base_layer.weight.data.clone()
orig_weight = orig_weight.view(
self.out_features,
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0],
)
delta_weight = self.get_delta_weight(active_adapter)
orig_weight = torch.mm(orig_weight, delta_weight)
orig_weight = orig_weight.view(
self.out_features,
self.in_features,
self.base_layer.kernel_size[0],
self.base_layer.kernel_size[0],
)
if not torch.isfinite(orig_weight).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
self.base_layer.weight.data = orig_weight
else:
orig_weight = base_layer.weight.data
orig_weight = orig_weight.view(
self.out_features,
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0],
)
delta_weight = self.get_delta_weight(active_adapter)
orig_weight = torch.mm(orig_weight, delta_weight)
orig_weight = orig_weight.view(
self.out_features,
self.in_features,
self.base_layer.kernel_size[0],
self.base_layer.kernel_size[0],
)
self.base_layer.weight.data = orig_weight
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.hra_u.keys():
orig_weight = self.get_base_layer().weight.data.clone()
orig_weight = orig_weight.view(
self.out_features,
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0],
)
delta_weight = self.get_delta_weight(active_adapter, reverse=True)
orig_weight = torch.mm(orig_weight, delta_weight)
orig_weight = orig_weight.view(
self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]
)
self.get_base_layer().weight.data = orig_weight
def get_delta_weight(self, adapter_name: str, reverse: bool = False) -> torch.Tensor:
rank = self.hra_r[adapter_name]
apply_GS = self.hra_apply_GS[adapter_name]
opt_u = self.hra_u[adapter_name]
shape = opt_u.shape
if apply_GS:
weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)]
for i in range(1, rank):
ui = opt_u[:, i].view(-1, 1)
for j in range(i):
ui = ui - (weight[j].t() @ ui) * weight[j]
weight.append((ui / ui.norm()).view(-1, 1))
weight = torch.cat(weight, dim=1)
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t()
else:
opt_u = opt_u / opt_u.norm(dim=0)
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype)
if reverse:
indices = range(rank - 1, -1, -1)
else:
indices = range(rank)
for i in indices:
ui = opt_u[:, i].view(-1, 1)
weight = weight @ (torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * ui @ ui.t())
return weight
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
new_weight = torch.eye(
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], device=x.device
)
for active_adapter in self.active_adapters:
if active_adapter not in self.hra_u.keys():
continue
delta_weight = self.get_delta_weight(active_adapter)
new_weight = torch.mm(new_weight, delta_weight)
x = x.to(self.base_layer.weight.data.dtype)
orig_weight = self.base_layer.weight.data
orig_weight = orig_weight.view(
self.out_features,
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0],
)
new_weight = torch.mm(orig_weight, new_weight)
new_weight = new_weight.view(
self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0]
)
result = F.conv2d(
input=x,
weight=new_weight,
bias=self.base_layer.bias,
padding=self.base_layer.padding[0],
stride=self.base_layer.stride[0],
)
result = result.to(previous_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "hra." + rep

View File

@ -0,0 +1,337 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import asdict
from enum import Enum
from typing import List, Optional
import torch
from torch import nn
from tqdm import tqdm
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
from peft.utils import (
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING,
ModulesToSaveWrapper,
_get_submodules,
)
from .config import HRAConfig
from .layer import HRAConv2d, HRALayer, HRALinear
class HRAModel(BaseTuner):
"""
Creates Householder reflection adaptation (HRA) model from a pretrained model. The method is described in
https://arxiv.org/abs/2405.17484
Args:
model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached.
config ([`HRAConfig`]): The configuration of the HRA model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
Returns:
`torch.nn.Module`: The HRA model.
Example:
```py
>>> from diffusers import StableDiffusionPipeline
>>> from peft import HRAModel, HRAConfig
>>> config_te = HRAConfig(
... r=8,
... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
... init_weights=True,
... )
>>> config_unet = HRAConfig(
... r=8,
... target_modules=[
... "proj_in",
... "proj_out",
... "to_k",
... "to_q",
... "to_v",
... "to_out.0",
... "ff.net.0.proj",
... "ff.net.2",
... ],
... init_weights=True,
... )
>>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> model.text_encoder = HRAModel(model.text_encoder, config_te, "default")
>>> model.unet = HRAModel(model.unet, config_unet, "default")
```
**Attributes**:
- **model** ([`~torch.nn.Module`]) -- The model to be adapted.
- **peft_config** ([`HRAConfig`]): The configuration of the HRA model.
"""
prefix: str = "hra_"
def _check_new_adapter_config(self, config: HRAConfig) -> None:
"""
A helper method to check the config when a new adapter is being added.
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
"""
# TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check
# does not fully correspond to the error message.
if (len(self.peft_config) > 1) and (config.bias != "none"):
raise ValueError(
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, "
"set bias to 'none' for all adapters."
)
@staticmethod
def _check_target_module_exists(hra_config, key):
return check_target_module_exists(hra_config, key)
def _create_and_replace(
self,
hra_config,
adapter_name,
target,
target_name,
parent,
current_key,
**optional_kwargs,
):
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
bias = hasattr(target, "bias") and target.bias is not None
kwargs = {
"r": hra_config.r,
"apply_GS": hra_config.apply_GS,
"init_weights": hra_config.init_weights,
}
kwargs["bias"] = bias
# If it is not a HRALayer, create a new module, else update it with new adapters
if not isinstance(target, HRALayer):
new_module = self._create_new_module(hra_config, adapter_name, target, **kwargs)
if adapter_name not in self.active_adapters:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
else:
target.update_layer(
adapter_name,
r=hra_config.r,
apply_GS=hra_config.apply_GS,
init_weights=hra_config.init_weights,
)
def _replace_module(self, parent, child_name, new_module, child):
setattr(parent, child_name, new_module)
# It's not necessary to set requires_grad here, as that is handled by
# _mark_only_adapters_as_trainable
# child layer wraps the original module, unpack it
if hasattr(child, "base_layer"):
child = child.base_layer
if not hasattr(new_module, "base_layer"):
new_module.weight = child.weight
if hasattr(child, "bias"):
new_module.bias = child.bias
if getattr(child, "state", None) is not None:
if hasattr(new_module, "base_layer"):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if self.prefix in name:
module.to(child.weight.device)
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
for n, p in model.named_parameters():
if self.prefix not in n:
p.requires_grad = False
for active_adapter in self.active_adapters:
bias = self.peft_config[active_adapter].bias
if bias == "none":
continue
if bias == "all":
for n, p in model.named_parameters():
if "bias" in n:
p.requires_grad = True
elif bias == "hra_only":
for name, m in model.named_modules():
if isinstance(m, HRALayer) and hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.")
@staticmethod
def _create_new_module(hra_config, adapter_name, target, **kwargs):
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if isinstance(target_base_layer, torch.nn.Linear):
new_module = HRALinear(target, adapter_name, **kwargs)
elif isinstance(target_base_layer, torch.nn.Conv2d):
new_module = HRAConv2d(target, adapter_name, **kwargs)
else:
raise ValueError(
f"Target module {target} is not supported. "
"Currently, only `torch.nn.Linear` and `torch.nn.Conv2d` are supported."
)
return new_module
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "base_model":
raise
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
config_dict = {}
for key, value in self.peft_config.items():
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
if inference:
config["inference_mode"] = True
config_dict[key] = config
return config
def _set_adapter_layers(self, enabled=True):
for module in self.model.modules():
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
module.enable_adapters(enabled)
def enable_adapter_layers(self):
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self):
for active_adapter in self.active_adapters:
val = self.peft_config[active_adapter].bias
if val != "none":
msg = (
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same "
"output as the the base model would without adaption."
)
warnings.warn(msg)
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name):
for module in self.model.modules():
if isinstance(module, HRALayer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
@staticmethod
def _prepare_adapter_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _unload_and_optionally_merge(
self,
merge=True,
progressbar: bool = False,
safe_merge: bool = False,
adapter_names: Optional[List[str]] = None,
):
self._unloading_checks(adapter_names)
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
desc = "Unloading " + ("and merging " if merge else "") + "model"
for key in tqdm(key_list, disable=not progressbar, desc=desc):
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
if merge:
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
self._replace_module(parent, target_name, target.get_base_layer(), target)
elif isinstance(target, ModulesToSaveWrapper):
# save any additional trainable modules part of `modules_to_save`
setattr(parent, target_name, target.modules_to_save[target.active_adapter])
return self.model
def delete_adapter(self, adapter_name: str) -> None:
"""
Deletes an existing adapter.
Args:
adapter_name (str): Name of the adapter to be deleted.
"""
if adapter_name not in list(self.peft_config.keys()):
raise ValueError(f"Adapter {adapter_name} does not exist")
del self.peft_config[adapter_name]
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
new_adapter = None
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, HRALayer):
target.delete_adapter(adapter_name)
if new_adapter is None:
new_adapter = target.active_adapters[:]
self.active_adapter = new_adapter or []
def merge_and_unload(
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[List[str]] = None
) -> torch.nn.Module:
r"""
This method merges the HRA layers into the base model. This is needed if someone wants to use the base model as
a standalone model.
Args:
progressbar (`bool`):
whether to show a progressbar indicating the unload and merge process
safe_merge (`bool`):
whether to activate the safe merging check to check if there is any potential Nan in the adapter
weights
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
return self._unload_and_optionally_merge(
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
)
def unload(self) -> torch.nn.Module:
"""
Gets back the base model by removing all the hra modules without merging. This gives back the original base
model.
"""
return self._unload_and_optionally_merge(merge=False)

View File

@ -61,7 +61,7 @@ class IA3Layer(BaseTunerLayer):
self.ia3_l[adapter_name] = nn.Parameter(weight)
if init_ia3_weights:
self.reset_ia3_parameters(adapter_name)
self.to(self.get_base_layer().weight.device)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def reset_ia3_parameters(self, adapter_name):
@ -111,6 +111,7 @@ class Linear(nn.Module, IA3Layer):
if active_adapter in self.ia3_l.keys():
base_layer = self.get_base_layer()
ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out)
orig_dtype = base_layer.weight.data.dtype
if safe_merge:
orig_weights = base_layer.weight.data
orig_weights = torch.mul(orig_weights, ia3_l)
@ -119,13 +120,14 @@ class Linear(nn.Module, IA3Layer):
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
base_layer.weight.data = orig_weights.to(orig_dtype)
else:
base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_l)
base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_l).to(orig_dtype)
if not self.is_feedforward and (base_layer.bias is not None):
scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape)
base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data)
orig_dtype = base_layer.bias.data.dtype
base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data).to(orig_dtype)
self.merged_adapters.append(active_adapter)
@ -144,15 +146,16 @@ class Linear(nn.Module, IA3Layer):
base_layer = self.get_base_layer()
# Add tolerace to avoid division by zero
ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) + 1e-8
base_layer.weight.data = torch.div(base_layer.weight.data, ia3_l)
orig_dtype = base_layer.weight.data.dtype
base_layer.weight.data = torch.div(base_layer.weight.data, ia3_l).to(orig_dtype)
if not self.is_feedforward and (base_layer.bias is not None):
scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape)
base_layer.bias.data = torch.div(base_layer.bias.data, scaling.data + 1e-8)
orig_dtype = base_layer.bias.data.dtype
base_layer.bias.data = torch.div(base_layer.bias.data, scaling.data + 1e-8).to(orig_dtype)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
dtype = previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
@ -171,13 +174,13 @@ class Linear(nn.Module, IA3Layer):
x = x.to(dtype)
# TODO: weight.dtype can be != self.ia3_l[self.active_adapters].dtype
# e.g. bf16 vs fp32. Is that okay?
interm = (x * ia3_scaling).to(self.get_base_layer().weight.dtype)
interm = (x * ia3_scaling).to(previous_dtype)
result = self.base_layer(interm, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
result = result.to(dtype) * ia3_scaling
result_dtype = result.dtype
result = (result * ia3_scaling).to(result_dtype)
result = result.to(previous_dtype)
return result
@ -207,7 +210,7 @@ class Conv2d(nn.Module, IA3Layer):
self.ia3_l[adapter_name] = nn.Parameter(weight)
if init_ia3_weights:
self.reset_ia3_parameters(adapter_name)
self.to(self.get_base_layer().weight.device)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:

View File

@ -15,7 +15,7 @@ from __future__ import annotations
import re
import warnings
from dataclasses import asdict
from dataclasses import asdict, replace
from enum import Enum
from typing import Optional
@ -29,6 +29,7 @@ from peft.utils import (
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING,
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING,
ModulesToSaveWrapper,
_freeze_adapter,
_get_submodules,
)
@ -226,6 +227,8 @@ class IA3Model(BaseTuner):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
@ -279,17 +282,20 @@ class IA3Model(BaseTuner):
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
def _prepare_adapter_config(self, peft_config, model_config):
@staticmethod
def _prepare_adapter_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING[model_config["model_type"]]
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
if peft_config.feedforward_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING:
raise ValueError("Please specify `feedforward_modules` in `peft_config`")
peft_config.feedforward_modules = TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING[
model_config["model_type"]
]
peft_config.feedforward_modules = set(
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _unload_and_optionally_merge(
@ -393,3 +399,94 @@ class IA3Model(BaseTuner):
new_adapter = target.active_adapters[:]
self.active_adapter = new_adapter or []
def _check_add_weighted_adapter(self, adapters: list[str]) -> tuple[str, str]:
"""
Helper function to check if the arguments to add_weighted_adapter are valid and compatible with the underlying
model.
"""
# Validate existence of adapters
for adapter in adapters:
if adapter not in self.peft_config:
raise ValueError(f"Adapter {adapter} does not exist")
# Check for conflicting modules_to_save
modules_to_save_wrappers = [module for module in self.modules() if isinstance(module, ModulesToSaveWrapper)]
if any(
sum(adapter in wrapper.modules_to_save for adapter in adapters) > 1 for wrapper in modules_to_save_wrappers
):
raise ValueError("Cannot add weighted adapters targeting the same module with modules_to_save.")
# Ensure all adapters have compatible target and feedforward module types
target_module_types = {type(self.peft_config[adapter].target_modules) for adapter in adapters}
feedforward_module_types = {type(self.peft_config[adapter].feedforward_modules) for adapter in adapters}
if len(target_module_types) > 1 or len(feedforward_module_types) > 1:
raise ValueError("All adapter configs should have the same type for target and feedforward modules.")
# Combine target and feedforward modules
if str in target_module_types:
new_target_modules = "|".join(f"({self.peft_config[adapter].target_modules})" for adapter in adapters)
else:
new_target_modules = set.union(*(self.peft_config[adapter].target_modules for adapter in adapters))
if str in feedforward_module_types:
new_feedforward_modules = "|".join(
f"({self.peft_config[adapter].feedforward_modules})" for adapter in adapters
)
else:
new_feedforward_modules = set.union(
*(self.peft_config[adapter].feedforward_modules for adapter in adapters)
)
return new_target_modules, new_feedforward_modules
def add_weighted_adapter(
self,
adapters: list[str],
weights: list[float],
adapter_name: str,
) -> None:
"""
This method adds a new adapter by merging the given adapters with the given weights.
Args:
adapters (`list`):
List of adapter names to be merged.
weights (`list`):
List of weights for each adapter.
adapter_name (`str`):
Name of the new adapter.
"""
if adapter_name in list(self.peft_config.keys()):
return
new_target_modules, new_feedforward_modules = self._check_add_weighted_adapter(
adapters=adapters,
)
self.peft_config[adapter_name] = replace(
self.peft_config[adapters[0]],
target_modules=new_target_modules,
feedforward_modules=new_feedforward_modules,
)
self.inject_adapter(self.model, adapter_name)
# Do we really need that?
_freeze_adapter(self.model, adapter_name)
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, IA3Layer):
if adapter_name in target.ia3_l:
target_ia3_l = target.ia3_l[adapter_name]
else:
continue
target_ia3_l.data = target_ia3_l.data.zero_()
for adapter, weight in zip(adapters, weights):
if adapter in target.ia3_l:
current_adapter_ia3_l = target.ia3_l[adapter]
else:
continue
target_ia3_l.data += current_adapter_ia3_l.data * weight

View File

@ -0,0 +1,19 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .config import LNTuningConfig
from .model import LNTuningModel
__all__ = ["LNTuningConfig", "LNTuningModel"]

View File

@ -0,0 +1,61 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from dataclasses import dataclass, field
from typing import Optional, Union
from peft.config import PeftConfig
from peft.utils import PeftType
@dataclass
class LNTuningConfig(PeftConfig):
"""
This is the configuration class to store the configuration of a :class:`~peft.tuners.LNTuningModel`.
Args:
target_modules (`Optional[Union[List[str], str]]`):
List of module names or regex expression of the module names to replace with LNTuning. For example,
'.*decoder.*' or '.*encoder.*'. If this is not specified, modules will be chosen according to the model
architecture. If the architecture is not known, an error will be raised -- in this case, you should specify
the target modules manually.
modules_to_save (`Optional[Union[List[str], str]]`):
List of modules to be set as trainable and saved in the final checkpoint. For example, in Sequence
Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized
and as such need to be trainable and saved.
"""
target_modules: Optional[Union[list[str], str]] = field(
default=None,
metadata={
"help": (
"List of module names or regex expression of the module names to replace with LNTuning."
"For example, '.*decoder.*' or '.*encoder.*'. "
"If not specified, modules will be chosen according to the model architecture, If the architecture is "
"not known, an error will be raised -- in this case, you shoud specify the target modules manually."
),
},
)
modules_to_save: Optional[Union[list[str], str]] = field(
default=None,
metadata={
"help": "List of modules to be set as trainable and saved in the final checkpoint. "
"For example, in Sequence Classification or Token Classification tasks, "
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
},
)
def __post_init__(self):
self.peft_type = PeftType.LN_TUNING

View File

@ -0,0 +1,117 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from copy import deepcopy
from typing import List, Optional
import torch
import torch.nn as nn
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
class LNTuningLayer(nn.Module, BaseTunerLayer):
"""
Selects a layer from the model.
"""
adapter_layer_names = ("ln_tuning_layers",)
def __init__(self, base_layer: nn.Module, adapter_name: str):
super().__init__()
self.base_layer = base_layer
self.ln_tuning_layers = nn.ModuleDict({})
self.update_layer(self.base_layer, adapter_name)
self._active_adapter = adapter_name
self.merged_adapters = []
def update_layer(self, layer: nn.Module, adapter_name: str):
self.ln_tuning_layers[adapter_name] = deepcopy(layer)
def enable_adapters(self, enabled: bool) -> None:
"""Toggle the enabling and disabling of adapters
Takes care of setting the requires_grad flag for the adapter weights.
Args:
enabled (bool): True to enable adapters, False to disable adapters
"""
if enabled:
self.set_adapter(self.active_adapters)
self._disable_adapters = False
else:
if self.merged:
self.unmerge()
# disable grads on all adapter layers
for layer_name in self.adapter_layer_names:
layer = getattr(self, layer_name)
layer.requires_grad_(False)
self._disable_adapters = True
def merge(self, adapter_names: Optional[List[str]] = None):
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
if len(adapter_names) > 1:
raise ValueError(
f"Trying to merge {len(adapter_names)} adapters, but LN "
f"tuning does not allow merging more than one adapter at a time"
)
merged_adapters = set(self.merged_adapters)
if merged_adapters:
warnings.warn(f"Already merged with {merged_adapters}. Unmerging first.")
self.unmerge()
self.base_layer, self.ln_tuning_layers[adapter_names[0]] = (
self.ln_tuning_layers[adapter_names[0]],
self.base_layer,
)
self.merged_adapters.append(adapter_names[0])
def unmerge(self):
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
# popping one element is sufficient because LN
# tuning does not allow merging more than one adapter at a time.
merged_name = self.merged_adapters.pop()
self.base_layer, self.ln_tuning_layers[merged_name] = (
self.ln_tuning_layers[merged_name],
self.base_layer,
)
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
if len(self.active_adapters) != 1:
raise ValueError(
f"Trying to run forward with {len(self.active_adapters)} active "
f"adapters, but LN tuning does not allow inference with more than one adapter at a time"
)
active_adapter = self.active_adapters[0]
result = self.ln_tuning_layers[active_adapter](x, *args, **kwargs)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "ln_tuning." + rep

View File

@ -0,0 +1,203 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import warnings
from typing import Optional
from torch import nn
from torch.nn.modules import Module
from tqdm import tqdm
from peft.config import PeftConfig
from peft.tuners.tuners_utils import BaseTuner, _get_submodules, check_target_module_exists
from peft.utils import TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING, ModulesToSaveWrapper
from .layer import LNTuningLayer
class LNTuningModel(BaseTuner):
"""
Creates LayerNorm tuning from a pretrained transformer model.
The method is described in detail in https://arxiv.org/abs/2312.11420.
Args:
model ([`torch.nn.Module`]): The model to be adapted.
config ([`LNTuningConfig`]): The configuration of the Lora model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
Returns:
'torch.nn.Module': The adapted model with LayerNorm tuned on.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import get_peft_model, TaskType, LNTuningConfig
>>> peft_config = LNTuningConfig(
... task_type=TaskType.CAUSAL_LM,
... )
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> model = get_peft_model(model, peft_config)
>>> model.print_trainable_parameters()
```
**Attributes**:
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`LNTuningConfig`]): The configuration of the Lora model.
"""
prefix: str = "ln_tuning_"
def __init__(self, model, config, adapter_name) -> None:
# self.adapter_name = adapter_name
super().__init__(model, config, adapter_name)
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
# TODO: here need to handle the modules_to_save rather than the target_modules
@staticmethod
def _prepare_adapter_config(peft_config: PeftConfig, model_config: dict) -> PeftConfig:
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _create_and_replace(
self,
peft_config: PeftConfig,
adapter_name: str,
target: Module,
target_name: str,
parent: Module,
current_key: str,
) -> None:
# replace the original module with a same new module
new_module = self._create_new_module(peft_config, target, adapter_name)
if adapter_name != self.active_adapter:
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
def _create_new_module(
self,
peft_config: PeftConfig,
target: Module,
adapter_name: str,
) -> Module:
if not isinstance(target, LNTuningLayer):
new_module = LNTuningLayer(target, adapter_name)
else:
new_module = target
new_module.update_layer(target.base_layer, adapter_name)
return new_module
def _replace_module(self, parent: Module, child_name: str, new_module: Module, child: Module) -> None:
setattr(parent, child_name, new_module)
if hasattr(child, "base_layer"):
child = child.base_layer
if getattr(child, "state", None) is not None:
if hasattr(new_module, "base_layer"):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
for name, module in new_module.named_modules():
weight = child.qweight if hasattr(child, "qweight") else child.weight
module.to(weight.device)
def _mark_only_adapters_as_trainable(self, model: Module):
for n, p in model.named_parameters():
if self.prefix not in n:
p.requires_grad = False
else:
p.requires_grad = True
def _check_target_module_exists(self, peft_config: PeftConfig, key: str) -> bool:
return check_target_module_exists(peft_config, key)
def _set_adapter_layers(self, enabled: bool) -> None:
for module in self.model.modules():
if isinstance(module, (LNTuningLayer, ModulesToSaveWrapper)):
module.enable_adapters(enabled)
def enable_adapter_layers(self) -> None:
"""Enable all adapters.
Call this if you have previously disabled all adapters and want to re-enable them.
"""
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self) -> None:
"""Disable all adapters.
When disabling all adapters, the model output corresponds to the output of the base model.
"""
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name: str) -> None:
for module in self.model.modules():
if isinstance(module, LNTuningLayer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
def _unload_and_optionally_merge(
self,
merge=True,
progressbar: bool = False,
safe_merge: bool = False,
adapter_names: Optional[list[str]] = None,
):
self._unloading_checks(adapter_names)
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
desc = "Unloading adapters " + ("and merging " if merge else "") + "model"
for key in tqdm(key_list, disable=not progressbar, desc=desc):
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
if merge:
target.merge(adapter_names)
self._replace_module(parent, target_name, target.get_base_layer(), target)
return self.model
def unload(self):
return self._unload_and_optionally_merge(merge=False)
def merge_and_unload(
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
) -> nn.Module:
return self._unload_and_optionally_merge(merge=True)

View File

@ -148,13 +148,7 @@ class LoHaLayer(nn.Module, LycorisLayer):
self.reset_adapter_parameters_random(adapter_name)
# Move new weights to device
weight = getattr(self.get_base_layer(), "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:

View File

@ -197,13 +197,7 @@ class LoKrLayer(nn.Module, LycorisLayer):
self.reset_adapter_parameters_random(adapter_name)
# Move new weights to device
weight = getattr(self.get_base_layer(), "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:

View File

@ -12,15 +12,25 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.import_utils import is_bnb_4bit_available, is_bnb_available, is_eetq_available
from .config import LoftQConfig, LoraConfig
from .config import LoftQConfig, LoraConfig, LoraRuntimeConfig
from .gptq import QuantLinear
from .layer import Conv2d, Embedding, Linear, LoraLayer
from .model import LoraModel
__all__ = ["LoraConfig", "LoftQConfig", "Conv2d", "Embedding", "LoraLayer", "Linear", "LoraModel", "QuantLinear"]
__all__ = [
"LoraConfig",
"LoraRuntimeConfig",
"LoftQConfig",
"Conv2d",
"Embedding",
"LoraLayer",
"Linear",
"LoraModel",
"QuantLinear",
]
def __getattr__(name):
@ -34,4 +44,9 @@ def __getattr__(name):
return Linear4bit
if (name == "EetqLoraLinear") and is_eetq_available():
from .eetq import EetqLoraLinear
return EetqLoraLinear
raise AttributeError(f"module {__name__} has no attribute {name}")

View File

@ -98,12 +98,16 @@ if is_bnb_available():
else:
# handle dora
# since output already includes scaling, set it to 1 here
weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(output, lora_data, scaling=1)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
w_data = dora_factor.view(-1, 1) * (output + lora_data)
if safe_merge and not torch.isfinite(w_data).all():
@ -144,7 +148,7 @@ if is_bnb_available():
w_data = output.to(lora_data.dtype).to(lora_data.device) - lora_data
else:
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
w_data = output.data / dora_factor.view(-1, 1) - lora_data
self.get_base_layer().weight = bnb.nn.Int8Params(
@ -233,7 +237,14 @@ if is_bnb_available():
if not self.use_dora[active_adapter]:
output = lora_B(lora_A(dropout(x))) * scaling
else:
output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
x = dropout(x)
output = self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
)
if requires_conversion:
output = output.to(expected_dtype)
@ -336,12 +347,16 @@ if is_bnb_4bit_available():
else:
# handle dora
# since output already includes scaling, set it to 1 here
weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(output, lora_data, scaling=1)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
w_data = dora_factor.view(-1, 1) * (output + lora_data)
if safe_merge and not torch.isfinite(w_data).all():
@ -350,9 +365,9 @@ if is_bnb_4bit_available():
)
if "bnb_quantized" in kwargs:
kwargs["bnb_quantized"] = False
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
weight.device
)
kwargs["requires_grad"] = False
kwargs.pop("data", None)
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), **kwargs).to(weight.device)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
@ -380,14 +395,14 @@ if is_bnb_4bit_available():
w_data = output - lora_data
else:
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
w_data = output.data / dora_factor.view(-1, 1) - lora_data
if "bnb_quantized" in kwargs:
kwargs["bnb_quantized"] = False
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
weight.device
)
kwargs["requires_grad"] = False
kwargs.pop("data", None)
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), **kwargs).to(weight.device)
def get_delta_weight(self, adapter):
return (
@ -473,7 +488,14 @@ if is_bnb_4bit_available():
if not self.use_dora[active_adapter]:
output = lora_B(lora_A(dropout(x))) * scaling
else:
output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
x = dropout(x)
output = self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
)
if requires_conversion:
output = output.to(expected_dtype)

View File

@ -14,13 +14,42 @@
from __future__ import annotations
import warnings
from dataclasses import dataclass, field
from typing import Literal, Optional, Union
from torch import nn
from peft.config import PeftConfig
from peft.utils import PeftType
@dataclass
class LoraRuntimeConfig:
"""
This is the sub-configuration class to store the runtime configurations for the model.
Args:
ephemeral_gpu_offload (`bool`):
Whether to use ephemeral GPU offloading for models partially kept in CPU memory.
"""
ephemeral_gpu_offload: bool = field(
default=False,
metadata={
"help": (
"Whether to use ephemeral GPU offloading for models partially kept in CPU memory. Ephemeral GPU offloading result in "
"the data involved in intense operations being momentarily copied over to the GPU, and the results copied "
"back to CPU. There is a momentary VRAM overhead, but operations are generally orders of magnitude faster "
"compared to performing them on the CPU. This is useful when parts of the model and/or components (such "
"as adapters) are kept in CPU memory until they are needed. Rather than perform expensive operations on "
"small data, the data is transferred to the GPU on-demand, the operation(s) performed, and the results "
"moved back to CPU memory. Currently only affects DoRA initialization."
)
},
)
@dataclass
class LoftQConfig:
"""
@ -73,11 +102,19 @@ class LoraConfig(PeftConfig):
Otherwise, it will use the original default value of `lora_alpha/r`.
modules_to_save (`List[str]`):
List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint.
init_lora_weights (`bool` | `Literal["gaussian", "loftq"]`):
init_lora_weights (`bool` | `Literal["gaussian", "olora", "pissa", "pissa_niter_[number of iters]", "loftq"]`):
How to initialize the weights of the adapter layers. Passing True (default) results in the default
initialization from the reference implementation from Microsoft. Passing 'gaussian' results in Gaussian
initialization scaled by the LoRA rank for linear and layers. Setting the initialization to False leads to
completely random initialization and is discouraged. Pass `'loftq'` to use LoftQ initialization.
completely random initialization and is discouraged. Pass `'loftq'` to use LoftQ initialization. Pass
`'olora'` to use OLoRA initialization. Passing `'pissa'` results in the initialization of <a
href='https://arxiv.org/abs/2404.02948'>Principal Singular values and Singular vectors Adaptation
(PiSSA)</a>, which converges more rapidly than LoRA and ultimately achieves superior performance. Moreover,
PiSSA reduces the quantization error compared to QLoRA, leading to further enhancements. Passing
`'pissa_niter_[number of iters]'` initiates Fast-SVD-based PiSSA initialization, where `[number of iters]`
indicates the number of subspace iterations to perform FSVD, and must be a nonnegative integer. When
`[number of iters]` is set to 16, it can complete the initialization of a 7B model within seconds, and the
training effect is approximately equivalent to using SVD.
layers_to_transform (`Union[List[int], int]`):
The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices
that are specified in this list. If a single integer is passed, it will apply the transformations on the
@ -108,10 +145,12 @@ class LoraConfig(PeftConfig):
ranks. Right now, DoRA only supports linear and Conv2D layers. DoRA introduces a bigger overhead than pure
LoRA, so it is recommended to merge weights for inference. For more information, see
https://arxiv.org/abs/2402.09353.
layer_replication(`List[Tuple[int, int]]`):
layer_replication (`List[Tuple[int, int]]`):
Build a new stack of layers by stacking the original model layers according to the ranges specified. This
allows expanding (or shrinking) the model without duplicating the base model weights. The new layers will
all have separate LoRA adapters attached to them.
runtime_config (`LoraRuntimeConfig`):
Runtime configurations (which are not saved or restored).
"""
r: int = field(default=8, metadata={"help": "Lora attention dimension"})
@ -140,7 +179,7 @@ class LoraConfig(PeftConfig):
default=False,
metadata={
"help": (
"When set to True, uses Rank-Stabilized LoRA doi.org/10.48550/arXiv.2312.03732"
"When set to True, uses <a href='https://doi.org/10.48550/arXiv.2312.03732'>Rank-Stabilized LoRA</a>"
" which sets the adapter scaling factor to `lora_alpha/math.sqrt(r)`, since it"
" was proven to work better. Otherwise, it will use the original default"
" value of `lora_alpha/r`."
@ -155,14 +194,18 @@ class LoraConfig(PeftConfig):
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
},
)
init_lora_weights: bool | Literal["gaussian", "loftq"] = field(
init_lora_weights: bool | Literal["gaussian", "olora", "pissa", "pissa_niter_[number of iters]", "loftq"] = field(
default=True,
metadata={
"help": (
"How to initialize the weights of the LoRA layers. Passing True (default) results in the default "
"initialization from the reference implementation from Microsoft. Passing 'gaussian' results "
"How to initialize the weights of the LoRA layers. Passing `'True'` (default) results in the default "
"initialization from the reference implementation from Microsoft. Passing `'gaussian'` results "
"in Gaussian initialization scaled by the LoRA rank for linear and layers. Setting the initialization "
"to False leads to completely random initialization and is discouraged."
"to `'False'` leads to completely random initialization and *is discouraged.*"
"Passing `'olora'` results in OLoRA initialization."
"Passing `'pissa'` results in PiSSA initialization."
"Passing `'pissa_niter_[number of iters]'` initiates Fast-SVD-based PiSSA initialization, "
"where [number of iters] indicates the number of subspace iterations to perform fsvd, and must be a nonnegative integer."
"Pass `'loftq'` to use LoftQ initialization"
),
},
@ -239,12 +282,11 @@ class LoraConfig(PeftConfig):
default=False,
metadata={
"help": (
"Enable 'Weight-Decomposed Low-Rank Adaptation' (DoRA). This technique decomposes the updates of the "
"Enable <a href='https://arxiv.org/abs/2402.09353'>'Weight-Decomposed Low-Rank Adaptation' (DoRA)</a>. This technique decomposes the updates of the "
"weights into two parts, magnitude and direction. Direction is handled by normal LoRA, whereas the "
"magnitude is handled by a separate learnable parameter. This can improve the performance of LoRA, "
"especially at low ranks. Right now, DoRA only supports linear and Conv2D layers. DoRA introduces a bigger"
"overhead than pure LoRA, so it is recommended to merge weights for inference. For more information, "
"see https://arxiv.org/abs/2402.09353."
"overhead than pure LoRA, so it is recommended to merge weights for inference."
)
},
)
@ -268,6 +310,17 @@ class LoraConfig(PeftConfig):
)
},
)
runtime_config: LoraRuntimeConfig = field(
default_factory=LoraRuntimeConfig, metadata={"help": "Runtime configurations"}
)
def to_dict(self):
"""
Returns the configuration for your adapter model as a dictionary. Removes runtime configurations.
"""
rv = super().to_dict()
rv.pop("runtime_config")
return rv
def __post_init__(self):
self.peft_type = PeftType.LORA
@ -294,6 +347,47 @@ class LoraConfig(PeftConfig):
if self.loftq_config is None:
raise ValueError("`loftq_config` must be specified when `init_lora_weights` is 'loftq'.")
# Using post training conversion of modified base weights to restore their initial values (PiSSA, OLoRA) cannot
# be correctly done when using rslora + rank_pattern/alpha_pattern. We can't really know if the user intends
# this when they'll eventually call save_pretrained (i.e. if they'll pass
# path_initial_model_for_weight_conversionl). Therefore, we only warn but don't raise an error here.
if (
self.use_rslora
and (self.rank_pattern or self.alpha_pattern)
and (
(isinstance(self.init_lora_weights, str) and (self.init_lora_weights.startswith("pissa")))
or (self.init_lora_weights == "olora")
)
):
msg = (
"Using Rank-Stabilized LoRA with rank_pattern/alpha_pattern and post-training conversion of modified "
"base weights (PiSSA, OLoRA) means that you won't be able to pass "
"`path_initial_model_for_weight_conversion` to `save_pretrained` to restore the initial values of the "
"base weights; if you intend to do this, please ensure not to use rslora or rank_pattern/alpha_pattern."
)
warnings.warn(msg)
# convert loftq_config to dict
if self.loftq_config and not isinstance(self.loftq_config, dict):
self.loftq_config = vars(self.loftq_config)
self._custom_modules: Optional[dict[type[nn.Mmodule], type[nn.Module]]] = None
def _register_custom_module(self, mapping: dict[type[nn.Mmodule], type[nn.Module]]) -> None:
"""
Experimental API to support providing custom LoRA layers.
This API is subject to change, you should carefully read the docs before deciding to use it:
https://huggingface.co/docs/peft/developer_guides/custom_models
To register custom LoRA module types, call this method with a `mapping` argument that is a dict that maps from
the target layer type to the custom LoRA layer type. The dict can contain multiple items if you wish to target
multiple layer types. The target layer type can be any nn.Module that we currently don't support in PEFT,
whether that is an official PyTorch layer type or a custom layer type. The custom LoRA module class has to be
implemented by the user and follow the PEFT conventions for LoRA layers.
"""
if self._custom_modules is None:
self._custom_modules = {}
self._custom_modules.update(mapping)

View File

@ -0,0 +1,152 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch import nn
from peft.utils.integrations import dequantize_module_weight, gather_params_ctx
from peft.utils.other import transpose
class DoraLinearLayer(nn.Module):
def __init__(self, fan_in_fan_out):
super().__init__()
self.fan_in_fan_out = fan_in_fan_out
def get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
# calculate L2 norm of weight matrix, column-wise
weight = transpose(weight, self.fan_in_fan_out)
weight = weight + scaling * lora_weight
weight_norm = torch.linalg.norm(weight, dim=1).to(weight.dtype)
return weight_norm
def update_layer(self, *, base_layer, lora_A, lora_B, scaling, place_on_cpu=False) -> None:
# temporarily convert fp16 to fp32, as fp16 can cause trouble on CPU with PyTorch < 2.2
dtype_is_fp16 = lora_A.dtype == torch.float16
if dtype_is_fp16:
lora_A = lora_A.float()
lora_B = lora_B.float()
with gather_params_ctx(base_layer.parameters()):
if base_layer.__class__.__name__ == "Linear4bit":
# We have to create a copy of the base layer, otherwise, FSDP will throw an error. 8bit does not work
# yet because Int8Params cannot be correctly deep-copied (attributes vanish)
base_layer = deepcopy(base_layer)
weight = dequantize_module_weight(base_layer)
if weight.data.ndim == 4: # For handling LoRAs applied to Conv2Ds.
lora_weight = torch.mm(lora_B.flatten(start_dim=1), lora_A.flatten(start_dim=1))
lora_weight = lora_weight.reshape(weight.shape)
else:
lora_weight = lora_B @ lora_A
if dtype_is_fp16:
lora_weight = lora_weight.half()
weight_norm = self.get_weight_norm(weight.to(lora_A.device), lora_weight, scaling)
if place_on_cpu:
weight_norm = weight_norm.to("cpu")
self.weight = nn.Parameter(weight_norm, requires_grad=True)
def forward(self, x, *, lora_A, lora_B, scaling, base_layer):
"""
For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
output.
"""
lora_result = lora_B(lora_A(x))
# Don't use `lora_weight = lora_B.weight @ lora_A.weight` because this causes errors with FSDP. Instead,
# calculate the same but using forward.
x_eye = torch.eye(lora_A.weight.shape[1], device=lora_A.weight.device, dtype=x.dtype)
lora_weight = lora_B(lora_A(x_eye)).T
magnitude = self.weight
weight = dequantize_module_weight(base_layer)
weight = weight.to(x.dtype)
weight_norm = self.get_weight_norm(weight, lora_weight.detach(), scaling)
# see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
# "[...] we suggest treating ||V +∆V ||_c in
# Eq. (5) as a constant, thereby detaching it from the gradient
# graph. This means that while ||V + ∆V ||_c dynamically
# reflects the updates of ∆V , it wont receive any gradient
# during backpropagation"
weight_norm = weight_norm.detach()
mag_norm_scale = (magnitude / weight_norm).view(1, -1)
result_dora = (mag_norm_scale - 1) * (
F.linear(x, transpose(weight, self.fan_in_fan_out))
) + mag_norm_scale * lora_result * scaling
# Note: Computation could potentially be accelerated by using the code below instead of calculating X@W again.
# This is only correct if dropout=0, otherwise results will differ:
# https://github.com/huggingface/peft/pull/1474#issuecomment-1964682771
# bias = self.get_base_layer().bias
# if bias is not None:
# result = result - bias
# result = mag_norm_scale * result + mag_norm_scale * lora_B(lora_A(x)) * scaling
# if bias is not None:
# result = result + bias
return result_dora
def __repr__(self) -> str:
rep = super().__repr__()
return "lora.dora." + rep
class DoraConv2dLayer(DoraLinearLayer):
def get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
# calculate L2 norm of weight matrix, column-wise
weight = weight + scaling * lora_weight
# the following is needed to have compatibility with the 4D weight tensors of Conv2D
weight_norm = weight.norm(p=2, dim=(1, 2, 3), keepdim=True).transpose(1, 0)
return weight_norm
def forward(self, x, *, lora_A, lora_B, scaling, base_layer):
"""
For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
output.
"""
weight = base_layer.weight
lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
lora_weight = lora_weight.reshape(weight.shape)
magnitude = self.weight
weight_norm = self.get_weight_norm(weight, lora_weight.detach(), scaling)
# see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
# "[...] we suggest treating ||V +∆V ||_c in
# Eq. (5) as a constant, thereby detaching it from the gradient
# graph. This means that while ||V + ∆V ||_c dynamically
# reflects the updates of ∆V , it wont receive any gradient
# during backpropagation"
weight_norm = weight_norm.detach()
mag_norm_scale = magnitude / weight_norm
result_dora = (mag_norm_scale - 1) * (
F.conv2d(
x,
weight,
bias=None,
stride=base_layer.stride,
padding=base_layer.padding,
dilation=base_layer.dilation,
groups=base_layer.groups,
)
) + mag_norm_scale * lora_B(lora_A(x)) * scaling
return result_dora
def __repr__(self) -> str:
rep = super().__repr__()
return "lora.dora." + rep

View File

@ -0,0 +1,104 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional
import torch
from peft.import_utils import is_eetq_available
from peft.tuners.lora.layer import LoraLayer
from peft.tuners.tuners_utils import BaseTunerLayer
if is_eetq_available():
from eetq import EetqLinear
class EetqLoraLinear(torch.nn.Module, LoraLayer):
def __init__(
self,
base_layer,
adapter_name,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
init_lora_weights: bool = True,
use_rslora: bool = False,
**kwargs,
):
super().__init__()
LoraLayer.__init__(self, base_layer)
# self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter
# for backwards compatibility
self.quant_linear_module = base_layer
self._active_adapter = adapter_name
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora)
def forward(self, x: torch.Tensor):
result = self.quant_linear_module(x)
if self.disable_adapters:
return result
for active_adapter in self.active_adapters:
if active_adapter not in self.lora_A.keys():
continue
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
requires_conversion = not torch.is_autocast_enabled()
if requires_conversion:
expected_dtype = result.dtype
x = x.to(lora_A.weight.dtype)
output = lora_B(lora_A(dropout(x)))
if requires_conversion:
output = output.to(expected_dtype)
output = output * scaling
result = result + output
return result
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
raise AttributeError("Merging LoRA layers is not supported for Eetq layers.")
def unmerge(self) -> None:
raise AttributeError("Unmerging LoRA layers is not supported for Eetq layers.")
def __repr__(self) -> str:
rep = super().__repr__()
return "lora." + rep
def dispatch_eetq(
target: torch.nn.Module,
adapter_name: str,
**kwargs: Any,
) -> Optional[torch.nn.Module]:
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if is_eetq_available() and isinstance(target_base_layer, EetqLinear):
new_module = EetqLoraLinear(target, adapter_name, **kwargs)
target.weight = target_base_layer.weight
if hasattr(target, "bias"):
target.bias = target_base_layer.bias
return new_module

247
src/peft/tuners/lora/hqq.py Normal file
View File

@ -0,0 +1,247 @@
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import copy
import warnings
from typing import Any, Optional
import torch
from peft.import_utils import is_hqq_available
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.other import transpose
from .layer import LoraLayer
if is_hqq_available():
from hqq.core.quantize import HQQLinear
class HqqLoraLinear(torch.nn.Module, LoraLayer):
# Lora implemented in a dense layer
def __init__(
self,
base_layer: torch.nn.Module,
adapter_name: str,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
init_lora_weights: bool = True,
use_rslora: bool = False,
use_dora: bool = False,
**kwargs,
) -> None:
super().__init__()
LoraLayer.__init__(self, base_layer)
self.fan_in_fan_out = False
self._active_adapter = adapter_name
self.update_layer(
adapter_name,
r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
init_lora_weights=init_lora_weights,
use_rslora=use_rslora,
use_dora=use_dora,
)
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`list[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged.
Defaults to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter not in self.lora_A.keys():
continue
layer = self.get_base_layer()
quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta}
lora_data = self.get_delta_weight(active_adapter)
output = layer.dequantize()
if not self.use_dora[active_adapter]:
w_data = output + lora_data
else:
# handle dora
# since output already includes scaling, set it to 1 here
weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
w_data = dora_factor.view(-1, 1) * (output + lora_data)
if safe_merge and not torch.isfinite(w_data).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device)
quant_config.pop("offload_meta", None)
new_hqq_layer.quantize(w_data, **quant_config)
self.base_layer = new_hqq_layer
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter not in self.lora_A.keys():
continue
lora_data = self.get_delta_weight(active_adapter)
layer = self.get_base_layer()
quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta}
output = layer.dequantize()
if not self.use_dora[active_adapter]:
w_data = output - lora_data
else:
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
w_data = output.data / dora_factor.view(-1, 1) - lora_data
new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device)
quant_config.pop("offload_meta", None)
new_hqq_layer.quantize(w_data, **quant_config)
self.base_layer = new_hqq_layer
def get_delta_weight(self, adapter):
return (
transpose(
self.lora_B[adapter].weight @ self.lora_A[adapter].weight,
False,
)
* self.scaling[adapter]
)
def _mixed_batch_forward(
self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
) -> torch.Tensor:
# This is a special method that handles the case when users pass the argument `adapter_names`. This is an
# extra argument that allows mixing different adapters in the same batch at inference time.
result = self.base_layer(x, *args, **kwargs)
unique_adapters = set(adapter_names)
sub_batch_indices_list = []
for adapter in unique_adapters:
sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])
for i, active_adapter in enumerate(unique_adapters):
if active_adapter == "__base__":
continue
if active_adapter not in self.lora_A.keys():
continue
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
requires_conversion = not torch.is_autocast_enabled()
if requires_conversion:
expected_dtype = result.dtype
compute_dtype = lora_A.weight.dtype
if x.dtype != compute_dtype:
x = x.to(compute_dtype)
# getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
# layer output
sub_batch = x[sub_batch_indices_list[i]]
output = lora_B(lora_A(dropout(sub_batch))) * scaling
if requires_conversion:
output = output.to(expected_dtype)
result[sub_batch_indices_list[i]] += output
return result
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
self._check_forward_args(x, *args, **kwargs)
adapter_names = kwargs.pop("adapter_names", None)
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif adapter_names is not None:
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.lora_A.keys():
continue
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
requires_conversion = not torch.is_autocast_enabled()
if requires_conversion:
expected_dtype = result.dtype
compute_dtype = lora_A.weight.dtype
if x.dtype != compute_dtype:
x = x.to(compute_dtype)
if not self.use_dora[active_adapter]:
output = lora_B(lora_A(dropout(x))) * scaling
else:
output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
if requires_conversion:
output = output.to(expected_dtype)
result = result + output
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "lora." + rep
def dispatch_hqq(target: torch.nn.Module, adapter_name: str, **kwargs):
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if is_hqq_available() and isinstance(target_base_layer, HQQLinear):
new_module = HqqLoraLinear(target_base_layer, adapter_name, **kwargs)
return new_module

View File

@ -20,13 +20,15 @@ from typing import Any, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import svd_lowrank
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.integrations import dequantize_bnb_weight, gather_params_ctx
from peft.utils.integrations import dequantize_module_weight, gather_params_ctx
from peft.utils.other import transpose
from .config import LoraConfig
from .dora import DoraConv2dLayer, DoraLinearLayer
class LoraLayer(BaseTunerLayer):
@ -35,7 +37,7 @@ class LoraLayer(BaseTunerLayer):
# All names of other parameters that may contain adapter-related parameters
other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout")
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
def __init__(self, base_layer: nn.Module, ephemeral_gpu_offload: bool = False, **kwargs) -> None:
self.base_layer = base_layer
self.r = {}
self.lora_alpha = {}
@ -50,8 +52,9 @@ class LoraLayer(BaseTunerLayer):
self._disable_adapters = False
self.merged_adapters = []
self.use_dora: dict[str, bool] = {}
self.lora_magnitude_vector: Optional[torch.nn.ParameterDict] = None # for DoRA
self.lora_magnitude_vector = torch.nn.ModuleDict() # for DoRA
self._caches: dict[str, Any] = {}
self.ephemeral_gpu_offload: bool = ephemeral_gpu_offload
self.kwargs = kwargs
base_layer = self.get_base_layer()
@ -77,8 +80,21 @@ class LoraLayer(BaseTunerLayer):
elif hasattr(base_layer, "w_bit") and base_layer.__class__.__name__ == "WQLinear_GEMM":
# Awq layers
in_features, out_features = base_layer.in_features, base_layer.out_features
elif base_layer.__class__.__name__ == "EetqLinear":
# Eetq layers
in_features, out_features = base_layer.in_features, base_layer.out_features
elif hasattr(base_layer, "W_q") and base_layer.__class__.__name__ == "HQQLinear":
# HQQ layers
in_features, out_features = base_layer.in_features, base_layer.out_features
else:
raise ValueError(f"Unsupported layer type {type(base_layer)}")
# possibly support user provided custom layer types using dynamic dispatch
if hasattr(base_layer, "in_features") and hasattr(base_layer, "out_features"):
in_features, out_features = base_layer.in_features, base_layer.out_features
else:
in_features, out_features = None, None
warnings.warn(
f"Unsupported layer type '{type(base_layer)}' encountered, proceed at your own risk.", UserWarning
)
self.in_features = in_features
self.out_features = out_features
@ -106,21 +122,20 @@ class LoraLayer(BaseTunerLayer):
else:
self.scaling[adapter_name] = lora_alpha / r
if init_lora_weights == "loftq":
self.loftq_init(adapter_name)
# for inits that require access to the base weight, use gather_param_ctx so that the weight is gathered when using DeepSpeed
if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"):
with gather_params_ctx(self.get_base_layer().weight):
self.pissa_init(adapter_name, init_lora_weights)
elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora":
with gather_params_ctx(self.get_base_layer().weight):
self.olora_init(adapter_name)
elif init_lora_weights == "loftq":
with gather_params_ctx(self.get_base_layer().weight):
self.loftq_init(adapter_name)
elif init_lora_weights:
self.reset_lora_parameters(adapter_name, init_lora_weights)
# check weight and qweight (for GPTQ)
for weight_name in ("weight", "qweight"):
weight = getattr(self.get_base_layer(), weight_name, None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
break
# call this before dora_init
self._move_adapter_to_device_of_base_layer(adapter_name)
if use_dora:
self.dora_init(adapter_name)
@ -145,10 +160,69 @@ class LoraLayer(BaseTunerLayer):
raise ValueError(f"Unknown initialization {init_lora_weights=}")
nn.init.zeros_(self.lora_B[adapter_name].weight)
if adapter_name in self.lora_embedding_A.keys():
# initialize a the same way as the default for nn.linear and b to zero
# Initialize A to zeros and B the same way as the default for nn.Embedding, see:
# https://github.com/microsoft/LoRA/blob/4c0333854cb905966f8cc4e9a74068c1e507c7b7/loralib/layers.py#L59-L60
nn.init.zeros_(self.lora_embedding_A[adapter_name])
nn.init.normal_(self.lora_embedding_B[adapter_name])
def olora_init(self, adapter_name):
dtype = self.get_base_layer().weight.dtype
if dtype in [torch.int8, torch.uint8]:
weight_tensor = dequantize_module_weight(self.get_base_layer())
elif dtype in [torch.float32, torch.float16, torch.bfloat16]:
weight_tensor = self.get_base_layer().weight
else:
raise TypeError(f"Unsupported data type for the base layer. Got {dtype}.")
scale_factor = self.scaling[adapter_name]
r = self.r[adapter_name]
weight_tensor = weight_tensor.to(torch.float32)
Q, R = torch.linalg.qr(weight_tensor.data)
Qr, Rr = Q[:, :r], R[:r]
self.lora_A[adapter_name].weight.data = Rr.contiguous()
self.lora_B[adapter_name].weight.data = Qr.contiguous()
weight_tensor.data -= scale_factor * self.lora_B[adapter_name].weight @ self.lora_A[adapter_name].weight
weight_tensor = weight_tensor.to(dtype)
self.get_base_layer().weight.data = weight_tensor
def pissa_init(self, adapter_name, init_lora_weights):
weight = self.get_base_layer().weight
dtype = weight.dtype
if dtype not in [torch.float32, torch.float16, torch.bfloat16]:
raise TypeError(
"Please initialize PiSSA under float32, float16, or bfloat16. "
"Subsequently, re-quantize the residual model to help minimize quantization errors."
)
weight = weight.to(torch.float32)
if init_lora_weights == "pissa":
# USV^T = W <-> VSU^T = W^T, where W^T = weight.data in R^{out_channel, in_channel},
V, S, Uh = torch.linalg.svd(weight.data, full_matrices=False)
Vr = V[:, : self.r[adapter_name]]
Sr = S[: self.r[adapter_name]]
Sr /= self.scaling[adapter_name]
Uhr = Uh[: self.r[adapter_name]]
elif len(init_lora_weights.split("_niter_")) == 2:
Vr, Sr, Ur = svd_lowrank(
weight.data, self.r[adapter_name], niter=int(init_lora_weights.split("_niter_")[-1])
)
Sr /= self.scaling[adapter_name]
Uhr = Ur.t()
else:
raise ValueError(
f"init_lora_weights should be 'pissa' or 'pissa_niter_[number of iters]', got {init_lora_weights} instead."
)
lora_A = torch.diag(torch.sqrt(Sr)) @ Uhr
lora_B = Vr @ torch.diag(torch.sqrt(Sr))
self.lora_A[adapter_name].weight.data = lora_A
self.lora_B[adapter_name].weight.data = lora_B
weight = weight.data - self.scaling[adapter_name] * lora_B @ lora_A
weight = weight.to(dtype)
self.get_base_layer().weight.data = weight
def loftq_init(self, adapter_name):
from peft.utils.loftq_utils import loftq_init
@ -170,31 +244,27 @@ class LoraLayer(BaseTunerLayer):
self.lora_embedding_B[adapter_name].weight.data = lora_B
self.get_base_layer().weight.data = qweight
def _get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
# calculate L2 norm of weight matrix, column-wise
weight = transpose(weight, self.fan_in_fan_out)
weight = weight + scaling * lora_weight
weight_norm = torch.linalg.norm(weight, dim=1).to(weight.dtype)
return weight_norm
def dora_init(self, adapter_name: str) -> None:
lora_A = self.lora_A[adapter_name]
lora_B = self.lora_B[adapter_name]
scaling = self.scaling[adapter_name]
with gather_params_ctx(self.get_base_layer().parameters()):
weight = self.get_base_layer().weight
quant_state = getattr(self.get_base_layer(), "state", None)
weight = dequantize_bnb_weight(weight, state=quant_state) # no-op if not bnb
if weight.data.ndim == 4: # For handling LoRAs applied to Conv2Ds.
lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
lora_weight = lora_weight.reshape(weight.shape)
if not self.lora_magnitude_vector:
# first dora layer being added, add lora_magnitude_vector to the list of learnable parameters
self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",)
dora_layer = DoraLinearLayer(fan_in_fan_out=getattr(self, "fan_in_fan_out", False))
lora_A = self.lora_A[adapter_name].weight
lora_B = self.lora_B[adapter_name].weight
place_on_cpu = self.ephemeral_gpu_offload and (lora_A.device.type == "cpu" or lora_B.device.type == "cpu")
if self.ephemeral_gpu_offload:
if lora_A.device.type == "cuda":
lora_B = lora_B.to(lora_A.device)
else:
lora_weight = lora_B.weight @ lora_A.weight
weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
self.lora_magnitude_vector = nn.ParameterDict()
self.lora_magnitude_vector[adapter_name] = nn.Parameter(weight_norm, requires_grad=True)
# add lora_magnitude_vector to the list of learnable parameters
self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",)
if lora_B.device.type != "cuda":
lora_B = lora_B.to("cuda")
lora_A = lora_A.to(lora_B.device)
scaling = self.scaling[adapter_name]
dora_layer.update_layer(
base_layer=self.get_base_layer(), lora_A=lora_A, lora_B=lora_B, scaling=scaling, place_on_cpu=place_on_cpu
)
self.lora_magnitude_vector[adapter_name] = dora_layer
def _cache_store(self, key: str, value: Any) -> None:
self._caches[key] = value
@ -203,42 +273,6 @@ class LoraLayer(BaseTunerLayer):
value = self._caches.pop(key)
return value
def _apply_dora(self, x, lora_A, lora_B, scaling, active_adapter):
"""
For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
output.
"""
lora_weight = lora_B.weight @ lora_A.weight
magnitude = self.lora_magnitude_vector[active_adapter]
weight = self.get_base_layer().weight
quant_state = getattr(self.get_base_layer(), "state", None)
weight = dequantize_bnb_weight(weight, state=quant_state) # no-op if not bnb
weight = weight.to(x.dtype)
weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
# see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
# "[...] we suggest treating ||V +∆V ||_c in
# Eq. (5) as a constant, thereby detaching it from the gradient
# graph. This means that while ||V + ∆V ||_c dynamically
# reflects the updates of ∆V , it wont receive any gradient
# during backpropagation"
weight_norm = weight_norm.detach()
mag_norm_scale = (magnitude / weight_norm).view(1, -1)
result_dora = (mag_norm_scale - 1) * (
F.linear(x, transpose(weight, self.fan_in_fan_out))
) + mag_norm_scale * lora_B(lora_A(x)) * scaling
# Note: Computation could potentially be accelerated by using the code below instead of calculating X@W again.
# This is only correct if dropout=0, otherwise results will differ:
# https://github.com/huggingface/peft/pull/1474#issuecomment-1964682771
# bias = self.get_base_layer().bias
# if bias is not None:
# result = result - bias
# result = mag_norm_scale * result + mag_norm_scale * lora_B(lora_A(x)) * scaling
# if bias is not None:
# result = result + bias
return result_dora
def set_scale(self, adapter, scale):
if adapter not in self.scaling:
# Ignore the case where the adapter is not in the layer
@ -392,18 +426,20 @@ class Linear(nn.Module, LoraLayer):
orig_weights = base_layer.weight.data.clone()
delta_weight = self.get_delta_weight(active_adapter)
if not self.use_dora[active_adapter]:
orig_weights = orig_weights + delta_weight
orig_weights += delta_weight
else:
# handle dora
# since delta_weight already includes scaling, set it to 1 here
weight_norm = self._get_weight_norm(
orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1
).detach()
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
orig_weights = dora_factor * (orig_weights + delta_weight)
@ -416,18 +452,22 @@ class Linear(nn.Module, LoraLayer):
else:
delta_weight = self.get_delta_weight(active_adapter)
if not self.use_dora[active_adapter]:
base_layer.weight.data = base_layer.weight.data + delta_weight
base_layer.weight.data += delta_weight
else:
# handle dora
# since delta_weight already includes scaling, set it to 1 here
weight_norm = self._get_weight_norm(
base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1
).detach()
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(
base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1
)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
new_weight = dora_factor * (base_layer.weight.data + delta_weight)
base_layer.weight.data = new_weight
@ -450,7 +490,7 @@ class Linear(nn.Module, LoraLayer):
weight.data -= delta_weight
else:
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight
weight.data = weight_orig
@ -516,7 +556,13 @@ class Linear(nn.Module, LoraLayer):
result = result + lora_B(lora_A(dropout(x))) * scaling
else:
x = dropout(x)
result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
)
result = result.to(torch_result_dtype)
@ -585,12 +631,7 @@ class Embedding(nn.Module, LoraLayer):
elif init_lora_weights:
self.reset_lora_parameters(adapter_name, init_lora_weights)
base_layer = self.get_base_layer()
weight = getattr(base_layer, "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
self.to(base_layer.weight.device, dtype=weight.dtype)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
@ -618,7 +659,7 @@ class Embedding(nn.Module, LoraLayer):
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
orig_weights = orig_weights + self.get_delta_weight(active_adapter)
orig_weights += self.get_delta_weight(active_adapter)
if not torch.isfinite(orig_weights).all():
raise ValueError(
@ -627,7 +668,7 @@ class Embedding(nn.Module, LoraLayer):
base_layer.weight.data = orig_weights
else:
base_layer.weight.data = base_layer.weight.data + self.get_delta_weight(active_adapter)
base_layer.weight.data += self.get_delta_weight(active_adapter)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
@ -808,10 +849,8 @@ class Conv2d(nn.Module, LoraLayer):
elif init_lora_weights:
self.reset_lora_parameters(adapter_name, init_lora_weights)
weight = getattr(base_layer, "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
self.to(base_layer.weight.device, dtype=weight.dtype)
# call this before dora_init
self._move_adapter_to_device_of_base_layer(adapter_name)
if use_dora:
self.dora_init(adapter_name)
@ -821,6 +860,18 @@ class Conv2d(nn.Module, LoraLayer):
self.set_adapter(self.active_adapters)
def dora_init(self, adapter_name: str) -> None:
if self.lora_magnitude_vector is None:
# first dora layer being added, add lora_magnitude_vector to the list of learnable parameters
self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",)
dora_layer = DoraConv2dLayer(fan_in_fan_out=False)
lora_A = self.lora_A[adapter_name].weight
lora_B = self.lora_B[adapter_name].weight
scaling = self.scaling[adapter_name]
dora_layer.update_layer(base_layer=self.get_base_layer(), lora_A=lora_A, lora_B=lora_B, scaling=scaling)
self.lora_magnitude_vector[adapter_name] = dora_layer
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights inside the base weights
@ -849,16 +900,20 @@ class Conv2d(nn.Module, LoraLayer):
delta_weight = self.get_delta_weight(active_adapter)
if not self.use_dora[active_adapter]:
orig_weights = orig_weights + delta_weight
orig_weights += delta_weight
else:
# handle dora
# since delta_weight already includes scaling, set it to 1 here
weight_norm = self._get_weight_norm(orig_weights, delta_weight, scaling=1).detach()
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(orig_weights, delta_weight, scaling=1)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
orig_weights = dora_factor.view(-1, 1, 1, 1) * (orig_weights + delta_weight)
if not torch.isfinite(orig_weights).all():
@ -869,16 +924,20 @@ class Conv2d(nn.Module, LoraLayer):
else:
delta_weight = self.get_delta_weight(active_adapter)
if not self.use_dora[active_adapter]:
base_layer.weight.data = base_layer.weight.data + delta_weight
base_layer.weight.data += delta_weight
else:
# handle dora
# since delta_weight already includes scaling, set it to 1 here
weight_norm = self._get_weight_norm(base_layer.weight, delta_weight, scaling=1).detach()
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(base_layer.weight, delta_weight, scaling=1)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
new_weight = dora_factor.view(-1, 1, 1, 1) * (base_layer.weight.data + delta_weight)
base_layer.weight.data = new_weight
@ -900,7 +959,7 @@ class Conv2d(nn.Module, LoraLayer):
weight.data -= delta_weight
else:
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
weight_orig = weight.data / dora_factor.view(-1, 1, 1, 1) - delta_weight
weight.data = weight_orig
@ -952,46 +1011,6 @@ class Conv2d(nn.Module, LoraLayer):
return output_tensor
def _get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
# calculate L2 norm of weight matrix, channel-wise
weight = weight + scaling * lora_weight
# the following is needed to have compatibility with the 4D weight tensors of Conv2D
weight_norm = weight.norm(p=2, dim=(1, 2, 3), keepdim=True).transpose(1, 0)
return weight_norm
def _apply_dora(self, x, lora_A, lora_B, scaling, active_adapter):
"""
For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
output.
"""
base_layer = self.get_base_layer()
weight = base_layer.weight
lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
lora_weight = lora_weight.reshape(weight.shape)
magnitude = self.lora_magnitude_vector[active_adapter]
weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
# see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
# "[...] we suggest treating ||V +∆V ||_c in
# Eq. (5) as a constant, thereby detaching it from the gradient
# graph. This means that while ||V + ∆V ||_c dynamically
# reflects the updates of ∆V , it wont receive any gradient
# during backpropagation"
weight_norm = weight_norm.detach()
mag_norm_scale = magnitude / weight_norm
result_dora = (mag_norm_scale - 1) * (
F.conv2d(
x,
weight,
bias=None,
stride=base_layer.stride,
padding=base_layer.padding,
dilation=base_layer.dilation,
groups=base_layer.groups,
)
) + mag_norm_scale * lora_B(lora_A(x)) * scaling
return result_dora
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
self._check_forward_args(x, *args, **kwargs)
adapter_names = kwargs.pop("adapter_names", None)
@ -1021,7 +1040,13 @@ class Conv2d(nn.Module, LoraLayer):
result = result + lora_B(lora_A(dropout(x))) * scaling
else:
x = dropout(x)
result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
)
result = result.to(torch_result_dtype)
return result

View File

@ -41,6 +41,7 @@ from peft.utils import (
ModulesToSaveWrapper,
_freeze_adapter,
_get_submodules,
get_peft_model_state_dict,
get_quantization_config,
)
from peft.utils.merge_utils import dare_linear, dare_ties, magnitude_prune, task_arithmetic, ties
@ -48,7 +49,9 @@ from peft.utils.merge_utils import dare_linear, dare_ties, magnitude_prune, task
from .aqlm import dispatch_aqlm
from .awq import dispatch_awq
from .config import LoraConfig
from .eetq import dispatch_eetq
from .gptq import dispatch_gptq
from .hqq import dispatch_hqq
from .layer import Conv2d, LoraLayer, dispatch_default
from .tp_layer import dispatch_megatron
@ -193,6 +196,7 @@ class LoraModel(BaseTuner):
"init_lora_weights": lora_config.init_lora_weights,
"use_rslora": lora_config.use_rslora,
"use_dora": lora_config.use_dora,
"ephemeral_gpu_offload": lora_config.runtime_config.ephemeral_gpu_offload,
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
}
@ -233,7 +237,10 @@ class LoraModel(BaseTuner):
child = child.base_layer
if not hasattr(new_module, "base_layer"):
new_module.weight = child.weight
if hasattr(new_module, "W_q"): # HQQ
new_module.W_q = child.W_q
else:
new_module.weight = child.weight
if hasattr(child, "bias"):
new_module.bias = child.bias
@ -247,7 +254,15 @@ class LoraModel(BaseTuner):
# dispatch to correct device
for name, module in new_module.named_modules():
if (self.prefix in name) or ("ranknum" in name):
weight = child.qweight if hasattr(child, "qweight") else child.weight
weight = (
child.qweight
if hasattr(child, "qweight")
else child.W_q
if hasattr(child, "W_q")
else child.weight
if hasattr(child, "weight")
else next(child.parameters())
)
module.to(weight.device)
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
@ -277,6 +292,26 @@ class LoraModel(BaseTuner):
# because the first match is always used. Therefore, the default layers should be checked last.
dispatchers = []
if lora_config._custom_modules:
# Experimental custom LoRA module support. Allows users to pass a custom mapping for unsupported layer
# types by impelementing their own LoRA layers.
def dynamic_dispatch_func(target, adapter_name, lora_config, **kwargs):
new_module = None
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
for key, custom_cls in lora_config._custom_modules.items():
if isinstance(target_base_layer, key):
new_module = custom_cls(target, adapter_name, **kwargs)
break
return new_module
dispatchers.append(dynamic_dispatch_func)
# avoid eager bnb import
if is_bnb_available():
from .bnb import dispatch_bnb_8bit
@ -288,7 +323,17 @@ class LoraModel(BaseTuner):
dispatchers.append(dispatch_bnb_4bit)
dispatchers.extend([dispatch_aqlm, dispatch_awq, dispatch_gptq, dispatch_megatron, dispatch_default])
dispatchers.extend(
[
dispatch_eetq,
dispatch_aqlm,
dispatch_awq,
dispatch_gptq,
dispatch_hqq,
dispatch_megatron,
dispatch_default,
]
)
new_module = None
for dispatcher in dispatchers:
@ -310,6 +355,8 @@ class LoraModel(BaseTuner):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
@ -572,9 +619,6 @@ class LoraModel(BaseTuner):
if adapter_name in list(self.peft_config.keys()):
return
for adapter in adapters:
if adapter not in list(self.peft_config.keys()):
raise ValueError(f"Adapter {adapter} does not exist")
combination_type, new_rank, new_target_modules = self._check_add_weighted_adapter(
adapters=adapters,
@ -826,3 +870,41 @@ class LoraModel(BaseTuner):
model.
"""
return self._unload_and_optionally_merge(merge=False)
def subtract_mutated_init(self, output_state_dict: dict[str, torch.Tensor], adapter_name: str, kwargs=None):
"""
This function can calculate the updates of the [PiSSA | OLoRA] by comparing the parameters of the [PiSSA |
OLoRA] adapter in `output_state_dict` with the initial values of [PiSSA | OLoRA] in `adapter_name`, thus
converting [PiSSA | OLoRA] to LoRA.
"""
for name, param in self.model.named_parameters():
if (
param.data.dtype != torch.float32
and param.data.dtype != torch.float16
and param.data.dtype != torch.bfloat16
) and adapter_name.startswith("pissa"):
warnings.warn(
r"Note that Quant(W_res) + AB != Quant(W) + \Delta(AB); "
"the converted LoRA, when combined with W or Quant(W), may introduce a certain gap in the fine-tuned model. "
"Therefore, we recommend directly using the Quant(W_res) in conjunction with the PiSSA adapter. "
)
mutated_init_state_dict = get_peft_model_state_dict(
self,
state_dict=kwargs.get("state_dict", None),
adapter_name=adapter_name,
)
tensors_lora = {}
for name in output_state_dict.keys():
## W = W^{res} + A_0 \times B_0,
## W + \Delta W = W^{res} + A \times B,
## \Delta W = A \times B - A_0 \times B_0 = [A | A_0] \times [B | -B_0]^T = A'B'.
if "lora_A" in name:
tensors_lora[name] = torch.cat(
[output_state_dict[name], mutated_init_state_dict[".".join(name.split(".")[1:])]], dim=0
)
elif "lora_B" in name:
tensors_lora[name] = torch.cat(
[output_state_dict[name], -mutated_init_state_dict[".".join(name.split(".")[1:])]], dim=1
)
return tensors_lora

View File

@ -11,16 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import importlib
import math
import warnings
from typing import Any, Optional
from typing import Any, Optional, Union
import torch
import torch.nn as nn
import torch.nn.init as init
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils import transpose
from peft.utils.integrations import gather_params_ctx
from .layer import LoraLayer
@ -42,13 +46,14 @@ class LoraParallelLinear(nn.Module, LoraLayer):
lora_alpha: int = 1,
lora_dropout: float = 0.0,
fan_in_fan_out: bool = False,
init_lora_weights: bool = True,
is_target_conv_1d_layer: bool = False,
init_lora_weights: Union[bool, str] = True,
use_rslora: bool = False,
use_dora: bool = False,
**kwargs,
):
super().__init__()
LoraLayer.__init__(self, base_layer=base_layer)
LoraLayer.__init__(self, base_layer=base_layer, **kwargs)
if use_dora:
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")
@ -83,6 +88,10 @@ class LoraParallelLinear(nn.Module, LoraLayer):
**parallel_linear_kwargs,
)
if is_target_conv_1d_layer:
raise ValueError(
f"{self.__class__.__name__} does not support target_conv_1d_layer yet, please set it to False"
)
self.is_target_conv_1d_layer = False
def update_layer(
@ -137,23 +146,37 @@ class LoraParallelLinear(nn.Module, LoraLayer):
self.lora_A[adapter_name] = lora_a
self.lora_B[adapter_name] = lora_b
if use_rslora:
self.scaling[adapter_name] = lora_alpha / (r**0.5)
self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
else:
self.scaling[adapter_name] = lora_alpha / r
if init_lora_weights:
# for inits that require access to the base weight, use gather_param_ctx so that the weight is gathered when using DeepSpeed
if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"):
with gather_params_ctx(self.get_base_layer().weight):
self.pissa_init(adapter_name, init_lora_weights)
elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora":
with gather_params_ctx(self.get_base_layer().weight):
self.olora_init(adapter_name)
elif init_lora_weights == "loftq":
with gather_params_ctx(self.get_base_layer().weight):
self.loftq_init(adapter_name)
elif init_lora_weights:
self.reset_lora_parameters(adapter_name, init_lora_weights)
weight = getattr(self.get_base_layer(), "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
# call this before dora_init
self._move_adapter_to_device_of_base_layer(adapter_name)
if use_dora:
self.dora_init(adapter_name)
self.use_dora[adapter_name] = True
else:
self.use_dora[adapter_name] = False
self.set_adapter(self.active_adapters)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any):
previous_dtype = x.dtype
self._check_forward_args(x, *args, **kwargs)
adapter_names = kwargs.pop("adapter_names", None)
# If weight is used for matrix multiplication here, the final aggregation operation of the original
# parallel_linear layer will be missing, so we need to directly call its forward function to obtain the
# output of the original parallel_linear layer.
@ -161,10 +184,13 @@ class LoraParallelLinear(nn.Module, LoraLayer):
if self.merged:
self.unmerge()
result, bias = self.base_layer(x, *args, **kwargs)
elif adapter_names is not None:
raise ValueError(f"{self.__class__.__name__} does not support mixed_batch_forward yet.")
elif self.merged:
result, bias = self.base_layer(x, *args, **kwargs)
else:
result, bias = self.base_layer(x, *args, **kwargs)
torch_result_dtype = result.dtype
for active_adapter in self.active_adapters:
if active_adapter not in self.lora_A.keys():
continue
@ -174,19 +200,162 @@ class LoraParallelLinear(nn.Module, LoraLayer):
scaling = self.scaling[active_adapter]
x = x.to(lora_A.weight.dtype)
lora_result = lora_A(dropout(x))
if isinstance(lora_result, tuple):
lora_result = lora_result[0]
lora_result = lora_B(lora_result)
if isinstance(lora_result, tuple):
lora_result = lora_result[0]
lora_result = lora_result * scaling
if not self.use_dora[active_adapter]:
lora_result = lora_A(dropout(x))
if isinstance(lora_result, tuple):
lora_result = lora_result[0]
lora_result = lora_B(lora_result)
if isinstance(lora_result, tuple):
lora_result = lora_result[0]
lora_result = lora_result * scaling
result = result + lora_result
result = result + lora_result
else:
x = dropout(x)
result = result + self.lora_magnitude_vector[active_adapter](
x,
lora_A=lora_A,
lora_B=lora_B,
scaling=scaling,
base_layer=self.get_base_layer(),
)
result = result.to(previous_dtype)
result = result.to(torch_result_dtype)
return result, bias
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`list[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.lora_A.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
delta_weight = self.get_delta_weight(active_adapter)
if not self.use_dora[active_adapter]:
orig_weights = orig_weights + delta_weight
else:
# handle dora
# since delta_weight already includes scaling, set it to 1 here
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
orig_weights = dora_factor * (orig_weights + delta_weight)
if not torch.isfinite(orig_weights).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
else:
delta_weight = self.get_delta_weight(active_adapter)
if not self.use_dora[active_adapter]:
base_layer.weight.data = base_layer.weight.data + delta_weight
else:
# handle dora
# since delta_weight already includes scaling, set it to 1 here
weight_norm = (
self.lora_magnitude_vector[active_adapter]
.get_weight_norm(
base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1
)
.detach()
)
# We need to cache weight_norm because it has to be based on the original weights. We
# cannot calculate it on the fly based on the merged weights when unmerging because its a
# different value
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
new_weight = dora_factor * (base_layer.weight.data + delta_weight)
base_layer.weight.data = new_weight
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.lora_A.keys():
weight = self.get_base_layer().weight
delta_weight = self.get_delta_weight(active_adapter)
if not self.use_dora[active_adapter]:
weight.data -= delta_weight
else:
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight
weight.data = weight_orig
def get_delta_weight(self, adapter) -> torch.Tensor:
"""
Compute the delta weight for the given adapter.
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
device = self.lora_B[adapter].weight.device
dtype = self.lora_B[adapter].weight.dtype
# In case users wants to merge the adapter weights that are in
# float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
# float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
cast_to_fp32 = device.type == "cpu" and dtype == torch.float16
weight_A = self.lora_A[adapter].weight
weight_B = self.lora_B[adapter].weight
if cast_to_fp32:
weight_A = weight_A.float()
weight_B = weight_B.float()
output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter]
if cast_to_fp32:
output_tensor = output_tensor.to(dtype=dtype)
# cast back the weights
self.lora_A[adapter].weight.data = weight_A.to(dtype)
self.lora_B[adapter].weight.data = weight_B.to(dtype)
return output_tensor
def __repr__(self) -> str:
rep = super().__repr__()
return "lora." + rep
def dispatch_megatron(
target: torch.nn.Module,

View File

@ -79,8 +79,7 @@ class LycorisLayer(BaseTunerLayer):
@property
@abstractmethod
def _available_adapters(self) -> set[str]:
...
def _available_adapters(self) -> set[str]: ...
def _init_empty_weights(self, cls, *args, **kwargs) -> None:
# A helper method that allows to initialize the layer of the given class without spending time to initialize the
@ -95,8 +94,7 @@ class LycorisLayer(BaseTunerLayer):
self.to_empty(device=final_device)
@abstractmethod
def create_adapter_parameters(self, adapter_name: str, r: int, **kwargs):
...
def create_adapter_parameters(self, adapter_name: str, r: int, **kwargs): ...
# TODO: refactor LoRA to use the same approach
@abstractmethod
@ -104,8 +102,7 @@ class LycorisLayer(BaseTunerLayer):
"""Activations added on top of the base layer output (i.e. after the base layer forward pass)"""
@abstractmethod
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
...
def get_delta_weight(self, adapter_name: str) -> torch.Tensor: ...
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
@ -143,8 +140,7 @@ class LycorisLayer(BaseTunerLayer):
self.merged_adapters.append(active_adapter)
@abstractmethod
def reset_adapter_parameters(self, adapter_name: str):
...
def reset_adapter_parameters(self, adapter_name: str): ...
def set_scale(self, adapter, scale):
if adapter not in self._available_adapters:
@ -185,8 +181,7 @@ class LycorisLayer(BaseTunerLayer):
self.scaling[active_adapter] /= scale
@abstractmethod
def update_layer(self, adapter_name: str, r: int, alpha: float, **kwargs):
...
def update_layer(self, adapter_name: str, r: int, alpha: float, **kwargs): ...
class LycorisTuner(BaseTuner):
@ -205,6 +200,8 @@ class LycorisTuner(BaseTuner):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
@staticmethod
@ -220,8 +217,7 @@ class LycorisTuner(BaseTuner):
target_name,
parent,
current_key,
):
...
): ...
@classmethod
def _create_new_module(cls, config: LycorisConfig, adapter_name: str, target: nn.Module, **kwargs) -> LycorisLayer:

View File

@ -183,6 +183,8 @@ class MixedModel(BaseTuner):
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
def _set_adapter_layers(self, enabled=True):

Some files were not shown because too many files have changed in this diff Show More